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ABSTRACT: The area under a ROC curve (AUC) is an important summary measures useful in 

assessing the accuracy of a diagnostic test in discriminating true disease status when the data for 

measurement is paired. This assessment is most important when the AUCs of different diagnostic 

test procedures are compared. These comparisons are not without some problem associated with 

it such as the inability of some test such as the McNemar test to adjust for the possible presence 

of ties in the data, thereby leading to erroneous conclusions in data analysis occasioned by 

committing Type II error more often than not. This is evident when the use of the traditional 

McNemar test in data analysis yielded high value of variance and low chi-square value thereby 

making one to accept a false null hypothesis more often than expected. To be able to tackle this 

challenge, we extend the usual McNemar test adopted by Sumi et al by adjusting for the possible 

presence of ties in the data when measurements of data may be on any scale. The extended 

McNemar test can enable one to easily estimate the probability that randomly selected pair of 

subjects from two diagnostic test procedures respond positive or both respond negative and it can 

be used to test the null hypothesis of equality of proportion of positive responses in two diagnostic 

test procedures. An extensive simulation study was carried out to determine the Type I error and 

statistical power of the existing and extended tests and the application of the tests to standard and 

real data, was carried out and result showed that in all the McNemar test demonstrates superior 

statistical power and less conservative type I error compared to DeLong et al area test, Bandos et 

al area test and the usual McNemar area test and so compares favorably. 

 

KEYWORDS: extended mcnemar test, positive response, correlated data, nonparametric test, 
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INTRODUCTION 

 

The receiver operating characteristic (ROC) curve is a standard tool used to evaluate the 

performance of a diagnostic test when measurement of test results are either continuous or ordinal 

(Hanley and McNeil, 1982). In 1950s the methodology of ROC was first developed by electrical 

and radar engineers during World War II for signal detection theory in battle fields (Green and 

Swets, 1966).  In an ROC curve, the true positive rate (TPR) is plotted against the false positive 

rate (FPR) across all possible cut-off values in other to make meaningful decision. The area under 

the ROC curve (AUC) is a summary index for measuring the diagnostic accuracy. AUC ranges 

from 0 to 1 inclusive and the greater the value of AUC close to 1, the better the discriminatory 

power of the diagnostic procedure. Often times, the aim of many diagnostic studies is to compare 
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the accuracy of diagnostic tests to determine the superiority of one test over another test for a 

certain condition or disease when data measurement may be on any scale. Statistical inference may 

be based on parametric, nonparametric or semi-parametric statistics. If the statistical inference is 

nonparametric, the difference between correlated AUCs for paired data was first proposed by 

DeLong et al (1988), and it is based upon asymptotic theory for U-statistics (Hoeffding, 1948). 

But the validity of this or any other method relays on large sample size and when the sample size 

is small, the validity of the test for the difference between two or more AUCs may not be achieved. 

Two permutation tests for paired receiver operating characteristic (ROC) studies currently exist: 

one proposed by Venkatraman and Begg (1996) and the more recent test of Bandos et al(2005). 

The test of Bandos et al (2006) directly tests for an equality of AUCs, while the test of 

Venkatraman and Begg is more general and tests for equality of the underlying ROC curves. As a 

result, the test of Venkatraman and Begg is less powerful for testing equality of AUCs. Both 

permutation tests are executed by permuting the labels of the two tests within each diseased and 

non-diseased subject. Such an approach implicitly assumes that both tests are exchangeable within 

subject and requires an appropriate transformation, such as ranks, for tests differing in scale. 

Bandos et al(2005) compared the performance of their test to that of DeLong et al (1988) using 

simulation and found that the permutation test had greater power than the nonparametric test 

developed by DeLong et al (1988) when there was moderate correlation between two tests, large 

AUCs, and small sample sizes. 

 

When comparing two diagnostic procedures, the difference between AUCs is often used and to 

control for the sources of changes arising from changes due to subjects which represents a 

reasonable size of the overall changes of the AUC, a paired data is recommended. This is because 

paired data usually induces positive correlation between the test results of the same subjects. Based 

on the use of paired data, Sumi et al(2010) adopted the usual McNemar test for comparing two 

correlated marginal probability of positive responses in diagnostic test procedures. This paper is 

an extension of this work for evaluating the performance of two diagnostic tests in terms of the 

proportion of positive responses and the comparison of this method with the existing tests by 

DeLong et al(1988),  Bandos et al(2006) and Sumi et al (2010) . 

 

ESTIMATION OF AUC 

 

In estimating the AUC, two main factors have to be considered namely, the design of the study 

and the distribution of test result (Vergara et al, 2008). Under the study design, test results or 

dataset can be classified into three types namely: (i) paired data (ii) unpaired data and (iii) partially 

paired data. For the paired and partially-paired set of data, correlation between AUCs is 

considered. Under the distribution type of test result, three approaches for estimating the AUCs 

are considered namely: (i) A parametric approach (ii) A semi-parametric approach (iii) A non-

parametric approach, In this paper, our focus will be on the non-parametric method. All the 

approaches to estimating the AUC differ in the way the distribution functions of both populations 

are estimated based on their sample values. Basically the nonparametric (empirical) method of 

estimating AUC is stated as follows. 
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Given that there are two diagnostic tests, let n be the total number of subjects without disease and 

m as the total number of subjects with disease. Suppose ( 1,2)b bX and Y b   represent the subjects 

without disease and with disease respectively. Therefore the corresponding bivariate outcomes for 

the two diagnostic procedures on the same N non-diseased and M diseased subjects should be 

( 1,2,..., ) ( 1,2,..., ).b b

i jx i n and y j m  Bivariate cumulative distribution functions are denoted by 

1 2 1 2( , ) ( , )F x x and G y y and their corresponding marginal ( ), ( )( 1,2).b b

b bF x G y b  Bamber (1975) 

noted that the AUC is equal to ( ).P Y X Let ( 1,2)bAUC b   be the AUCs of diagnostic 

procedures. The formula suggested by Hanley and McNeil (1982) for computing the AUC is given 

as  

1 1

1
( , ) 1

n m

i j

i j

AUC g X Y
nm  

   

Where m=number of diseased subjects, n=number of non-diseased subjects. Also i jX and Y  are 

respectively the test result of the ith and jth subject without and with disease and g is the indicator 

function comparing i jX with Y such that 

1,

( , ) 0.5, 2

0,

j i

i j j i

if Y X

g X Y if Y X

otherwise




 



 

Therefore for the thb  diagnostic test procedure the AUC can be computed as 

1 1

1
( , ) 3

n m
b b

b i j

i j

AUC g X Y
nm  

 

 

To carry out significant test for the differences between two or more correlated AUCs, it is 

necessary to consider the distribution of the test result which also determines the procedure to be 

adopted in estimating the AUCs and its variance-covariance matrix.  

 

By the comparison of areas under the two ROC curves, we can estimate which one of two 

diagnostic tests is more suitable for discriminating non-diseased subjects from diseased subjects 

or any other two conditions of interest (Sumi and Hossain, 2012). Braun and Alonzo (2008) 

proposed a modified rank test that does not require such a transformation and showed that the 
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modified test has the same power as Bandos et al (2005). Bantis and Feng (2016) focused on 

comparing two correlated ROC curves at a given specificity level. They proposed parametric 

approaches, transformations to normality, and nonparametric kernel-based approaches. Extensions 

of their methods also involved inference for the AUC and accommodating covariates. They 

evaluated the robustness of their techniques through simulations, compared to other known 

approaches and presented a real data application involving prostate cancer screening. They 

approaches perform satisfactorily in terms of size and power. The limitation of Bantis and Feng 

(2016) method is that their Box-Cox version does not take into account the variability of the 

transformation parameter. Finally, to increase the ability to detect the crossing alternative, Yu et 

al (2015) suggested a two-stage test, where the first stage uses the test derived by DeLong et al. 

