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ANALYSIS OF UNSTEADY BLOOD FLOW THROUGH A STENOSED ARTERY
WITH CONSTANT AND VARIABLE VISCOSITIES
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ABSTRACT: This paper presents a theoretical study of the analysis of unsteady blood flow with
constant and variable viscosities through a stenosed artery using a third grade fluid model.
Incorporated into the models are the slip velocity and externally applied magnetic field. The
methods employed in solving the equations governing the unsteady blood flow models with
constant and variable viscosities are the Galerkin’s weighted residual and Forth order Runge-
Kutta. Important flow parameters such as flow velocity, flow rate, shear stress and flow resistance
have been computed. Graphical representation shows that, for both cases of unsteady blood flow
models with constant viscosity and variable viscosity, magnetic field and shear thinning increases
with flow resistance but decreases the flow velocity, flow rate and shear stress. Increases in slip
velocity and shear thinning lead to increases in flow velocity, flow rate and shear stress but
decrease the flow resistance. Other parameters that can positively influence the flow velocity are
the pressure gradient and Reynold number. Finally, the velocity profile of unsteady blood flow
model with constant viscosity is higher than that with variable viscosity.

KEYWORDS: Unsteady blood flow, Variable viscosity, constant viscosity, magnetic field, slip
velocity, stenosed artery, third grade fluid model and Galerkin’s Weighted residual methods.

INTRODUCITON

In a recent time, blood flow through normal or stenosed arteries has gained serious attention of
many researchers [1-5] because blood and blood vessels are substantial health risk factors in the
development of many cardiovascular diseases. Blood flow in the human circulatory system
depends upon the pumping action of the heart. That is, the heart moves blood efficiently through
the branching networks of arteries, capillaries and veins and the lungs cycle here quite effectively
through the branching pulmonary passage thereby keeping the cells of our bodies alive and
functioning.

It is well known fact that at high shear rates and large diameter arteries, blood, being predominantly
a suspension of erythrocytes in plasma, behave as a Newtonian fluid. Some of the researchers that
investigated the flow of blood through stenosed arteries and treating blood as Newtonian fluid are
(Amit and Shrivastar [6], Tanwar and Varshney [7], Ellahi et al,[8]). Existing literature in this area
also reveals that shear rate of blood is low in ther stenosed region. A good many researchers
(Hatami et al [9], Haleh et al [10], Aziz [11], Ikbal et al [12], Misra and Shit [13]) studied the non-
Newtonian flow of blood from various perspectives.



International Journal of Mathematics and Statistics Studies
Vol.9, No.2, pp.1-32, 2021

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

In all the above investigations, only constant viscosity was considered. Variable viscosity of blood
is another interesting area of study. The mathematical model of blood flow through a tapered artery
with mild stenosis and variable viscosity was studied by Verma and Pariha [14]. Sanjeev and
Chandraskhar [15] investigated hematocrit effect on the axisymmetric blood flow through stenosed
arteries. Jimoh, et al [16] recently investigated hematocrit and slip velocity influence on third grade
blood flow and heat transfer through a stenosed artery. They used weighted residual method to
obtained the results in plotted graphs. The graphs reveals that, flow velocity and flow rate
decreases while wall shear stress and resistance to flow increases when the hematocrit parameter
increases.

The present study focused on the analysis of unsteady third grade blood flow with constant and
variable viscosities through a stenosed artery. The externally applied magnetic field and slip
velocity are also taken into consideration in this study.

Mathematical Models
The momentum equations describing the unsteady fluid flow models with constant viscosity and
variable viscosity as obtained by Mohammed [17] and Jimoh [18] are respectively given as
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As a result of the stenosed artery as shown in figure 1, the corresponding slip conditions to (2.1)
and (2.2) are respectively given as

w=ws at r=R(z)

ow

and

W=wyat r=R(zy=

Z_V::O at r=0 L (2.4)

To non-dimensionalize equations (2.1) - (2.4), one introduces the following parameters and
variables —

— w

W= y=1/Ry (2.5)

Vo1 = WiTto, Vo1v1 = —WN;StO

When equation (2.5) is substituted into (2.1) and (2.2), after simplifying one obtain respectively
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as the dimensionless momentum equations describing the unsteady blood flow models with

constant and variable viscosities.

