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ABSTRACT: This paper presents a theoretical study of the analysis of unsteady blood flow with 

constant and variable viscosities through a stenosed artery using a third grade fluid model. 

Incorporated into the models are the slip velocity and externally applied magnetic field. The 

methods employed in solving the equations governing the unsteady blood flow models with 

constant and variable viscosities are the Galerkin’s weighted residual and Forth order Runge-

Kutta. Important flow parameters such as flow velocity, flow rate, shear stress and flow resistance 

have been computed. Graphical representation shows that, for both cases of unsteady blood flow 

models with constant viscosity and variable viscosity, magnetic field and shear thinning increases 

with flow resistance but decreases the flow velocity, flow rate and shear stress. Increases in slip 

velocity and shear thinning lead to increases in flow velocity, flow rate and shear stress but 

decrease the flow resistance. Other parameters that can positively influence the flow velocity are 

the pressure gradient and Reynold number. Finally, the velocity profile of unsteady blood flow 

model with constant viscosity is higher than that with variable viscosity.   
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INTRODUCITON 

 

 In a recent time, blood flow through normal or stenosed arteries has gained serious attention of 

many researchers [1-5] because blood and blood vessels are substantial health risk factors in the 

development of many cardiovascular diseases. Blood flow in the human circulatory system 

depends upon the pumping action of the heart. That is, the heart moves blood efficiently through 

the branching networks of arteries, capillaries and veins and the lungs cycle here quite effectively 

through the branching pulmonary passage thereby keeping the cells of our bodies alive and 

functioning. 

 

It is well known fact that at high shear rates and large diameter arteries, blood, being predominantly 

a suspension of erythrocytes in plasma, behave as a Newtonian fluid. Some of the researchers that 

investigated the flow of blood through stenosed arteries and treating blood as Newtonian fluid are 

(Amit and Shrivastar [6], Tanwar and Varshney [7], Ellahi et al,[8]). Existing literature in this area 

also reveals that shear rate of blood is low in ther stenosed region. A good many researchers 

(Hatami et al [9], Haleh et al [10], Aziz [11], Ikbal et al [12], Misra and Shit [13]) studied the non-

Newtonian flow of blood from various perspectives. 
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In all the above investigations, only constant viscosity was considered. Variable viscosity of blood 

is another interesting area of study. The mathematical model of blood flow through a tapered artery 

with mild stenosis and variable viscosity was studied by Verma and Pariha [14]. Sanjeev and 

Chandraskhar [15] investigated hematocrit effect on the axisymmetric blood flow through stenosed 

arteries. Jimoh, et al [16] recently investigated hematocrit and slip velocity influence on third grade 

blood flow and heat transfer through a stenosed artery. They used weighted residual method to 

obtained the results in plotted graphs. The graphs reveals that, flow velocity and flow rate 

decreases while wall shear stress and resistance to flow increases when the hematocrit parameter 

increases. 

 

The present study focused on the analysis of unsteady third grade blood flow with constant and 

variable viscosities through a stenosed artery. The externally applied magnetic field and slip 

velocity are also taken into consideration in this study.       

 

Mathematical Models 

The momentum equations describing the unsteady fluid flow models with constant viscosity and 

variable viscosity as obtained by Mohammed [17] and Jimoh [18] are respectively given as  
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As a result of the stenosed artery as shown in figure 1, the corresponding slip conditions to (2.1) 

and (2.2) are respectively given as  

w = ws      at     𝑟 = 𝑅(𝑧) 
𝜕𝑤

𝜕𝑟
= 0    at      𝑟 = 0 

and 

w = 𝑤𝑁1𝑠 at     𝑟 = 𝑅(𝑧) 
𝜕𝑤

𝜕𝑟
= 0    at      𝑟 = 0                        

To non-dimensionalize equations (2.1) - (2.4), one introduces the following parameters and 

variables 

�̅� =
𝑤

𝑑 𝑡0⁄
 , 𝑦 = 𝑟 𝑅0⁄         (2.5)  

             

 𝑉01 =
𝑤𝑠𝑡0

𝑑
,  𝑉0𝑁1

=
𝑤𝑁1𝑠𝑡0

𝑑
 

When equation (2.5) is substituted into (2.1) and (2.2), after simplifying one obtain respectively 
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as the dimensionless momentum equations describing the unsteady blood flow models with 

constant and variable viscosities. 