(1988) to test the equality of the two AUCs and the second stage uses a modified area test to test 

two partial AUCs.    

 

EXISTING NONPARAMETRIC TESTS FOR COMPARING CORRELATED AUCs IN 

PAIRED SAMPLE DESIGN 

A number of tests exist for comparing two or more AUCs or proportion of positive responses for 

the matched sample case. 

 

DeLong et al’s CONVENTIONAL NONPARAMETRIC METHOD FOR COMPARING 

AUCs  

DeLong et al. (1988) developed a totally nonparametric approach to compare two correlated AUCs 

of two diagnostic tests for paired samples of subjects by using the theory of generalized U statistics. 

In other words, they developed a conventional fully nonparametric approach leading to an 

asymptotically normal test statistic. This method is important as it helps to study the behavior of 

the type I error and the statistical power of the conventional nonparametric test for comparing two 

AUCs over a wide range of relevant parameters and against various alternatives. The test by 

Delong et al is limited by the fact that the AUC has an unbiased non-parametric estimator called 

the indicator variable that requires the comparison of all the number of subjects responding 

positive and negative, thus working with very large number of observations, so that computational 

time could be long. In estimating AUC, sigmoid function is sometimes used instead of indicator 

function or variable [Calders and Jaroszewicz, 2007] .However, DeLong et al method is based 

only on a continuous scale of measurement. The method of structural components is used to 

generate an estimated covariance matrix and the resulting test statistic has asymptotically a chi-

square distribution. 

Suppose , 1,2,....,iX i n  denote test results for a sample of n non-diseased subjects, and 

, 1,2,....,jY j m  denote the test results for m diseased subjects. For each ( , )i jX Y pair, an indicator 

function ( , )i jI X Y  is defined as follows: 
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1

( , ) 0.5 4

0 .

j i

i j j i

j i

if Y X

I X Y if Y X

if Y X

 


 
 

 

The average of these values for I over all nm comparisons is the Wilcoxon or Mann-Whitney U 

statistic: 

1 1

1
( , ). 5

n m

i j

i j

U I X Y
mn  

   

Where U is equivalent to the AUC under the trapezoidal ROC curve (Wieand et al,1989), obtained 

by connecting the ROC data points by straight lines, and the expected value of U, E(U), according 

to Hajian-Tilaki, and Hanley(2002) is the area under the theoretical (population) ROC curve ( ) :

( ) ( ).E U prob Y X    

An alternative representation, used by DeLong et al (1988), is to define the components of the U 

statistic for each of the n non-diseased subjects and for each of the m diseased subjects: 

1 1

1 1
( ) ( , ) ( ) ( , ). 6

m n

N i i j D j i j

j i

Var X I X Y and Var Y I X Y
m n 

    

Where ( ) ( )N i D jVar X and Var Y are called “pseudo-values” or “pseudo-accuracies.” The pseudo-

value ( )N iVar X  for the ith subject in the non-diseased group is defined as the proportion of Y’s in 

the sample of diseased subjects where Y is greater than 
iX . While ( )D jVar Y for the jth subject in 

the diseased group is defined as the proportion of X’s in the sample of non-diseased subjects whose 

X is less than jY .    N DVar nd Vara  can be used in place of the original diagnostic test results 
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{X} and {Y} to construct the empirical ROC curve. The average of the    N DVar and Var  sample 

are respectively given as 

1 1 1

1 1 1

1 1
( ) ( , ) . 7

1 1
( ) ( , ) . 8

n n m

N N i i j

i i j

m n m

D D j i j

j i j

Var Var X I X Y U
n nm

And

Var Var Y I X Y U
m nm

  

  

  

  

 

 

 

Therefore 

1 1

1 1ˆ ( ) ( ) 9
n m

N i D j

i j

AUC U Var X Var Y
n m 

     

Thus, the average of the values for  Nn Var  and the average of those for  Dm Var  are both 

equivalent to the U statistic, which is why there are called pseudo-accuracy measures. As was 

shown by Hettmansperger (1984), the estimate of variance of the U statistic (which he called W 

instead of U) can be expressed as the sum of variances of , ,N DV V  and a third component, 

(1 ) .U U nm  DeLong et al (1988) omitted the third component, since it is negligible when n and 

m are large. They explained that for a single diagnostic test, the variance of AUC is given as 

22

ˆ ˆ[ ] [ ] . 10ND TT
SS

Var AUC Var U
m n

    

Where 
2 2

D NT TS and S  are respectively the sample variances for the diseased and non-diseased 

components and are defined as 

   
22

12 21 11
1 1N D

mn

D jN i
ji

T T

Var Y AUCVar X AUC

S and S
n m



     
 

 


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The null hypothesis of interest is to compare the equality of AUCs from two diagnostic test 

procedures when the data is paired and by extension if the period of measurement of test results 

are the same and the test statistic according to DeLong et al (1988) is the Z-test given as 

 

   

1 2

1 2

1 2 1 2 1 2

12

( ) ( ) 2 ,

AUC AUC
Z

Var AUC AUC

where

Var AUC AUC Var AUC Var AUC Cov AUC AUC






   

 

If the two diagnostic tests are not matched to the same subjects, the two AUCs are independent 

and the covariance term would be zero. 

In other to estimates the AUCs for the two diagnostic test procedures, Delong et al(1988) 

considered that each variance of AUC be defined as 

 
2

1

2

1

( ) 13

( )

, 1,2.
1

( )

, 1,2.
1

Db Nb

b

Nb

b

Db

T T

b

b b

n

N ib b

i
T

b

m

D jb b

j

T

b

S S
Var AUC

m n

where

Var X AUC

S b
n

And

Var Y AUC

S b
m





 



 


  
 







 

The variance of the components ( ) ( )N ib D jbVar X and Var Y  are respectively defined as  
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   
1 1

, ,

( ) ( ) , 1,2. 14
1 1

b b
m n

bi bj bi bj
j i

N ib D ib

b b

I X Y I X Y

Var X and Var X b
m n

   
 

 
 

 Where   

 
1

, 0.5

0

ib jb

if Y X

I X Y if Y X

if Y X




 
 

 

1 1

1 1
( ) ( ), 1,2. 15

b bm n

b D bj N bi

j ib b

AUC Var Y Var X b
m n 



     

Note here that bj biY and X  are the observed diagnostic test results for the jth and ith  subjects in 

group b diagnostic test procedures that are diseased and non-diseased respectively. 

Also 

 

  

21 2 1

1 2

1 2

1 2

1 1 2 2

1

1 1 2 2

1

, 16

1
( ) ( )

1

1
( ) ( )

1

D D N N

D D

N N

T T T T

m

T T D j D j

j

n

T T N i N i

i

S S
Cov AUC AUC

m n

where

S Var Y AUC Var Y AUC
m

And

S Var X AUC Var X AUC
n





 

        

  






 

Here 
1 2D DT TS  is the pooled variances of diseased test result for the first and second diagnostic test 

procedure or process,
1 2N NT TS is the pooled variances of the non-diseased test result for the first and 
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second diagnostic test process or procedure, 1( )D jVar Y  is the variance of the positive diagnostic test 

result for the jth subject in the first diagnostic test process, 2( )D jVar Y  is the variance of the positive 

diagnostic test result for the jth subject in the second diagnostic test process, 1( )N iVar X  is the 

variance of the negative diagnostic test result for the ith subject in the first diagnostic test process 

and 
2( )N iVar X  is the variance of the negative diagnostic test result for the ith subject in the second 

diagnostic test process. When the variances are estimated, one can calculate the AUC for the two 

diagnostic tests and then make comparison. 