The dimensionless slip conditions corresponding to (2.6) and (2.7) can be simplified respectively

as
_ R@)
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Subjecting (3. 1) to the slip conditions (2.8) and after simplifying yields

¥

B0 =2+ a0 (1- 45) + (02 (1- %) (3.2)
Using 7 = E in (3.2) and after simplifying and dropping the bar one obtain
w(r, t) = Vo2 + ag(6)(1 —72) + a,()r?(1 — r?) (3.3)
The residual for equation (2 6) can be written as
11 8 ([ ow w2 2w 2 fow)3 102w
RR(r,a0(0), 0x(0) = 5 = 61— 22 (r5) -2 (6(5) 55 +2(5) ) - G+
3
aizat) + Myw (3.4) substituting

(3.3) into (3.4) and simplifying to obtain
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RR, (1, a(t), ay(t)) = =G, — RLEI (4Vpy + 4ay(t) — 4ag(t) — 16a,(O)r2) + ao()(1 — r2) +

a (Or2(1 —12) + 40, (a0 (6) — a,(t) + 4r2a,(t)) — R(48VET? — 144VE ao (D2 +
144V a,(0)1? — 480VE a,(O)r* + 144V, a3 (6)1? — 40V a0 () a, (D12 +
960V, ao(t)a,(t)r* + 144V a5 (t)r? — 144V, a5 () r*4Vy a2 ()r® + 144ada,(H)r? —
480a3(t)a,(t)r* — 144a,(t)as(t)r? + 960a,(t)as(t)r* — 1344a,(t)as(t)r® —
480a;(t)r* + 1344a3(t)r® — 48a3(t)r? + 48a3(t)r? — 115243 (t)r® — 12843 (t)r® +
192Vy,a2(t)r® — 192a,(t)ai(t)r® + 192a3 (t)r® — 96V a, (H)r* + 192V, a0 () ay (H)r* —
192Vy,a2(t)r* — 96a3(t)a, (t)r* + 192a,(t)a?(t)r* — 96a3 ()r* + 16V r? —
48VZ ay(t)r? + 48Vy a2 (t)r? — 96V ae(t)a, (t)r? + 48Vy a3 (t)r? — 16a3(t) +
48a3(t)a,(t)r? — 48ay(t)az(t)r? + 16a3(t)1r?) — My(Vor1r? + ao(t) — ag(t)r? + ay(t)r? —
az (t)r?)

(3.5)
Differentiating (3.3) with respect to aq(t) and a,(t), one obtain (1 —172) and r2(1—
r2) respectively as the weight functions.
Taking the orthogonality of the residue RR, (ay(t), a,(t),r) with respect to the weight functions
(1 —72) and r2(1 — r2), one respectively obtain the following systems of nonlinear first order
differential equations;
(1848 + 92400, )y (t) + (264 — 18480,)a,(t) + 29568043 (t) + 23600243 (t) —
887040V,,a2(t) — 19113602V,,a2(t) + 2956802a,(t)a’(t) + 253440a,(t)a’(t) —

14678402Vo;a0(t)a3(t) — (1848M; + 3548160VE — 222) ao(t) — (264M, — 253440V —

RE;

%) a,(t) = 23106, + 22201 | 221760V, + 462M,Vy, (3.6)
RE; RE;
and

(3432 + 240240, )d,(t) + (1144 + 171600, (t) + 1647360a3(t) + 4872384043 (¢) —
4942080V, a2(t) — 6907680V, aZ(t) — 687772802a2(t)a,(t) — 16773120a2(t)ay(t) —

11943360V, a0()a,(t) — (3432M; — 11119680V + =) ao(t) — (429M, —

RE;
+ 1235520V + 2574M,Vy,

(3.7)
By substituting the appropriate values of the parameters G,, V1, RE;, 2, 2,, M; and t
into (3.6) and (3.7) and solve using forth order Runge-Kutta method, one obtain the values for
ay(t) and a, (t) which when substituted into (3.3), the velocity profiles were obtained which are
shown in table 1.
Similarly, to solve equation (2.7) following the same procedure as indicated above, one can write
residue for (2.7) as

9 1 19 (9
RR;(ao(t),az(t),1) = a_v: — Gy — E[l + N, (1—1r™)] ——(r% ) -

“ror

aw\?2 (92w 2 (ow)3 10%w 23w
Ow (6 G G5 -:G) ) ~un (5 + o) + Manw (3.8)
Taking the shape of the profile (m = 2) and substituting (3.3) into (3.8) and after simplifying in
full to obtain.