 The dimensionless slip conditions corresponding to (2.6) and (2.7) can be simplified respectively 

as 

�̅� = 𝑉01 at 𝑦 =
𝑅(𝑧)

𝑅0
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Figure1.Geometry of the stenosis  

and has been described by Young [19] and Biswas [20] 
𝑅(𝑧)
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= 1 −

ƹ

2𝑅0
[1 +

𝑐𝑜𝑠𝜋𝑧

𝐿
] ,  for |𝑧|<L       

 𝑅0,                             for          |𝑧|˃L  

3.0 Methods of Solution 

In order to solve (2.6) using Galerkin weighted residual method, one assume a solution of the form 

�̅�(𝑦, 𝑡) = 𝑎0(𝑡) + 𝑎1(𝑡)𝑦 + 𝑎2(𝑡)𝑦2        (3.1) 

Subjecting (3.1) to the slip conditions (2.8) and after simplifying yields 

�̅�(𝑦, 𝑡) =
𝑉01𝑦2

𝑅𝑏2 + 𝑎0(𝑡) (1 −
𝑦2

𝑅𝑏2) + 𝑎2(𝑡)
𝑦2

𝑅𝑏2 (1 −
𝑦2

𝑅𝑏2)     (3.2) 

 Using �̅� =
𝑦

𝑅𝑏
 in (3.2) and after simplifying and dropping the bar one obtain 

𝑤(𝑟, 𝑡) = 𝑉01𝑟2 + 𝑎0(𝑡)(1 − 𝑟2) + 𝑎2(𝑡)𝑟2(1 − 𝑟2)    (3.3) 

The residual for equation (2.6) can be written as 
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(2.8) 

(2.9) 
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𝑅𝑅1(𝑟, 𝑎0(𝑡), 𝑎2(𝑡)) = −𝐺1 −
1

𝑅𝐸1
(4𝑉01 + 4𝑎2(𝑡) − 4𝑎0(𝑡) − 16𝑎2(𝑡)𝑟2) + �̇�0(𝑡)(1 − 𝑟2) +

�̇�2(𝑡)𝑟2(1 − 𝑟2) + 4𝛺1(�̇�0(𝑡) − �̇�2(𝑡) + 4𝑟2�̇�2(𝑡)) − 𝛺(48𝑉01
2 𝑟2 − 144𝑉01

2 𝑎0(𝑡)𝑟2 +

144𝑉01
2 𝑎2(𝑡)𝑟2 − 480𝑉01

2 𝑎2(𝑡)𝑟4 + 144𝑉01𝑎0
2(𝑡)𝑟2 − 40𝑉01𝑎0(𝑡)𝑎2(𝑡)𝑟2 +

960𝑉01𝑎0(𝑡)𝑎2(𝑡)𝑟4 + 144𝑉01𝑎2
2(𝑡)𝑟2 − 144𝑉01𝑎2

2(𝑡)𝑟44𝑉01𝑎2
2(𝑡)𝑟6 + 144𝑎0

2𝑎2(𝑡)𝑟2 −
480𝑎0

2(𝑡)𝑎2(𝑡)𝑟4 − 144𝑎0(𝑡)𝑎2
2(𝑡)𝑟2 + 960𝑎0(𝑡)𝑎2

2(𝑡)𝑟4 − 1344𝑎0(𝑡)𝑎2
2(𝑡)𝑟6 −

480𝑎2
3(𝑡)𝑟4 + 1344𝑎2

3(𝑡)𝑟6 − 48𝑎0
3(𝑡)𝑟2 + 48𝑎2

3(𝑡)𝑟2 − 1152𝑎2
3(𝑡)𝑟8 − 128𝑎2

3(𝑡)𝑟8 +
192𝑉01𝑎2

2(𝑡)𝑟6 − 192𝑎0(𝑡)𝑎2
2(𝑡)𝑟6 + 192𝑎2

3(𝑡)𝑟6 − 96𝑉01
2 𝑎2(𝑡)𝑟4 + 192𝑉01𝑎0(𝑡)𝑎2(𝑡)𝑟4 −

192𝑉01𝑎2
2(𝑡)𝑟4 − 96𝑎0

2(𝑡)𝑎2(𝑡)𝑟4 + 192𝑎0(𝑡)𝑎2
2(𝑡)𝑟4 − 96𝑎2

3(𝑡)𝑟4 + 16𝑉01
3 𝑟2 −

48𝑉01
2 𝑎0(𝑡)𝑟2 + 48𝑉01𝑎0

2(𝑡)𝑟2 − 96𝑉01𝑎0(𝑡)𝑎2(𝑡)𝑟2 + 48𝑉01𝑎2
2(𝑡)𝑟2 − 16𝑎0

3(𝑡) +
48𝑎0

2(𝑡)𝑎2(𝑡)𝑟2 − 48𝑎0(𝑡)𝑎2
2(𝑡)𝑟2 + 16𝑎2

3(𝑡)𝑟2) − 𝑀1(𝑉01𝑟2 + 𝑎0(𝑡) − 𝑎0(𝑡)𝑟2 + 𝑎2(𝑡)𝑟2 −
𝑎2(𝑡)𝑟4)            
 (3.5)  

 Differentiating (3.3) with respect to 𝑎0(𝑡) 𝑎𝑛𝑑 𝑎2(𝑡), one obtain (1 − 𝑟2) and 𝑟2(1 −
𝑟2)  respectively as the weight functions. 