 

Bandos et al PERMUTATION NONPARAMETRIC TEST FOR COMPARING AUCs  

Bandos et al (2005) derived exact and asymptotic permutation test methods to test the equality of 

two correlated ROC curves which are designed to have increased power to detect difference in the 

AUC. The test of Bandos et al (2005) directly tests for an equality of AUCs. This approach 

implicitly assumes that both diagnostic test procedures are exchangeable within subject and 

requires an appropriate transformation, such as ranks, for diagnostic test procedures differing in 

scale. Bandos et al (2005) compared the performance of their test to that of DeLong et al (1988) 

via simulation and found that the permutation test had greater power than the nonparametric test 

developed by DeLong et al (1988) when there was moderate correlation between diagnostic tests, 

large AUCs, and small sample sizes. Bandos et al (2005) test is limited by the fact that it requires 

the exchangeability of the diagnostic test procedures and do requires also the transformations of 

the original data. It also requires diagnostic tests that are measured on identical scales and so may 

prove to be less powerful in settings in which the diagnostic test results are skewed (Braun and 

Alonzo, 2008). If    
1 1
,

n m
b b

i ji j
X Y

  be the test results of the diagnostic procedure b for n 

actually non-diseased and m actually diseased subjects and    
1 1
,

n m
b b

i ji j
x y

 
 be approximately 

transformed test results, an unbiased nonparametric estimator for the AUC for diagnostic 

procedure or test b can be written as ˆ .bAUC  For a paired sample design, the difference in two 

AUCs can be estimated as, 
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   

   

1 1 2 2

1 1 1 1

1 2

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1

, ,

ˆˆ 17

1, ,

0.5, , ,

, , 0, , , ,

0.5,

n m n m

i j i j

i j i j

i j i j

i j i j i j i j

i j i j i j i j i j i j i j i j

i

X Y X Y

AUC AUC
nm nm

where

if x y x y

if x y x y or x y x y

X Y X Y if x y x y or x y x y or x y x y

if x y

 

 

   
  

 

   

       

 

 

1 2 2 1 1 2 2

1 1 2 2

, ,

1, ,

j i j i j i j

i j i j

x y or x y x y

if x y x y






   

   

 

Being a member of U statistics, the non-parametric estimator of the AUC difference is known to 

be asymptotically normally distributed under quite general condition (Hoeffding, 1948).Based on 

this property and the additional assumption of exchangeability, they constructed a simple 

asymptotic test procedure with test statistic 

 
1 2

1 2

ˆ ˆ
(0,1) 18

ˆ ˆ

dAUC AUC
N

Var AUC AUC





 

Where   is the parameter space. 

Sumi et al (McNemar Test) NONPARAMETRIC METHOD FOR COMPARING AUCs 

Sumi et al(2010) proposed a method for comparing two proportion of positive responses. This test 

is based on McNemar test (1947) for the comparison of two diagnostic tests for continuous and 

discrete binary scale data that are matched. Their McNemar test is based on the comparison of the 

equality of the proportion of positive responses in two diagnostic tests. Here each subject’s test 

result is either positive coded 1 or negative coded 0 on each of two diagnostic processes and 

interest is in testing whether the proportion of ‘positive’ responses are the same on the first and 

second diagnostic procedure taken into account the correlation of the two diagnostic test results. 

This test is limited by the fact that it does not provide evidence of inferiority or superiority of one 

diagnostic test over another. Any test capable of this should have one sided alternative hypothesis 

(Zhou et al, 2002). The test assumes the use of summarized data which leads to loss of information 

and reliability in decisions about the data analyzed. Such summarized data could have many ties 

and if not adjusted for will reduce the power of any test statistic employed for the analysis. It is 
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worthy of mentioning that McNemar test is concerned with matched pairs of dichotomous test 

results. Here the result of each diagnostic test are all into two categories, positive coded 1 and 

negative coded 0.The resulting data is presented in a 2x2 contingency table where row represents 

the result of one diagnostic test while the column represent the result of another diagnostic test. 

Here each cell represents the number of observed cases with the particular combination of test 

results. Depending on the scale of measurement of test results whether continuous or binary, one 

can compare the two test procedures by constructing a 2x2 contingency table after which McNemar 

test can be applied and the result compared with the result obtained using the conventional non-

parametric test suggested by DeLong et al(1988) and the permutation test by Bandos et al(2005). 

For two diagnostic tests producing the continuous test results as    
1 1

n m
b b

i ji j
X and Y

 
 in the bth 

diagnostic test,the subjects are ordered so that    
1 1

n m
b b

i ji j
X and Y

 
 becomes the transferred 

results in the bth diagnostic test for n real negative and m real positive subjects.Suppose we have 

an optimal cut-off value of bc for bth diagnostic test, then we classify all results above bc  as 

positive and results less than or equal to bc  as negative so that the 2x2 contingency table can be 

constructed for each diagnostic procedure. The resulting table 1 is  

 

Table 1: A 2x2 contingency table for bth (b=1, 2) diagnostic test procedure 

Test Result for diagnostic procedure Observed(True) Status Total 

( )Diseased   ( )Nondiseased    

( )positive ve  
bA  

bB  
b bA B  

( )negative ve  
bC  bD  b bC D  

Total 
b bA C  b bB D  bn  

From Table 1, 
bA =number of subjects who are diseased and who actually tested positive ( ),b

j by c

bB =number of subjects who do not have disease and actually tested positive ( ),b

i bx c
bC =number 

of subjects with disease and actually tested negative ( ),b

j by c
bD = number of subjects without 

disease who actually tested negative ( ).b

i bx c Now each diagnostic test result is used to obtain a 

2x2 contingency table based on the optimal cut-off value,so that one can verify if the diagnostic 

test procedure has any effect on the true observed (True) status. To test for the significance of any 

observed change using the McNemar test, one sets up a fourfold table of frequencies representing 

the first and the second sets of responses (test results) from the same subjects. If both diagnostic 
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test procedures have significant effects, in other words, there are correlated, we can combine the 

two diagnostic test procedures thus obtaining a matched pair data from the combination of these 

two diagnostic tests and we obtain a contingency Table 2. 

 

Table 2. A 2x2 contingency table for two diagnostic test procedures  

 Diagnostic test 2 Total 

Diag test 1 Positive( ve ) Negative(

ve ) 

 

Positive( ve ) 

( )A

A

P
 

( )B

B

P
 

 A B

A B

P P




 

Negative( ve ) 

( )C

C

P
 

( )D

D

P
 

 C D

C D

P P




 

Total 

 A C

A C

P P




 

 B D

B D

P P




 

(1)

N
 

In Table 2, AP represents probability of positive test results on both test procedures, BP is the 

probability of positive test result in diagnostic test procedure 1 but negative test result in diagnostic 

test procedure 2, 
C DP and P are similarly defined. A, B, C, and D are the corresponding frequencies 

representing test results on both diagnostic tests.For instance, A represents the frequency that 

diagnostic test 1 and diagnostic test 2 subjects both respond positive while D represents the 

frequency that diagnostic test 1 and diagnostic test 2 subjects both respond negative and n
represents the pairs of diagnostic test 1- diagnostic test 2 subjects studied. From Table 2, the 

proportion of diagnostic test 1 subjects studied who respond positive is  

1 19
A C

p
N


  

while the proportion of diagnostic test 2 studied who respond positive is  

  

 
2 20

A B
p

N



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The difference between the proportions of diagnostic test 1 and diagnostic test 2 subjects who 

respond positive is  

2 1 21
B C

p p
N


   

which is independent of A and D, the number of test results in which the diagnostic test 1 and 

diagnostic test 2 subjects both respond positive or both respond negative respectively.  

The standard error of the difference between the two proportions of positive responses is 

2 1( ) 22
B C

Se p p
N


   

which is also unaffected by A and D. 