17160

3294720VE + F) a,(t) = 60066, + 222
1

RE;
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RR,(ay(t), ay(t),r) = —640572Vy + MinT2Vy + 1280a3 (£)2y18 — 153643 () 2y7° +
576a3(t)Ayr* — Miya,(H)r* + 64a3(t)0yr? — 64a3(t)0Ayr? — Miyao(t)r? +
M;ya,(t)r? + 16d, ()2 T2 + 4ay(t) — 4a,(t) + 16a,(t)r? — 4V 1y —
1152a4(t)a, () 2yr* oy + 384a,(t)a, (1) Qyr*Vory + 4 Ny72Voy — 16N a, (H)r* —
d,(t)r* — 4N;ag(t)1r? + 20N, a,(0)1? — do(t)r? + dy ()12 + Myyay(t) + 4dy(t) 21y —
4d,(t)02n — Gy — 4N Voiy + 4Nyao(t) — 4Nay(t) + dy(t) + 1536a,(t)az (t)2yre —
1536a2(t)2y1Vyiy + 576a3(t)a,(6)2yr* — 1152a4(t)as (t)2yr* +
1152a2 () 2y *Voin + 576a, () 2T VEN — 192a3 () ay(£)2y1? — 192a2 () 2172 Voiy +
192a,(t)a3(t)2yr? + 192a,()Qyr?VE N — 19205 () 2y Vorny — 192a,(0) 2y VEN
(3.9)

where . is the differentiation with respect to time t.
The following systems of nonlinear first order differential equations were obtained by following
the same procedures as indicated earlier.
14784a3(t)2yRE 1y + 12672a%(t)a,(t)QyRE,y — 44352a2 ()N RE NVoin +
14784a,(t)a3(t)2yRE y — 25344ay(t)a, (t)2yRE{NVo1n + 44353a4(t)2yRE NV N +
2560a3 (t)2yREy — 14784a3(t)QNRE;NVorny + 12672a,(t) 2N RENVEN —
147840y RE yVEy + 924Myao(H)RE y + 132Myya,(O)RE y + 231M; yRE 1y Voin +
46200y(t) 2 yRE y — 924a,(t)02,yRE;y — 1155G,yRE,y + 3696N;a,(t) — 1584N;a,(t) —
3696N,Vy1ny + 924a,(t)RE y + 132a,(t)RE y + 4620a,y(t) — 924a,(t) — 4620Vy;y = 0
(3.10)

and
—82368a3(t)2yRE 1y — 164736a2(t)a,(t)2yREy + 257104a3(t)2yRE1xVoin —
122304a,(t)a3(t)2yRE y + 329472a4(t)ay () 2yRE1xVory — 247104a,(t)2yREINVEN —
33792a3 ()N REy + 122304a3(t)02yRE yVo1n — 1647360, (t)QyRE NVE N +
8236802y RE;NViiy — 1716 My yao(t)RE,y — 572M;ya,(£)RE;y — 1287MyyRE 1 NVo1n —
120126, (t)2,yRE;y — 85804, (t)2,yRE;y + 3003G,yRE,y — 6864N;a,(t) —
2288N,a,(t) + 6864N,Vy,y — 17166,(t)RE;y — 572a,(t)RE 1y — 12012a,(t) —
8580a,(t) + 12012Vy,y = 0

(3.11)
Substituting the appropriate values of the parameters Qy, RE;n, M1y 215, Gin, Voin, t @and Ny
into (3.10) and (3.11) and solve using fourth order Runge-Kutta, one obtain the values for
ao(t)and a,(t) which when substituted into (3.3) and simplified, one obtain the velocity profiles
w(r, t) which are shown in table 2.