Taking the orthogonality of the residue 𝑅𝑅1(𝑎0(𝑡), 𝑎2(𝑡), 𝑟)   with respect to the weight functions 

(1 − 𝑟2) and 𝑟2(1 − 𝑟2), one respectively obtain the following systems of nonlinear first order 

differential  equations;                    

(1848 + 9240𝛺1)�̇�0(𝑡) + (264 − 1848𝛺1)�̇�2(𝑡) + 29568𝛺𝑎0
3(𝑡) + 23600𝛺𝑎2

3(𝑡) −
88704𝛺𝑉01𝑎0

2(𝑡) − 191136𝛺𝑉01𝑎2
2(𝑡) + 29568𝛺𝑎0(𝑡)𝑎0

2(𝑡) + 25344𝛺𝑎2(𝑡)𝑎0
2(𝑡) −

146784𝛺𝑉01𝑎0(𝑡)𝑎0
2(𝑡) − (1848𝑀1 + 354816𝛺𝑉01

2 −
9240

𝑅𝐸1
) 𝑎0(𝑡) − (264𝑀1 − 25344𝛺𝑉01

2 −

1848

𝑅𝐸1
) 𝑎2(𝑡) = 2310𝐺1 +

9240𝑉01

𝑅𝐸1
+ 22176𝛺𝑉01

2 + 462𝑀1𝑉01  (3.6) 

and 

(3432 + 24024𝛺1)�̇�0(𝑡) + (1144 + 17160𝛺1)�̇�2(𝑡) + 164736𝛺𝑎0
3(𝑡) + 4872384𝛺𝑎2

3(𝑡) −
494208𝛺𝑉01𝑎0

2(𝑡) − 690768𝛺𝑉01𝑎0
2(𝑡) − 6877728𝛺𝑎0

2(𝑡)𝑎2(𝑡) − 1677312𝛺𝑎2
2(𝑡)𝑎0(𝑡) −

1194336𝛺𝑉01𝑎0(𝑡)𝑎2(𝑡) − (3432𝑀1 − 1111968𝛺𝑉01
2 +

24024

𝑅𝐸1
) 𝑎0(𝑡) − (429𝑀1 −

329472𝛺𝑉01
2 +

17160

𝑅𝐸1
) 𝑎2(𝑡) = 6006𝐺1 +

24024

𝑅𝐸1
+ 123552𝛺𝑉01

2 + 2574𝑀1𝑉01    

       (3.7) 

By substituting the appropriate values of the parameters 𝐺1, 𝑉01, 𝑅𝐸1, 𝛺, 𝛺1, 𝑀1 and t 

into (3.6) and (3.7) and solve using forth order Runge-Kutta method, one obtain the values for 

𝑎0(𝑡) and 𝑎2(𝑡) which when substituted into (3.3), the velocity profiles were obtained which are 

shown in table 1. 

Similarly, to solve equation (2.7) following the same procedure as indicated above, one can write 

residue for (2.7) as 

𝑅𝑅2( 𝑎0(𝑡), 𝑎2(𝑡), 𝑟) =
𝜕𝑤

𝜕t
− 𝐺1𝑁 −

1

𝑅𝐸1𝑁
[1 + 𝑁1(1 − 𝑟𝑚)].

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
  ) −

𝛺𝑁 (6 (
𝜕𝑤

𝜕𝑟
)

2

(
𝜕2𝑤

𝜕𝑟2
) −

2

𝑟
(

𝜕𝑤

𝜕𝑟
)

3

)  −𝛺1𝑁 (
1

𝑟

𝜕2𝑤

𝜕𝑟𝜕t
+

𝜕3𝑤

𝜕𝑟2𝜕t
) +  𝑀1𝑁𝑤   (3.8) 

 Taking the shape of the profile (𝑚 = 2) and substituting (3.3) into (3.8) and after simplifying in 

full to obtain.      
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𝑅𝑅2(𝑎0(𝑡), 𝑎2(𝑡), 𝑟) = −64𝛺𝑁𝑟2𝑉01𝑁
3 + 𝑀1𝑁𝑟2𝑉01𝑁