If 1 2and  are respectively the proportions of diagnostic test 1 and diagnostic test 2 in the 

sampled populations who respond positive then a null hypothesis that may be of interest is whether 

the two diagnostic test procedures are equal in their performances as 

0 2 1 1 2 1: 0 : 0 23H versus H        

Its equivalent is to test whether the marginal probabilities of positive result on the diagnostic test 

1 and diagnostic test 2(Sumi et al, 2010) based on Table 2 are equal  

0 1: : 24A B A C A B A CH P P P P versus H P P P P       

The McNemar test statistic (1947) follows a chi-square distribution with 1 degree of freedom for 

testing the null hypothesis of Equ.23/24 is   

2
2

2 2 1

2 1

( ) ( )
( ) 25

( )

p p B C
without continuity correction

Se p p B C


  
  

  
 

 
2

2
1

( ) 26

And

B C
with continuity correction

B C


 



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which has a chi-square distribution with 1 degree of freedom. The null hypothesis of equal 

population proportions is rejected at the  level of significance in favour of the alternative 

hypothesis if  
2 2

1 ;1 27    

McNemar test used here employs a continuous distribution to approximate a discrete probability 

distribution by recommending for continuity for correction in calculating the test statistic. When 

the sample size is small in the interest of accuracy, the exact binomial probability for the data 

should be used (Sumi et al, 2010). McNemar test unlike the DeLong et al(1988) and Bandos et 

al(2005) methods is applicable both for continuous and discrete binary scale data irrespective of 

having knowledge of true disease status(gold standard). 

 

The identified problem statement associated with this study is that the usual McNemar test cannot 

adjust for the possible presence of ties in data, thereby making the variance value high while the 

chi-square value remained low such that Type II error is often times committed. To be able to 

solve this problem, this study is aimed at comparing correlated proportion of positive responses in 

two diagnostic test procedures by extending the usual McNemar test statistic to accommodate for 

ties in the data.. 

 

EXTENDED McNemar TEST 
This extension is based on the previous work by Sumi et al(2010) who applied the usual McNemar 

test(1947) in comparing correlated marginal probability of positive responses from two diagnostic 

test procedures. The usual McNemar test assumes that the data to be used are presented in a 

summarized form rather than being in a raw form that needs to be processed. Most times, these 

data may be quantitative in nature and as such may be continuous also meaning that the chances 

of getting any tied data is at least zero in theory but practically, there exist ties in the data. This is 

one of the limitations of the usual McNemar test that needs attention. It these ties are adjusted for, 

the power of the test statistic used for data analysis is increased. To extend the usual McNemar 

test adopted by Sumi et al (2010) to allow for the possible presence of ties in the data, let 2 1( , )v vt t

be the test results of subjects from diagnostic test 2 case 1 respectively for the vth pair of subjects 

who are undergoing diagnostic test 2 and 1 say respectively where v=1,2,..,N pairs of subjects in 

diagnostic test 2 and 1.Assuming that the data is measured on at least interval scale. 

 

2 1

2 1

1, 2 1

0, 2 1

v v

v v v

if t and t are test results of subjects for diagnostic test and responding positive and negative tothe condition respectively

Let T if t and t are test results of subjects for diagnostic test and responding both positiv

2 1

28

1, 2 1v v

e or responding both negative

if t and t are test results of subjects for diagnostic test and responding negative and positive to the condition respectively




 
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For the vth pair of subjects in diagnostic test 2 and 1, where v=1,2,..,N,where N is the total number 

of pairs. 

Let 0( 1) : ( 0); ( 1) 29v v vP T P T and P T           

0

1

          

1 30

31

,

  

   .

exp

( )

N

v

v

v

v

the total number of subjects in the matched pairs of subjec

where

Therefore let

W T

Where W is

Based on the above specificati

ts who

test or respond po

ons the ected value of T is

E T

sitive

  



 





  



 



2

2

32

( ) ( ) 33

6 7, exp

( ) ( ) 34

in 8 ,

( ) ( ( ) ) 35

v

while

Var T

From Equs and the ected value of W is

E W n

add g from Equ

Var W N



   

 

   



   

 

   

   

 

   

 

Note that 0, and    are respectively the probabilities that for a randomly selected pair of 

subjects from diagnostic tests 2 and 1, the subjects from diagnostic test 2 on the average responds 

positive and the subjects from diagnostic test 1 responds negative or the subjects from diagnostic 

test 2 and 1 both respond positive or the subjects from both diagnostic tests respond negative, or 

the subjects from diagnostic test 2 responds negative and subjects from diagnostic test 1 responds 

positive. The sample estimates of these probabilities are respectively defined as 
0

0ˆ ˆ ˆ; 36
p p p

and
N N N

  
 

     

where 0,p p and p  represents respectively the frequencies 1’s,0’s and -1’s in the distribution 

given in , 1,2,..., .vT v N  That is, 0,p p and p  are respectively the number of diagnostic test 2 

and 1 subject pairs in which the diagnostic test 2 respond positive and the diagnostic test 1 respond 
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negative or the diagnostic test 2 and 1 subjects both respond positive or both respond negative or 

the diagnostic test 2 responds negative and the diagnostic test 1 subject responds positive. These 

frequencies are expressed in terms of diagnostic tests 2 and 1 in Table 1 

 

Table 1: Fourfold Table for presenting Data on paired Samples. 

  Diagnostic test 2 Total 

Diag test 1  Positive Response 

( ve )  

Negative 

Response( ve ) 

 

Positive Response (

ve )  

 0

11n p A   12n p B   11 12n n A B    

Negative Response 

( ve ) 

 
21n p C   0

22n p D   21 22n n C D    

Total  
11 21n n A C    12 22n n B D    

..( )n N  

There are respectively represented from Table 1 as 

0 0 0

12 11 22 21; ; 37p n p n n p p p n          

where  

0 0

11 22; 38p n p n    

are respectively the number of diagnostic test 2 and 1 subject pairs where diagnostic test 2 and 1 

subjects both respond positive or both respond negative and 
0 0ˆ ˆand  

are the corresponding 

relative frequencies. 

But    measures the difference in rate of positive responses by subjects in the diagnostic test 

2 and diagnostic test 1 procedure and its estimate of the sample is  

39
W p p

N N
 

 
  
    
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And the variance is estimated from Equ 35 as  

2

2

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ( ) 40

Var W
Var

N N

   
 

   
    
    

But the McNemar test statistic is 

2
2

2 2 1

2 1

( ) ( )

( )

p p B C

Se p p B C


  
  

  
with the numerator given as 

  
2

2 2ˆ ˆ( ) ( ) 41W N p p         

Now a test statistic explaining the difference between positive response rates for diagnostic test 2 

and 1 subjects can be developed by noting that   represents the proportion of pairs of subjects 

out of a total of N pairs in which the subject from diagnostic test 2 procedure and was given say 

T2 treatment in a given pair responds positive and the subject from diagnostic test 1 in the pair and 

given treatment T1 say, responds negative; 0  represents the proportion of the total number of N 

pairs of subjects with the members of the pair both responding positive or both responding negative 

and   is the proportion of pairs out of a total of ‘N’ pairs in which the subject from diagnostic 

test 2 procedure and was given say T2 in a given pair responds negative and the subject from 

diagnostic test 1 in the pair and given treatment T1 responds positive. The diagnostic test 2 and 1 

differential positive response rate is given as     with their sample estimate and variance 

given respectively by Eqns 39 and 40. If the sampled proportion is given respectively as 

1 2

A C A B
p and p

N N

 
  based on Table 1, we obtain more important and detailed information 

given as  
0

011 21
1

0
011 12

2

0 0
0 0

0 0 0

ˆ ˆ 42

ˆ ˆ 43

ˆ ˆ 44

ˆ ˆ ˆ 45

n n p p
P

N N

and

n n p p
P

N N

p p
where and

N N

such that

 

 

 

  

 
 

 
 

 
 

 

 
   

 
   

 

 

 

Now the null hypothesis H0 of interest is to test that the proportions of subjects responding positive 

in the diagnostic test 2 and 1 procedures or  treatment conditions T2 and T1 differ by some value 

0 .This is equivalent to testing the null hypothesis given as  

0 0 1 0 0: : ( 1 1) 46H versus H                 
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While the test statistic is given by 

 

2
2 0

2

2
2 0

2

( )
47

ˆ ˆ ˆ ˆ( )

ˆ ˆ(( ) )
48

ˆ ˆ ˆ ˆ( )

W n

N

Or equivalently

n




   

  


   

   

 

   




  

 


  

 

which with 1 degree of freedom is approximately chi-square distributed for sufficiently large ‘n’.  