Volume Flow Rate
The volume flow rate denoted by Q can be simplified as

0 =12 [3V01(R(z))4 + ay(t) (6(R(z))2 - 3(R(z))4) + ay(t) (3(R(z))4 - Z(R(z))G)]
(3.12)

Shear Stress

The shear stress denoted by 5 can be simplified as
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7o = 2uR(Z) (Vor — a0 (6) + ax(t) — 2R((2)) " az(8) ) + 16R(Z)Bs (Vor — ao(®) + a(t) -
2(R(2)) ay(1)) (3.13)

Resistance to Flow
The resistance to flow can be denoted as y can be simplified as

Llj:

9z
12[3v0: (R@)" +ao (1)(6(R(@)*-3(R(2)" ) +a2 () (3(R() "~2(R(2))°)]

(3.14)

Table 1: Values of the Parameters Used in the Numerical Results and the corresponding
Velocity Profile for the Unsteady Blood Flow Model with constant viscosity.
Figures G, Vys, RE, 02 0 M; t w(t)

15 025 09 10 1 035 0.5 -0.1437r’+0.3437 +0.0335r(1-r?)
2a 20 025 09 10 1 035 05 -0.1858r%+ 0.3858 +0.0296r*(1-r?)
25 025 09 10 1  0.35 0.5 -0.2290r?+ 0.4290 +0.0262r%(1-r%)
15 025 09 10 1 035 05 -0.2261r%+0.4261 +0.0260r%(1-r?)
3a 15 025 09 10 1 065 0.5 -0.2174r%+0.4174 +0.0249r?(1-r?)
15 025 09 10 1  0.95 05 -0.2090r>+ 0.4090 +0.0237r%(1-r?)
15 025 09 10 1  0.35 05 -0.0572r%+0.2572 +0.0009r%(1-r?)
4a 15 035 09 10 1 035 0.5 -0.1538r%+0.3538 +0.0019r?(1-r?)
15 045 09 10 1  0.35 05 -0.2510r%+0.4510 +0.0030r%(1-r?)
15 025 09 10 1 035 0.5 -0.3246r°+ 0.5246 +0.0499r(1-r?)
5a 15 025 09 20 1 035 05 -0.3108r?+0.5108 +0.0538r%(1-r?)
15 025 09 30 1 035 0.5 -0.2848r>+0.4848 +0.0554r2(1-r?)
15 025 09 10 1  0.35 0.5 -0.1246r%+ 0.3246 +0.0168r%(1-r?)
6a 15 025 09 10 5 035 0.5 -0.2016r%+ 0.4016 +0.0073r?(1-r?)
15 025 09 10 9 0.35 05 -0.2542r%+0.4542 +0.0001r%(1-r?)
15 025 03 10 1  0.35 0.5 -0.0053r%+0.2053 +0.0001r?(1-r?)
7a 15 025 06 10 1 035 0.5 -0.0094r%+ 0.2094 +0.0001r?(1-r?)
15 025 09 10 1  0.35 0.5 -0.0091r?>+0.2091 +0.0005r%(1-r?)

Table 2: Values of the Parameters Used in the Numerical Results and the corresponding
Velocity Profile for the Unsteady Blood Flow with Variable viscosity.
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Figures G,y Voin REiy Oy 2y My N1t w(rt)
15 025 09 10 1 035 2 0.5 0.2250 — 0.0250r? - 0.0119r(1-r%)

2b 20 025 09 10 1 035 2 0.5 0.2588 —0.0588r2 — 0.0135r(1-r)
25 025 09 10 1 035 2 0.5 0.2919 —0.0919r* - 0.0138 r’(1-r%)
15 025 09 10 1 035 2 0.5 0.0218 —0.0618r>— 0.0088r*(1-r?)

3b 15 025 09 10 1 0.65 2 0.5 0.0256 — 0.0540r? — 0.0086r(1-r?)
15 025 09 10 1 095 2 0.5 0.2503 —0.0503r2 — 0.0083r?(1-r?)
15 025 09 10 1 035 2 0.5 0.3055 —0.0555r2—0.0111r*(1-r%)

4b 15 035 09 10 1 035 2 0.5 0.3954 —0.0454r2 — 0.0162r%(1-r?)
15 045 09 10 1 035 2 0.5 0.4877 —0.3773r> — 0.0206r%(1-r%)
15 025 09 10 1 035 2 0.5 0.2974 —0.0974r2— 0.0025r%(1-r%)

5b 15 025 09 20 1 035 2 0.5 0.2630 —0.0630r? — 0.0082r2(1-r?)
15 025 09 30 1 035 2 0.5 0.2582 —0.0582r2 — 0.0063r(1-r?)
15 025 09 10 1 035 2 0.5 0.2974 —0.0974r2— 0.0025r(1-r%)

6b 15 025 09 10 5 035 2 0.5 0.2872 —0.0872r? — 0.0050r(1-r?)
15 025 09 10 9 035 2 0.5 0.2618 —0.0618r> — 0.0088r(1-r?)
15 025 03 10 1 035 2 0.5 0.2381 —0.0381r>—0.0053r(1-r%)

7b 15 025 06 10 1 035 2 0.5 0.2568 —0.0568r2 — 0.0067r%(1-r?)
15 025 09 10 1 035 2 0.5 0.2618 —0.0618r* — 0.0088r?(1-r?