3 + 1280𝑎2
3(𝑡)𝛺𝑁𝑟8 − 1536𝑎2

3(𝑡)𝛺𝑁𝑟6 +
576𝑎2

3(𝑡)𝛺𝑁𝑟4 − 𝑀1𝑁𝑎2(𝑡)𝑟4 + 64𝑎0
3(𝑡)𝛺𝑁𝑟2 − 64𝑎2

3(𝑡)𝛺𝑁𝑟2 − 𝑀1𝑁𝑎0(𝑡)𝑟2 +
𝑀1𝑁𝑎2(𝑡)𝑟2 + 16𝑎2̇(𝑡)𝛺1𝑁𝑟2 + 4𝑎0(𝑡) − 4𝑎2(𝑡) + 16𝑎2(𝑡)𝑟2 − 4𝑉01𝑁 −
1152𝑎0(𝑡)𝑎2(𝑡)𝛺𝑁𝑟4𝑉01𝑁 + 384𝑎0(𝑡)𝑎2(𝑡)𝛺𝑁𝑟2𝑉01𝑁 + 4 𝑁1𝑟2𝑉01𝑁 − 16𝑁1𝑎2(𝑡)𝑟4 −
𝑎2̇(𝑡)𝑟4 − 4𝑁1𝑎0(𝑡)𝑟2 + 20𝑁1𝑎2(𝑡)𝑟2 − 𝑎0̇(𝑡)𝑟2 + 𝑎2̇(𝑡)𝑟2 + 𝑀1𝑁𝑎0(𝑡) + 4𝑎0̇(𝑡)𝛺1𝑁 −
4𝑎2̇(𝑡)𝛺1𝑁 − 𝐺1𝑁 − 4𝑁1𝑉01𝑁 + 4𝑁1𝑎0(𝑡) − 4𝑁𝑎2(𝑡) + 𝑎0̇(𝑡) + 1536𝑎0(𝑡)𝑎2

2(𝑡)𝛺𝑁𝑟6 −
1536𝑎2

2(𝑡)𝛺𝑁𝑟6𝑉01𝑁 + 576𝑎0
2(𝑡)𝑎2(𝑡)𝛺𝑁𝑟4 − 1152𝑎0(𝑡)𝑎2

2(𝑡)𝛺𝑁𝑟4 +
1152𝑎2

2(𝑡)𝛺𝑁𝑟4𝑉01𝑁 + 576𝑎2(𝑡)𝛺𝑁𝑟4𝑉01𝑁
2 − 192𝑎0

2(𝑡)𝑎2(𝑡)𝛺𝑁𝑟2 − 192𝑎0
2(𝑡)𝛺𝑁𝑟2𝑉01𝑁 +

192𝑎0(𝑡)𝑎2
2(𝑡)𝛺𝑁𝑟2 + 192𝑎0(𝑡)𝛺𝑁𝑟2𝑉01𝑁

2 − 192𝑎2
2(𝑡)𝛺𝑁𝑟2𝑉01𝑁 − 192𝑎2(𝑡)𝛺𝑁𝑟2𝑉01𝑁

2    

        (3.9) 

where . is the differentiation with respect to time t. 

The following systems of nonlinear first order differential equations were obtained by following 

the same procedures as indicated earlier. 

14784𝑎0
3(𝑡)𝛺𝑁𝑅𝐸1𝑁 + 12672𝑎0

2(𝑡)𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁 − 44352𝑎0
2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 +

14784𝑎0(𝑡)𝑎2
2(𝑡)𝛺𝑁𝑅𝐸1𝑁 − 25344𝑎0(𝑡)𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 + 44353𝑎0(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

2 +
2560𝑎2

3(𝑡)𝛺𝑁𝑅𝐸1𝑁 − 14784𝑎2
2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 + 12672𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

2 −
14784𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

3 + 924𝑀1𝑁𝑎0(𝑡)𝑅𝐸1𝑁 + 132𝑀1𝑁𝑎2(𝑡)𝑅𝐸1𝑁 + 231𝑀1𝑁𝑅𝐸1𝑁𝑉01𝑁 +
4620�̇�0(𝑡)𝛺1𝑁𝑅𝐸1𝑁 − 924�̇�2(𝑡)𝛺1𝑁𝑅𝐸1𝑁 − 1155𝐺1𝑁𝑅𝐸1𝑁 + 3696𝑁1𝑎0(𝑡) − 1584𝑁1𝑎2(𝑡) −
3696𝑁1𝑉01𝑁 + 924�̇�0(𝑡)𝑅𝐸1𝑁 + 132�̇�2(𝑡)𝑅𝐸1𝑁 + 4620𝑎0(𝑡) − 924𝑎2(𝑡) − 4620𝑉01𝑁 = 0  
       (3.10) 

and 

−82368𝑎0
3(𝑡)𝛺𝑁𝑅𝐸1𝑁 − 164736𝑎0

2(𝑡)𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁 + 257104𝑎0
2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 −