The null hypothesis of equal population proportion of positive responses is rejected at the  level 

of significance in favour of the alternative hypothesis if  

2 2

1 ;1 49    

Note therefore that under null hypothesis H0, the numerators of the extended test statistic of Equs 

47 and 48 are as in the usual McNemar test statistic independent of 0 0

11 22n p and n p   the 

number of pairs in which diagnostic test 2 and 1 subjects in each pair both respond positive or both 

respond negative to the conditions of interest while for equations 47 and 48, the denominator is 

also independent of n11 and n22.Hence both the extended test statistic and the usual McNemar test 

statistic are not affected by those pairs in which the subjects in each pair both respond positive or 

both respond negative to the disease or treatments condition. Unlike the usual McNemar test 

statistic, the extended McNemar test has by specifications been adjusted and corrected for the 

possible presence of ties in the data. In addition, the variance of the extended McNemar test 

statistic in Eqn 48 is smaller than the variance of the usual McNemar test statistic stated in between 

eqns 40 and 41.This is because of the fact that 
2

2

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ( )

Var W
Var

N N

   
 

   
    
   and 

2 1( )
B C

Se p p
N


   so that 

2 2

12 21 12 21 12 21
2 12 3 2

2 2

12 21
12 213

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ( ) ( ),

ˆ ˆ( ) ( )
sin 0, ,

n n n n n n
Var Var P P

N N N N

n n
ce for all or n n

N N

   
 

 
 

   
 

 
 

     
      

 
   

 

In conclusion, the extended McNemar test statistic is relatively more efficient and so is most likely 

to be more powerful than the usual McNemar test statistic whenever the diagnostic test 2 and 1 

test results of subjects have differences in positive response rates 1 2
ˆ ˆ( ; )or P P    to the 

conditions of interest. It is note worthy that 2ˆ ˆ( )N     is the reduced value in the variance of W 
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since by specifications of equation 28 it has been adjusted for the possible presence of ties between 

the responses of diagnostic test 2 and 1 procedures. The major difference between the usual 

McNemar test and the extended McNemar test is that there is adjustment of possible presence of 

tied observations in the later test, the extended McNemar test statistic will likely have smaller 

variance and larger calculated chi-square value than the usual McNemar test statistic, thus leading 

to the more chances of committing Type II error in the usual McNemar test more often than in the 

extended McNemar test. 

 

APPLICATION TO SIMULATION STUDY 

We carried out computer simulations here to evaluate the performance of the extended McNemar 

test. We performed extensive simulations to evaluate and compare Type I errors (empirical test 

sizes) and statistical power of the extended McNemar test, usual (traditional) McNemar test, 

conventional nonparametric test of DeLong et al(1988) and asymptotic test of Bandos et al(2005). 

Here we assumed equal correlation coefficient across the two diagnostic test procedures for 

diseased and non-diseased test results of subjects measured on continuous and discrete binary 

scales and the sample sizes are 20,60,100 and 180. These test results of subject were generated 

from a standard bi-variate normal distribution having mean and variance respectively for the two 

diagnostic tests as 2 2

1 1 2 2, ,and     when measurement of data is on continuous scale. The AUC 

for diagnostic test 1 and 2 procedures are respectively given as 

1 2
1 22 2

1 2(1 ) (1 )
AUC and AUC

 

 

   
      
       

 where   is the standard normal cumulative 

distribution function. Under binary random variable X for one diagnostic test procedure, if the test 

result of subject is positive, it is coded 1 and if the test result is negative, it is coded 0. If binary 

variables (X,Y) is assumed for correlated diagnostic test procedures, the joint distribution of X and 

Y is determined. The correlation coefficient ( )r of X and Y is determined and having the range 

1 1.r    For data on binary scale of measurement, correlated binary test results were generated 

with required probabilities of positive responses  1 2,P P  to obtain specific difference 

 0 0b tor           between the probability of positive responses for the two 

diagnostic test procedures for the extended McNemar test and the proposed chi-square test 

respectively. The binary test results for the non-diseased subjects, are generated by fixing the 

probability of positive responses as 0.30 and 0.35. This procedure of simulating binary data is in 

line with the previous works of Leisch et al (1998) and Islam et al (2012) who discussed the 

algorithm for simulating correlated binary test results. The SAS version 9 is the statistical software 

used to perform the simulation study.  

 

The range of values of the correlation coefficient r for the extensive simulation for continuous test 

results and values of parameters (a and b) for estimating mean 1 2( , )   and variance 2 2

1 2( , )   

parametrically as drawn to obtain the difference between two AUCs ranges from 0 to 0.3. For 

binary test results, the correlation coefficient r is also taken to range from 0.25 to 0.75 and the 
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probability of positive responses were drawn so as to obtain the difference between probability of 

positive responses of subjects for the two diagnostic test procedures and it ranged from 0 to 0.2. 

For either binary or continuous scenario considered, we used 2000 replications in running the 

simulations. Table 5 compares the empirical test size (Type I error) and the statistical power of the 

extended McNemar test to the usual McNemar test proposed by Sumi et al(2010),to the 

conventional nonparametric test developed by DeLong et al(1988) and to asymptotic permutation 

test developed by Bandos et al.(2005) for comparing two diagnostic test procedures for continuous 

test results. This comparison was similarly carried out for binary test results. The estimates of Type 

I error as well as estimates of the statistical power are obtained when the proportion of positive 

responses or the true AUCs for the two diagnostic test procedures are the same and different 

respectively as can be seen in Tables 5 and 6. The rejection regions for the two tests are determined 

using 5% as level of significance.  

 

For smaller AUCs, the extended McNemar test indicates a more conserved empirical test size (type 

I error) and thereafter an increased statistical power when compared to the traditional McNemar 

test by Sumi et al(2010), conventional nonparametric method by DeLong et al(1988) and 

asymptotic permutation test by Bandos et al(2005) when the test results is continuous. But when 

the correlation coefficient is moderate and for increased sample size for the two diagnostic test 

procedure, stability appears to be more in the scenario considered (continuous case) and the five 

tests mentioned above tends to be very close in terms of their empirical test size and statistical 

power. The extended McNemar test shows more false positive rate (FPR) when the correlation 

coefficient r is smaller. This is because the McNemar test are most suitably used when the data is 

correlated. However, when the correlation coefficient r is increased, the estimate of FPR reduces 

drastically. In the same way, when the AUCs is increased, the estimates of the empirical test size 

(type I error) for every sample sizes and all values of correlation coefficients can be compared.  

The extended McNemar test discriminates better than the traditional McNemar test by Sumi et 

al(2010), conventional nonparametric test by DeLong et al(1988)and the permutation test Bandos 

et al(2005) when the AUCs are getting higher and for lower values of correlation coefficients.  