0.40-
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E

= 0.30 1
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04
radial distance{r)
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Figure 2a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
viscosity with increasing values of the Pressure Gradient in the radial direction.
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Figure 2b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable
viscosity for various values of the Pressure Gradient in the radial direction.
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Figure 3a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
viscosity for various values of the Magnetic Field Parameter in the radial direction.
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Figure 3b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable
viscosity for various values of the Magnetlc Field Parameter in the radial direction.
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Figure 4a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
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Figure 4b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable
viscosity for various values of the Slip Velocity in the radial direction.
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Figure 5a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
viscosity for various values of the Shear Thinning in the radial direction.
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Figure 5b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable
viscosity for various values of the Shear Thinning in the radial direction.

12



International Journal of Mathematics and Statistics Studies
Vol.9, No.2, pp.1-32, 2021

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

=

=]

Lhn
1

flui d wel ocity ()
=
é

0204 . T r T T T y
] 02 04 0.6 08 1
radial distance(r)

—_— ﬂ1=1.D _— ﬂl=5.ﬂ - ﬂl=9.ﬂ

Figure 6a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
Viscosity for various values of the Shear Thickening in the radial direction.
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Figure 6b: Variation of Velocity Profile of the Unsteady Blood Flow Model with variable
Viscosity for various values of the Shear Thickening in the radial direction.
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Figure 7a: Variation of Velocity Profile of the Unsteady Blood Flow Model with constant
Viscosity for various values of the Reynold number in the radial direction.
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Figure 8a: Variation of Volume Flow Rate of Unsteady Blood Flow Model with constant

Viscosity for the various values of the Slip Velocity in the entire stenotic region along the
axial direction.
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Figure 9a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant
Viscosity for the various values of the Slip Velocity in the entire stenotic region along the

axial direction.
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Figure 10a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant
Viscosity for various values of the Slip Velocity in the entire stenotic region along the
axial direction.
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Figure 10b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable

Viscosity for various values of the Slip Velocity in the entire stenotic region along the
axial direction.
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Figure 11a: Variation of Volume Flow Rate of Unsteady Blood Flow Model with constant

viscosity for various values of the Magnetic Field Parameter in the entire stenotic region
along the axial direction.
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Figure 12a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant
viscosity for various values of the Magnetic Field Parameter in the entire stenotic region
along the axial direction.
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viscosity for various values of the Magnetic Field Parameter in the entire stenotic region
along the axial direction.
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Figure 13a: Variation of Resistance to Unsteady Blood Flow Model with constant

viscosity for various values of the Magnetic Field Parameter in the entire stenotic region
along the axial direction.
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Figure 13b: Variation of Resistance to Unsteady Blood Flow Model with variable

viscosity for various values of the Magnetic Field Parameter in the entire stenotic region
along the axial direction.
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Figure 14b: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with variable
viscosity for various values of the Shear thinning in the entire stenotic region along the
axial direction.
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Figure 15a: Variation of Wall Shear Stress of Unsteady Blood Flow Model with constant
viscosity for various values of the Shear Thinning in the entire stenotic region along the
axial direction.
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Figure 15b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable
viscosity for various values of the Shear Thinning in the entire stenotic region along the
axial direction.
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Figure 17a: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with constant
viscosity for various values of the Shear Thickening in the entire stenotic region along

the axial direction.
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Figure 17b: Variation of Volumetric Flow Rate of Unsteady Blood Flow Model with variable
viscosity for various values of the Shear Thickening in the entire stenotic region along

the axial direction.
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Figure 18b: Variation of Wall Shear Stress of Unsteady Blood Flow Model with variable

viscosity for various values of the Shear Thickening in the entire stenotic region along
the axial direction.
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Figure 19a: Variation of Resistance to Unsteady Blood Flow Model with constant

viscosity for various values of the Shear Thickening in the entire stenotic region along
the axial direction.
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Figure 19b: Variation of Resistance to Unsteady Blood Flow Model with variable

viscosity for various values of the Shear Thickening in the entire stenotic region along
the axial direction.
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Figure20: Comparison of the Velocity Profile of Unsteady Blood Flow Models with Constant
Viscosity and variable viscosity in the Radial Direction.