122304𝑎0(𝑡)𝑎2
2(𝑡)𝛺𝑁𝑅𝐸1𝑁 + 329472𝑎0(𝑡)𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 − 247104𝑎0(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

2 −
33792𝑎2

3(𝑡)𝛺𝑁𝑅𝐸1𝑁 + 122304𝑎2
2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁 − 164736𝑎2(𝑡)𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

2 +
82368𝛺𝑁𝑅𝐸1𝑁𝑉01𝑁

3 − 1716𝑀1𝑁𝑎0(𝑡)𝑅𝐸1𝑁 − 572𝑀1𝑁𝑎2(𝑡)𝑅𝐸1𝑁 − 1287𝑀1𝑁𝑅𝐸1𝑁𝑉01𝑁 −
12012�̇�0(𝑡)𝛺1𝑁𝑅𝐸1𝑁 − 8580�̇�2(𝑡)𝛺1𝑁𝑅𝐸1𝑁 + 3003𝐺1𝑁𝑅𝐸1𝑁 − 6864𝑁1𝑎0(𝑡) −
2288𝑁1𝑎2(𝑡) + 6864𝑁1𝑉01𝑁 − 1716�̇�0(𝑡)𝑅𝐸1𝑁 − 572�̇�2(𝑡)𝑅𝐸1𝑁 − 12012𝑎0(𝑡) −
8580𝑎2(𝑡) + 12012𝑉01𝑁 = 0               
   (3.11) 

Substituting the appropriate values of the parameters 𝛺𝑁, 𝑅𝐸1𝑁, 𝑀1𝑁 𝛺1𝑁, 𝐺1𝑁, 𝑉01𝑁, 𝑡 and 𝑁1 

into (3.10) and (3.11) and solve using fourth order Runge-Kutta, one obtain the values  for 

𝑎0(𝑡)and 𝑎2(𝑡) which when substituted into (3.3) and simplified, one obtain the velocity profiles 

𝑤(𝑟, 𝑡) which are shown in table 2.  

 

Volume Flow Rate 

The volume flow rate denoted by Q can be simplified as 

𝑄 = 12 [3𝑉01(𝑅(𝑧))
4

+ 𝑎0(𝑡) (6(𝑅(𝑧))
2

− 3(𝑅(𝑧))
4

) + 𝑎2(𝑡) (3(𝑅(𝑧))
4

− 2(𝑅(𝑧))
6

)]  

          (3.12) 

Shear Stress 

The shear stress denoted by 𝜏𝑆 can be simplified as 
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𝜏𝑠 = 2𝜇𝑅(𝑍) (𝑉01 − 𝑎0 (𝑡) + 𝑎2(𝑡) − 2𝑅((𝑍))
2

𝑎2(𝑡)) + 16𝑅(𝑍)𝛽3 (𝑉01 − 𝑎0(𝑡) + 𝑎2(𝑡) −

2(𝑅(𝑍))
2

𝑎2(𝑡))         (3.13) 

Resistance to Flow 

The resistance to flow can be denoted as ψ can be simplified as 

ψ =
−

𝜕�̂�

𝜕𝑧

12[3𝑉01(𝑅(𝑧))
4

+𝑎0(𝑡)(6(𝑅(𝑧))
2

−3(𝑅(𝑧))
4

)+𝑎2(𝑡)(3(𝑅(𝑧))
4

−2(𝑅(𝑧))
6

)]
    (3.14) 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Values of the Parameters Used in the Numerical Results and the corresponding  

  Velocity Profile for the Unsteady Blood Flow Model with constant viscosity. 

Figures 𝐺1 𝑉01  𝑅𝐸1 𝛺 𝛺1 𝑀1 t w(r, t) 

 

2a 

 

1.5 

2.0 

2.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

0.5 

0.5 

0.5 

-0.1437r2 + 0.3437 + 0.0335r2(1-r2) 

-0.1858r2 + 0.3858 + 0.0296r2(1-r2) 

-0.2290r2 + 0.4290 + 0.0262r2(1-r2) 

 

3a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.65 

0.95 

0.5 

0.5 

0.5 

-0.2261r2 + 0.4261 + 0.0260r2(1-r2) 

-0.2174r2 + 0.4174 + 0.0249r2(1-r2) 

-0.2090r2 + 0.4090 + 0.0237r2(1-r2) 

 