 

When the AUCs values are high and for moderate values of the correlation coefficient, the other 

three tests namely the usual McNemar test by Sumi et al, test by DeLong et al and test by Bandos 

et al gives better statistical power than the extended McNemar test but when the sample sizes 

increases, the extended McNemar test provides very close statistical power to the others. In 

considering the binary test results in all aspects of parameter settings and for either big or small 

sample sizes, the extended McNemar test shows lower conservative empirical test size(Type I 

error)and shows higher statistical power when compared to tests by Sumi et al(2010), DeLong et 

al(1988) and Bandos et al(2005).Finally, in the continuous case situation, the results of the 

simulation shows that the proposed chi-square test and the extended McNemar test gives very 

close harmony of Type I error to the significant level  but when the values of AUCs are low this 

harmony yields or provides among the diagnostic test procedures moderate and very high 

correlation coefficient. Also having greater or higher sample sizes in the continuous case also 

makes the extended McNemar test have statistical power that is very comparable to other existing 

nonparametric methods of comparing correlated AUCs. In addition, for the discrete binary case, 
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the extended McNemar test possesses higher operating characteristics than other existing tests 

considered in all the settings of parameter. The performance of the extended McNemar test may 

be impaired in a simulation study when the test result is continuous because of the problem of 

choosing or finding an optimal cut-off value for classifying the test results of subjects. To make 

this point clearer, we in the next section will adopt a known standard data set that already has a 

real cut-off value and we will conduct a bootstrap power analysis so as to compare the statistical 

power of all the four tests namely, extended McNemar test, usual McNemar test by Sumi et al, 

conventional test by DeLong et  al and permutation test by Bandos et al.  

 

Table 5. Empirical type I error and statistical power when comparing two diagnostic tests 

for continuous test results. [ 1AUC - Area of diagnostic test 1; 2AUC  - Area of diagnostic test 

2; D - DeLong et. al Test; B - Bandos et. al Test; S-Sumi et al.Test; EM-Extended McNemar  

Test]. 

AUC Mean Varia

nce 

Sample 

size 

0.25   0.50   0.75   

1AUC    2AUC       

1  

2

 

2 2

1 2 

 

N M Da Bb Sc EM

d 

Da Bb Sc EM

d 

Da Bb Sc EM

d 

Type I error and statistical power               

0.6,       0.7 

Type I 

error 

.38 .38 1.0 20 20 .04

9 

.04

0 

.06

5 

.06

9 

.04

8 

.04

4 

.05

9 

.06

1 

.05

1 

.05

2 

.05

0 

.04

9 

   60 60 .04

5 

.04

3 

.07

2 

.08

0 

.04

7 

.04

8 

.05

4 

.06

7 

.05

0 

.05

0 

.04

8 

.04

9 

   10

0 

10

0 

.05

8 

.05

7 

.09

5 

.09

6 

.04

0 

.04

0 

.06

1 

.06

3 

.04

5 

.04

5 

.05

6 

.05

7 

   14

0 

14

0 

.04

7 

.04

7 

.08

7 

.09

1 

.04

3 

.04

2 

.08

3 

.08

6 

.04

3 

.04

2 

.07

6 

.08

3 

   18

0 

18

0 

.04

3 

.04

2 

.09

7 

.09

9 

.04

2 

.04

2 

.07

2 

.07

8 

.04

6 

.04

6 

.07

1 

.08

0 

0.6,       0.8 

Power 

.38 .76 1.0 20 20 .12

1 

.09

0 

.18

3 

.18

9 

.17

1 

.16

2 

.20

4 

.24

0 

.22

5 

.21

4 

.19

9 

.20

9 
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   60 60 .18

8 

.17

7 

.33

4 

.35

7 

.29

7 

.28

7 

.38

7 

.39

8 

.39

7 

.38

6 

.45

3 

.46

2 

   10

0 

10

0 

.22

9 

.08

5 

.45

8 

.47

2 

.44

9 

.43

9 

.55

3 

.57

2 

.58

7 

.57

5 

.63

2 

.64

1 

   14

0 

14

0 

.44

1 

.43

0 

.67

8 

.69

2 

.63

7 

.62

8 

.78

1 

.79

6 

.80

0 

.79

1 

.87

6 

.88

6 

   18

0 

18

0 

.60

8 

.60

4 

.84

1 

.85

5 

.80

8 

.80

1 

.91

4 

.93

5 

.93

6 

.93

2 

.96

2 

.97

8 

0.6,      0.9 

Power 

.38 1.2

3 

1.0 20 20 .40

4 

.36

4 

.46

8 

.47

2 

.57

0 

.52

3 

.55

8 

.57

6 

.72

3 

.62

6 

.60

3 

.58

9 

   60 60 .70

5 

.67

8 

.80

3 

.82

5 

.87

0 

.83

8 

.88

3 

.89

8 

.95

5 

.94

2 

.92

6 

.91

8 

   10

0 

10

0 

.68

2 

.84

9 

.93

9 

.95

2 

.97

5 

.96

7 

.97

8 

.98

9 

.99

7 

.99

1 

.99

0 

.99

7 

   14

0 

14

0 

.97

8 

.97

6 

.99

5 

.89

8 

.99

8 

.99

8 

.99

8 

.99

8 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

   18

0 

18

0 

.99

6 

.99

6 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

0.7 ,      0.8 

Power 

.38 1.8

4 

1.0 20 20 .81

6 

.76

6 

.76

2 

.77

8 

.93

8 

.90

3 

.83

5 

.90

7 

.98

5 

.96

8 

.88

3 

.87

8 

   60 60 .99

0 

.98

3 

.98

2 

.98

6 

.99

8 

.99

8 

.99

1 

.99

6 

1.0

00 

1.0

00 

.99

8 

.99

8 

   10

0 

10

0 

.99

8 

.99

7 

.99

9 

.99

8 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

   14

0 

14

0 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

   18

0 

18

0 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

0.7,       0.9 

Type I 

error 

.79 .80 1.0 20 20 .04

7 

.04

1 

.04

8 

.04

9 

.04

6 

.04

4 

.03

9 

.04

9 

.04

9 

.05

1 

.02

9 

0.0

19 

   60 60 0.4

0 

.03

8 

.04

4 

.04

8 

.04

9 

.04

8 

.04

7 

.05

7 

.05

0 

.04

9 

.04

1 

.03

2 
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   10

0 

10

0 

.06

1 

.05

7 

.04

7 

.05

8 

.03

6 

.03

5 

.04

6 

.04

8 

.04

6 

.04

8 

.03

9 

.02

8 

   14

0 

14

0 

.03

3 

.03

3 

.06

5 

.07

2 

.05

1 

.05

0 

.05

1 

.05

6 

.04

9 

.04

9 

.05

0 

.04

2 

   18

0 

18

0 

.04

8 

.04

8 

.06

4 

.06

6 

.04

1 

.04

1 

.05

1 

.04

8 

.05

4 

.05

4 

.04

9 

.04

7 

0.7,       0.9 

Power 

.79 1.2

5 

1.0 20 20 .13

6 

.12

5 

.11

7 

.12

3 

.19

6 

.18

6 

.12

8 

.12

0 

.25

3 

.24

5 

.15

0 

.14

0 

   60 60 .23

1 

.22

0 

.22

8 

.23

6 

.35

0 

.33

9 

.27

1 

.24

3 

.47

0 

.45

9 

.32

4 

.30

9 

   10

0 

10

0 

.36

2 

.34

8 

.35

3 

.36

1 

.52

6 

.51

2 

.41

7 

.40

1 

.67

8 

.66

8 

.49

3 

.41

7 

   14

0 

14

0 

.56

1 

.55

1 

.57

6 

.58

3 

.74

4 

.73

3 

.67

9 

.66

2 

.87

0 

.85

8 

.76

9 

.70

3 

   18

0 

18

0 

.72

9 

.72

3 

.75

5 

.76

3 

.90

3 

.89

8 

.66

9 

.61

9 

.96

9 

.96

6 

.91

1 

.87

9 

0.8,       0.9 

Power 

.79 1.8

5 

1.0 20 20 .53

1 

.49

7 

.35

6 

.46

2 

.69

6 

.65

6 

.41

4 

.38

9 

.82

4 

.78

0 

.46

7 

.41

2 

   60 60 .85

7 

.83

2 

.69

3 

.72

1 

.95

9 

.94

6 

.77

8 

.74

2 

.99

0 

.98

0 

.84

1 

.81

0 

   10

0 

10

0 

.95

3 

.94

3 

.89

2 

.89

8 

.99

5 

.99

3 

.92

9 

.91

1 

1.0

00 

.99

8 

.96

9 

.93

1 

   14

0 

14

0 

.99

8 

.99

7 

.98

4 

..99

8 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

   18

0 

18

0 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

1.0

00 

Da=Conventional AUC test (DeLong et al.); Bb-Approximation to permutation AUC  test 

(Bandos et al.); Mc- McNemar test(Sumi et al); EMd-Extended McNemar test(new method);. 
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Table 6. Empirical type I error and statistical power when comparing two diagnostic tests 

for discrete binary test results. [ 1A - Area of diagnostic test 1; 
2A  - Area of diagnostic test 2; 

D - DeLong et. al Test; B - Bandos et. al Test; S-Sumi et al Test; EM-Extended McNemar  

Test;]. 