RESULTS AND DISCUSSION

In this study, numerical results have been made available to explore the effects of shear thinning,
shear thickening, slip velocity and magnetic field parameter on the flow velocity, flow rate, shear
stress and flow resistance. The presents mathematical problems are difficult to handle but
computation and graphical representations with maple software make it easier. it was reveals that
increases in slip velocity and shear thinning significantly lead to an increases in flow velocity, flow
rate and shear stress but decrease the resistance to fluid flow for both flow model with constant
viscosity and variable viscosity and these are shown in figures 4a, 4b, 8a, 8b, 9a, 9b, 10a,10b, 5a,
5b, 14a, 14b, 15a, 15b, 16a and 16b respectively. Increases in magnetic field parameter and shear
thickening lead to deceases in flow velocity, flow rate, and shear stress but increase the resistances
to fluid flow for the flow model with constant viscosity and variable viscosity and these are shown
in figures 3a, 3b, 11a, 11b, 12a, 12b, 13a,13b, 6a, 6b, 17a, 17b, 18a, 18b, 19a and 19b respectively.
Pressure gradient and Reynold number remarkably increases with flow velocity as shown in
figures 2a, 2b, 7a and 7b respectively. Finally, the flow velocity of unsteady blood flow model
with constant viscosity is higher than that with variable viscosity as indicated in figure 20.
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CONCLUSION

A theoretical study of unsteady blood flow with constant and variable viscosities through a
stenosed artery using a third grade fluid model has been carried out. In this study slip velocity and
externally magnetic field are taken into consideration. The problems are solved using Galerkin
weighted residual and forth order Runge-Kutta methods. The main findings of the present study
may be listed as follows:

Q) The flow velocity, flow rate and shear stress decreases while flow resistance decreases with
the increases of magnetic field strength and shear thickening for the blood flow models with
constant and variable viscosities.

(i) The flow velocity, flow rate and shear stress increases while flow resistance decreases with
the increases of slip velocity and shear thinning for the blood flow models with constant and
variable viscosities.

(iii)  The effects of shear thinning, slip velocity, magnetic field and pressure gradient on the
flow velocity are more pronounce and remarkable for the unsteady blood flow model with variable
viscosity when compare to unsteady blood flow model with constant viscosity.

(iv)  Finally, with fixed values of all the parameters, the velocity profile of the unsteady blood
flow model with constant viscosity is higher than that with variable viscosity.

The research analysis incorporating slip velocity in the constricted artery can help to reduce blood
viscosity because high blood viscosity is a risk factor in the cardiovascular disorder. Also,
incorporating externally applied magnetic field will be useful for the reduction of blood flow
during surgery and magnetic resonance imaging (MRI).
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Nomenclatures

w - Fluid velocity w - Dimensionless fluid velocity

t - Time component t - Dimensionless time component
r - Radial distance y - Dimensionless radial distance
z - Axial distance w, - Slip velocity

V1 - Dimensionless slip velocity for the unsteady blood flow with constant viscosity
Vo1n - Dimensionless slip velocity for the unsteady blood flow with variable viscosity

R, - Radius of the normal artery Bo - Magnetic Field Strength
R(z) - Radius of the artery in a stenotic region 7, - Wall Shear Stress

1 - Resistance to flow ¢ - Maximum height of the stenosis
Q - Volumetric flow rate L - Length of the stenosis

W = Fluid velocity

G,-Pressure gradient for the unsteady flow with constant viscosity

G, n-Pressure gradient for the unsteady flow with variable viscosity
M;-Magnetic field parameter for the unsteady flow with constant viscosity
M, y-Magnetic field parameter for the unsteady flow with variable viscosity
Q -Shear thinning for the unsteady flow with constant viscosity

Q y-Shear thinning for the unsteady flow with variable viscosity

Q ;-Shear thickening for the unsteady flow with constant viscosity

Q ;n-Shear thickening for the unsteady flow with variable viscosity
RE;—Reynold number for the unsteady flow with constant viscosity

RE; y—Reynold number for the unsteady flow with variable viscosity
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