4a 

 

1.5 

1.5 

1.5 

0.25 

0.35 

0.45 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

0.5 

0.5 

0.5 

-0.0572r2 + 0.2572 + 0.0009r2(1-r2) 

-0.1538r2 + 0.3538 + 0.0019r2(1-r2) 

-0.2510r2 + 0.4510 + 0.0030r2(1-r2) 

 

5a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

20 

30 

1 

1 

1 

0.35 

0.35 

0.35 

0.5 

0.5 

0.5 

-0.3246r2 + 0.5246 + 0.0499r2(1-r2) 

-0.3108r2 + 0.5108 + 0.0538r2(1-r2) 

-0.2848r2 + 0.4848 + 0.0554r2(1-r2) 
 

 

6a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

5 

9 

0.35 

0.35 

0.35 

0.5 

0.5 

0.5 

-0.1246r2 + 0.3246 + 0.0168r2(1-r2) 

-0.2016r2 + 0.4016 + 0.0073r2(1-r2) 

-0.2542r2 + 0.4542 + 0.0001r2(1-r2) 

 

7a 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.3 

0.6 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

0.5 

0.5 

0.5 

-0.0053r2 + 0.2053 + 0.000Ir2(1-r2) 

-0.0094r2 + 0.2094 + 0.0001r2(1-r2) 

-0.0091r2 + 0.2091 + 0.0005r2(1-r2) 

 

Table 2: Values of the Parameters Used in the Numerical Results and the corresponding  
  Velocity Profile for the Unsteady Blood Flow with Variable viscosity. 
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Figures 𝐺1𝑁 𝑉01𝑁 𝑅𝐸1𝑁 𝛺𝑁 𝛺1𝑁 𝑀1𝑁 N1   t w(r, t) 

 

2b 
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2.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

2 

2 

2 

0.5 

0.5 

0.5 

0.2250 – 0.0250r2 – 0.0119r2(1-r2) 

0.2588 – 0.0588r2 – 0.0135r2(1-r2) 

0.2919 – 0.0919r2 – 0.0138 r2(1-r2) 

 

3b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.65 

0.95 

2 

2 

2 

0.5 

0.5 

0.5 

0.0218 – 0.0618r2 – 0.0088r2(1-r2) 

0.0256 – 0.0540r2 – 0.0086r2(1-r2) 

0.2503 – 0.0503r2 – 0.0083r2(1-r2) 

 

4b 

 

1.5 

1.5 

1.5 

0.25 

0.35 

0.45 

0.9 

0.9 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

2 

2 

2 

0.5 

0.5 

0.5 

0.3055 – 0.0555r2 – 0.0111r2(1-r2) 

0.3954 – 0.0454r2 – 0.0162r2(1-r2) 

0.4877 – 0.3773r2 – 0.0206r2(1-r2) 

 

5b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

20 

30 

1 

1 

1 

0.35 

0.35 

0.35 

2 

2 

2 

0.5 

0.5 

0.5 

0.2974 – 0.0974r2 – 0.0025r2(1-r2) 

0.2630 – 0.0630r2 – 0.0082r2(1-r2) 

0.2582 – 0.0582r2 – 0.0063r2(1-r2) 

 

6b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.9 

0.9 

0.9 

10 

10 

10 

1 

5 

9 

0.35 

0.35 

0.35 

2 

2 

2 

0.5 

0.5 

0.5 

0.2974 – 0.0974r2 – 0.0025r2(1-r2) 

0.2872 – 0.0872r2 – 0.0050r2(1-r2) 

0.2618 – 0.0618r2 – 0.0088r2(1-r2) 

 

7b 

 

1.5 

1.5 

1.5 

0.25 

0.25 

0.25 

0.3 

0.6 

0.9 

10 

10 

10 

1 

1 

1 

0.35 

0.35 

0.35 

2 

2 

2 

0.5 

0.5 

0.5 

0.2381 – 0.0381r2 – 0.0053r2(1-r2) 

0.2568 – 0.0568r2 – 0.0067r2(1-r2) 

0.2618 – 0.0618r2 – 0.0088r2(1-r2 

 

 

 
 
Figure 2a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  

 viscosity with increasing values of the Pressure Gradient in the radial direction. 
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Figure 2b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable  

 viscosity for various values of the Pressure Gradient in the radial direction. 

 

 
 
Figure 3a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  

 viscosity for various values of the Magnetic Field Parameter in the radial direction. 
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Figure 3b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable  

 viscosity for various values of the Magnetic Field Parameter in the radial direction. 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 4a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  
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 viscosity for various values of the Slip Velocity in the radial direction. 