Probability of positive response Sample size 0.25   0.50   0.75   

1p  
2p      

N M Da Bb Sc EMd Da Bb Sc EMd Da Bb Sc EMd 

Type I error and statistical 

power 

              

0.60 

Type I 

error 

0.60 0.00 20 20 .065 .059 .027 .019 .077 .062 .022 .017 .071 .054 .024 .018 

  60 60 .059 .054 .038 .027 .069 .068 .039 .024 .069 .065 .048 .032 

  100 100 .068 .066 .048 .034 .080 .074 .056 .037 .093 ..092 .059 .037 

  140 140 .084 .081 .068 .047 .097 .095 .080 .062 .107 .104 .091 .078 

  180 180 .115 .112 .079 .058 .124 .122 .093 .056 .135 .132 .120 .96 

0.60 

Power 

0.70 0.10 20 20 .061 .054 .062 .051 .062 .049 .069 .078 .076 .052 .080 .093 

  60 60 .071 .064 .131 .109 .073 .069 .146 .163 .075 .068 .220 .287 

  1000 100 .079 .069 .204 .178 .076 .068 .248 .287 .097 .094 .336 .413 

  140 140 .089 .087 .298 .242 .092 .087 .380 .421 .117 .109 .559 .624 

  180 180 .102 .098 .439 .217 .112 .110 .557 .734 .146 .140 .764 .813 

0.60 

Power 

0.80 0.20 20 20 .112 .102 .147 .181 .146 .106 .183 .192 .184 .140 .236 .261 

  60 60 .182 .165 .343 .479 .231 .213 .408 .524 .303 .268 .584 .692 

  100 100 .243 .222 .510 .611 .320 ..293 .609 .741 .445 .422 .794 .847 

  140 140 .376 .263 .719 .876 .489 .459 .846 .919 .643 .609 .959 .980 

  180 180 .521 .497 .907 .968 .625 .603 .960 .987 .806 .787 .893 .907 

0.70 

Power 

0.7 0.00 20 20 .065 .056 .031 .027 .071 .057 .023 .019 .069 .060 .024 .020 

  60 60 .057 .054 .042 .035 .059 .058 .041 .017 .066 .060 .048 .034 

  100 100 .076 .071 .055 .036 .084 .079 .058 .041 .095 .094 .061 .043 

  140 140 0.85 .084 .060 .041 .094 .090 .075 .035 .136 .130 .086 .063 
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  180 180 .098 .096 .086 .063 .118 .116 .098 .062 .163 .159 .129 .108 

0.70 

Type I 

error 

0.80 0.10 20 20 .062 .051 .064 .073 .060 .046 .075 .092 .076 .054 .085 .092 

  60 60 .069 .065 .137 .148 .070 .068 .160 .177 .078 .068 .345 .269 

  100 100 .076 .072 .214 .265 .086 .082 .267 .281 .098 .095 .381 .420 

  140 140 .089 .084 .352 .368 .097 .092 .432 ..525 .130 .122 .583 .674 

  180 180 .110 .103 .480 .519 .110 .106 .606 .718 .166 .157 .784 .819 

0.70 

Power 

0.90 0.20 20 20 .127 .108 .157 .168 .152 .112 .196 .227 .198 .153 .256 .280 

  60 60 .198 .184 .372 .428 .251 .238 .445 .632 .336 .301 .627 .684 

  100 100 .278 .259 .564 .687 .357 .325 .665 .728 .473 .444 .839 .872 

  140 140 .422 .406 .785 .938 .501 .473 .883 .921 .704 .671 .973 .981 

  180 180 .584 .565 .931 .981 .696 .674 .778 .835 .852 .820 .989 .991 

 

Da=Conventional AUC test (DeLong et al.); Bb-Approximation to permutation AUC  test (Bandos 

et al.); Mc- McNemar test(Sumi et al); EMd- Extended McNemar test(new method);  

APPLICATION OF TESTS TO STANDARD DATA 

 

In other to demonstrate the workability of the new non-parametric method(extended McNemar 

test) for comparing correlated proportion of positive responses, we consider a practical data set 

adopted from Venkatraman and Begg (1996) who carried out a distribution free procedure for 

comparing ROC curves from a paired experiment. This study was aimed at evaluating the 

performance of two diagnostic test results obtained from the anterior and posterior nodes in the 

cause of diagnosing Melanoma. 

 

To demonstrate the feasibility of the extended McNemar test, we made use of the data from this 

study whose objective was to investigate the performance of two diagnostic test results obtained 

from anterior and posterior nodes for diagnosing Melanoma. The data presented in Table 4 in 

Venkatraman and Begg (1996) provide the results using a clinical scoring system and a 

dermoscopic scoring scheme. The purpose of the analysis is to determine whether the dermoscope 

contributes similar diagnostic information. The null hypothesis is that the dermoscope contributes 

the same information as the clinical scoring system. This is the same as testing the null hypothesis 

that the sizes of anterior and posterior nodes possess equivalent diagnostic information. Using 

these data, estimates of proportion of positive responses for the two diagnostic tests 1 and 2 

procedures are 0.725 and 0.652 respectively and the estimated correlation coefficient between the 

two diagnostic tests is 0.157. To test equivalence of the accuracy of these two diagnostic tests, the 

conventional test by DeLong et al (1988), asymptotic permutation test by Bandos et al(2005),the 
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usual McNemar test by Sumi et al(2010) and the extended McNemar test are in agreement of 

significant different performances yielding two tailed p-values of 0.0048,0.017,0.0028,0.0019 

respectively. 

 

BOOTSTRAP POWER ANALYSIS FOR COMPARING THE STATISTICAL POWER 

OF TESTS 

The bootstrap is a powerful nonparametric approach (Efron, 1993).In an effort to obtain better and 

more specific knowledge regarding statistical power of tests, we have conducted a bootstrapping 

study where for each of considered sample sizes, 2000 random samples were taken from the data 

and rejection rates are computed. 

 

Table 7. Bootstrapping Test for obtaining the statistical power of different tests. 

Sample size                                               Rejection rate 

N M Da Bb Sc EMd 

20 20 0.670 0.538 0.679 0.685 

60 60 0.769 0.737 0.819 0.827 

100 100 0.869 0.857 0.889 0.890 

140 140 0.919 0.911 0.929 0.931 

180 180 0.946 0.938 0.977 0.994 

Da=Conventional AUC test (DeLong et al.); Bb-Approximation to permutation AUC  test (Bandos 

et al.); Mc- McNemar test(Sumi et al); EMd-Extended McNemar test (new method).Table 7 shows 

that given all sample sizes, the extended McNemar test provides the highest superior rejection rate 

followed by the McNemar test by Sumi et al(2010) and so on. At increased sample sizes, tests by 

DeLong et al(1988), Bandos et al(2005) and Sumi et al(2010) shows rejection rates very closed to 

the Extended McNemar test. 