 

 
Figure 4b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable  

 viscosity for various values of the Slip Velocity in the radial direction. 
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Figure 5a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear Thinning in the radial direction. 
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Figure 5b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable  

 viscosity for various values of the Shear Thinning in the radial direction. 
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Figure 6a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  

 Viscosity for various values of the Shear Thickening in the radial direction. 

 

  
Figure 6b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable  

 Viscosity for various values of the Shear Thickening in the radial direction. 
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Figure 7a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant  

 Viscosity for various values of the Reynold number in the radial direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7b: Variation of Velocity 

Profile of the Unsteady Blood 

Flow Model with variable  

 Viscosity for various values of 

the Reynold number in the radial 

direction. 
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Figure 8a: Variation of Volume Flow Rate of Unsteady Blood Flow Model with constant  

 Viscosity for the various values of the Slip Velocity in the entire stenotic region along the  

 axial direction. 

 
 

Figure 8b: Variation of Volume Flow Rate of Unsteady Blood Flow Model with variable 

 Viscosity for the various values of the Slip Velocity in the entire stenotic region along the  
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 axial direction. 

 
 

Figure 9a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant  

 Viscosity for the various values of the Slip Velocity in the entire stenotic region along the  

 axial direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9b: Variation of Wall Shear Stress of 

Unsteady Blood Flow Model with variable 

 Viscosity for the various values of the 

Slip Velocity in the entire stenotic region 

along the  

 axial direction. 
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Figure 10a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant  

 Viscosity for various values of the Slip Velocity in the entire stenotic region along the  

 axial direction. 

 
 

Figure 10b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable  

 Viscosity for various values of the Slip Velocity in the entire stenotic region along the  

 axial direction. 



International Journal of Mathematics and Statistics Studies 

Vol.9, No.2, pp.1-32, 2021 

                                                          Print ISSN:  2053-2229 (Print),  

                                                                                                            Online ISSN: 2053-2210 (Online) 

18 
 

 

 
Figure 11a: Variation of Volume Flow Rate of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Magnetic Field Parameter in the entire stenotic region  

 along the axial direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11a: Variation of Volume Flow Rate 

of Unsteady Blood Flow Model with 

constant  

 viscosity for various values of the 

Magnetic Field Parameter in the entire 

stenotic region  

 along the axial direction. 
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Figure 12a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Magnetic Field Parameter in the entire stenotic region  

 along the axial direction. 

 
 

Figure 12b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable  
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 viscosity for various values of the Magnetic Field Parameter in the entire stenotic region  

 along the axial direction. 

 
Figure 13a: Variation of Resistance to Unsteady Blood Flow Model with constant  

 viscosity for various values of the Magnetic Field Parameter in the entire stenotic region  

 along the axial direction. 
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Figure 13b: Variation of Resistance to Unsteady Blood Flow Model with variable 

 viscosity for various values of the Magnetic Field Parameter in the entire stenotic region  

 along the axial direction. 

 
Figure 14a: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear thinning in the entire stenotic region along the  



International Journal of Mathematics and Statistics Studies 

Vol.9, No.2, pp.1-32, 2021 

                                                          Print ISSN:  2053-2229 (Print),  

                                                                                                            Online ISSN: 2053-2210 (Online) 

22 
 

 axial direction.  

 
Figure 14b: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with variable  

 viscosity for various values of the Shear thinning in the entire stenotic region along the  

 axial direction.  
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Figure 15a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear Thinning in the entire stenotic region along the  

 axial direction. 

 
Figure 15b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable 

 viscosity for various values of the Shear Thinning in the entire stenotic region along the  

 axial direction. 
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Figure 16a: Variation of Resistance to 

Unsteady Blood Flow Model with constant  

 viscosity for various values of the 

Shear Thinning in the entire stenotic region 

along the  

 axial direction. 

 

 
Figure 16b: Variation of Resistance to Unsteady Blood Flow Model with variable  

 viscosity for various values of the Shear Thinning in the entire stenotic region along the  

 axial direction. 



International Journal of Mathematics and Statistics Studies 

Vol.9, No.2, pp.1-32, 2021 

                                                          Print ISSN:  2053-2229 (Print),  

                                                                                                            Online ISSN: 2053-2210 (Online) 

25 
 

 
Figure 17a: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 

 
Figure 17b: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with variable 

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 
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Figure 18a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 
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Figure 18b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable  

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 

 
Figure 19a: Variation of Resistance to Unsteady Blood Flow Model with constant  

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 
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Figure 19b: Variation of Resistance to Unsteady Blood Flow Model with variable  

 viscosity for various values of the Shear Thickening in the entire stenotic region along  

 the axial direction. 
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Figure20: Comparison of the Velocity Profile of Unsteady Blood Flow Models with Constant  

 Viscosity and variable viscosity in the Radial Direction. 

 

RESULTS AND DISCUSSION  
 

In this study, numerical results have been made available to explore the effects of shear thinning, 

shear thickening, slip velocity and magnetic field parameter on the flow velocity, flow rate, shear 

stress and flow resistance. The presents mathematical problems are difficult to handle but 

computation and graphical representations with maple software make it easier.  it was reveals that 

increases in slip velocity and shear thinning significantly lead to an increases in flow velocity, flow 

rate and shear stress but decrease the resistance to fluid flow for both flow model with constant 

viscosity and variable viscosity and these are shown in figures 4a, 4b, 8a, 8b, 9a, 9b, 10a,10b, 5a, 

5b, 14a, 14b, 15a, 15b, 16a and 16b respectively. Increases in magnetic field parameter and shear 

thickening lead to deceases in flow velocity, flow rate, and shear stress but increase the resistances 

to fluid flow for the flow model with constant viscosity and variable viscosity and these are shown 

in figures 3a, 3b, 11a, 11b, 12a, 12b, 13a,13b, 6a, 6b, 17a, 17b, 18a, 18b, 19a and 19b respectively.  

Pressure gradient and Reynold number remarkably increases with flow velocity as shown in 

figures 2a, 2b, 7a and 7b respectively. Finally, the flow velocity of unsteady blood flow model 

with constant viscosity is higher than that with variable viscosity as indicated in figure 20. 
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CONCLUSION 

 

A theoretical study of unsteady blood flow with constant and variable viscosities through a 

stenosed artery using a third grade fluid model has been carried out. In this study slip velocity and 

externally magnetic field are taken into consideration. The problems are solved using Galerkin 

weighted residual and forth order Runge-Kutta methods. The main findings of the present study 

may be listed as follows:  

(i) The flow velocity, flow rate and shear stress decreases while flow resistance decreases with 

the increases of magnetic field strength and shear thickening for the blood flow models with 

constant and variable viscosities. 

(ii) The flow velocity, flow rate and shear stress increases while flow resistance decreases with 

the increases of slip velocity and shear thinning for the blood flow models with constant and 

variable viscosities.  

(iii) The effects of shear thinning, slip velocity, magnetic field and pressure gradient on the 

flow velocity are more pronounce and remarkable for the unsteady blood flow model with variable 

viscosity when compare to unsteady blood flow model with constant viscosity. 

(iv) Finally, with fixed values of all the parameters, the velocity profile of the unsteady blood 

flow model with constant viscosity is higher than that with variable viscosity. 

 The research analysis incorporating slip velocity in the constricted artery can help to reduce blood 

viscosity because high blood viscosity is a risk factor in the cardiovascular disorder. Also, 

incorporating externally applied magnetic field will be useful for the reduction of blood flow 

during surgery and magnetic resonance imaging (MRI).  
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Nomenclatures 

w - Fluid velocity      �̅� - Dimensionless fluid velocity 

t - Time component     𝑡̅ - Dimensionless time component 

r - Radial distance     y - Dimensionless radial distance  

z - Axial distance     𝑤𝑠 - Slip velocity 

𝑉01 - Dimensionless slip velocity for the unsteady blood flow with constant viscosity  

𝑉01𝑁 - Dimensionless slip velocity for the unsteady blood flow with variable viscosity  

𝑅0 - Radius of the normal artery   𝛽0 - Magnetic Field Strength 

R(z) - Radius of the artery in a stenotic region       𝜏𝑠 - Wall Shear Stress  

𝜓 - Resistance to flow                                Ƹ - Maximum height of the stenosis   

Q - Volumetric flow rate    L - Length of the stenosis       

W = Fluid velocity      

𝐺1-Pressure gradient for the unsteady flow with constant viscosity 

𝐺1𝑁-Pressure gradient for the unsteady flow with variable viscosity  

𝑀1-Magnetic field parameter for the unsteady flow with constant viscosity   

𝑀1𝑁-Magnetic field parameter for the unsteady flow with variable viscosity   

 Ω -Shear thinning for the unsteady flow with constant viscosity 

Ω 𝑁-Shear thinning for the unsteady flow with variable viscosity 

Ω 1-Shear thickening for the unsteady flow with constant viscosity 

Ω 1𝑁-Shear thickening for the unsteady flow with variable viscosity 

𝑅𝐸1—Reynold number for the unsteady flow with constant viscosity  

𝑅𝐸1𝑁—Reynold number for the unsteady flow with variable viscosity       

      

                  

  

 