 

APPLICATION TO REAL LIFE DATA  

The new test for comparing correlated proportion of positive responses can be applied to real life 

data on gestational diabetes mellitus (GDM). Actually a random sample of 1113 pregnant women 

who tested positive for 50g Glucose Challenge Test (GCT) indicating that their plasma blood 

glucose level were at least 140 mg/dl after 1 hour. These same numbers of pregnant women were 

subsequently recalled and further subjected to two competing diagnostic test procedures, namely, 

2-hour 75g OGTT and 3-hours 100g OGTT at various gestation periods according to the standard 
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of World Health Organization (1985) and National Diabetes Data Group (1979). These two 

diagnostic test procedures are paired. Women who were known diabetics, or who were suffering 

from any chronic illness were excluded from the study. The data is measured on a continuous scale 

and is dichotomized using at 7.8mmol/l or at least 140 mg/dl as cut-off value which is the 

recommended cut-off value for diagnosing GDM (WHO, 1985). Pregnant women whose test result 

is at least 7.8mmol/l is considered diseased (positive, coded 1) otherwise; they are not diseased 

(negative, coded 0). The data for the GDM response variables (tests results) for diagnostic test 1 

and 2 procedures, namely 75g OGTT and 100g OGTT are paired and hence correlated for the 1113 

pregnant women considered for this study. The null hypothesis of interest is testing the equality of 

the proportion of positive responses for the two diagnostic test procedures. The dichotomized data 

for the two diagnostic tests are as usual cross classified and presented in a contingency table to 

demonstrate the feasibility of the new nonparametric methods as well as the existing methods 

considered. We therefore obtain the sample estimates 0ˆ ˆ ˆ, ,and     variance estimates and the 

McNemar test statistic and test the null hypothesis. In applying the extended McNemar test to the 

data, we evaluate the values of vT  of Eqn 29 where 1 2v vt and t  are test results respectively by the 

subjects in the vth pair of diagnostic test 1 and diagnostic test 2 procedures for 1,2,....,1113.v   

From the values of vT , we have that 
0 0 0

12 11 22 21270, 134 157 291; 556p n p n n p p p n              . 

From Eqn 36, we have the sample estimates as 0270 291 556
ˆ ˆ ˆ0.2426; 0.2615; 0.4995;

1113 1113 1113
          

0 0 0291 134 157
ˆ ˆ ˆ0.1204 0.1411 .

1113 1113 1113
But             

12 21 270 556 286.Also W p p n n          

From Eqn 11, we have the estimated variance of W as  

2( ) (1113)(0.2426 0.4995 (0.2426 0.4995) ) (1113)(0.7421 0.0660) (1113)(0.6761) 752.4993.Var W        

 

Therefore to test the null hypothesis of equation 46 using the extended McNemar test statistic we 

have from Eqn 47 with 
0 0  that 

2
2 (270 556) 81796

108.69( 0.0012)
752.4993 752.4993

P value


    

which with 1 degree of freedom is statistically significant showing that diagnostic test 1 and 

diagnostic test 2 do have differential effect of GDM on pregnant women. In other words, the 

probability of positive responses from the two diagnostic test procedures for the pregnant women 

differs significantly. To differ this result, we make use of the usual McNemar test which was 

adopted by Sumi et al (2010) to analyze the GDM data that the estimated variance of P2-P1 is 
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12 21
2 1 2 2 2

270 556 825
( ) 0.000667.

(1113) 1238769

p p n n
Var P P

N N

   
      Its test statistic for the H0 of 

Eqn 36 with  
0 0   is 

2
2 (270 556) 81796

99.03( 0.0028)
270 556 826

P value


    


 which with 1 

degree of freedom is also statistically significant. Even though the extended McNemar test statistic 

and the usual McNemar test statistic had both lead to the rejection null hypothesis, the relative 

sizes of the calculated chi-square values and the p-values obtained indicates that the usual 

McNemar test statistic as adopted by Sumi et al (2010) has greater chances of leading to Type II 

error more often than the extended McNemar test statistic. Also, we note that the estimated 

variance of 
20.2426 0.4995 (0.2426 0.4995) 0.7421 0.0660 0.6761

ˆ ˆ ˆ ˆvar( ) 0.000607
1113 1113 1113

is          
     

which is  
2ˆ ˆ0.0660 ( )

0.000667 0.000607 0.00006 ,
1113 N

  
    smaller as expected than the variance of 

P2-P1 obtained when the usual or unmodified McNemar test is used. 

APPLICATION OF EXISTING TESTS TO THE REAL LIFE DATA  

Applying the tests on the real life data, we obtain the following estimates of AUCs for the two 

diagnostic tests, the correlation coefficients between the test results of the two diagnostic test 

procedures and the p-values after testing for the equality of performance of the two diagnostic test 

procedures as  
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Table 8. COMPARISON OF THE TESTS BY ESTIMATES OBTAINED FROM THE 

DATA ON GDM  

S/n Tests 
1p  

2p  
1

ˆAUC  2
ˆAUC  Correlation 

Coefficient (r) 

p-value 

1 Extended McNemar  0.7214 0.7022 0.91183 0.9012 0.1654 0.0007 

2 Sumi et al. 0.6765 0.6532 0.8675 0.8564 0.1754 0.0012 

3 Bandos et al. 0.6375 0.6253 0.7392 0.7235 0.2732 0.00014 

4 DeLong et al. 0.6453 0.6359 0.6443 0.6248 0.2401 0.0016 

From Table 8 results indicates that all tests showed significant difference since the p-values are 

less than the chosen level of significant of 5 percent at increased sample size of 1113 for the data 

on GDM. Overall result shows that the extended McNemar test are in agreement of significant 

different in their performances and therefore out performs other tests considered in this work. 

 

DISCUSSION 

 

The extended McNemar test statistic shown in this work apart from being simple to calculate, easy 

to understand and readily applicable, has proved that it is more powerful than the usual McNemar 

test  based on the fact that it provides for the possible presence of ties in the data used for analysis. 

From the analysis, it was seen that even though the extended McNemar test statistic and the usual 

McNemar test statistic had both lead to the rejection null hypothesis, the relative sizes of the 

calculated chi-square values and the p-values obtained indicates that the usual McNemar test 

statistic as adopted by Sumi et al (2010) has greater chances of leading to Type II error more often 

than the extended McNemar test statistic. The proposed chi-square test does not require the 

knowledge of the true disease status or the gold standard may not be known. This is not the same 

with other traditional tests such as Bandos et al(2005) and Delong et al(1988)which must require 

the knowledge of true status (gold standard) in estimating the AUC.  

 

The extended McNemar test as an alternative method of evaluating the accuracy of  diagnostic 

tests can be used in testing the null hypothesis that the proportion of positive responses are equal 

in two diagnostic test procedures. It is known that in the study of the statistical methods for 

diagnosis, one of the most interesting topics is the comparison of the accuracy of two binary 

diagnostic tests in relation to the same gold standard (José Antonio et al,2011). The extended 

McNemar test used in comparing the accuracy of two diagnostic tests does not make any reference 
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to the gold standard in its comparison. This is indeed an innovation in statistical methods for 

diagnosis.  

 

SUMMARY AND CONCLUSIONS 

 

The extended McNemar test is applied to correlated data so as to compare the discriminatory 

abilities of two different test procedures. The data analysis using these methods involved computer 

simulation, standard data and real life data analysis carried out and result showed that the extended 

McNemar test can be good alternative to the test by Sumi et al(2010), test by DeLong et al(1988) 

and test by Bandos et al (2005) whose limitations were outlined in this paper. The McNemar test 

is therefore simple to communicate to the potential users of the procedures and it is easy to be 

applied in discriminating diagnostic test procedures even by non-statisticians. The summary of the 

finding are as follows:  

 

1. In comparison to other tests, extended McNemar test statistic is a very suitable alternative having 

the highest statistical power among the analysis carried out and so has the capacity to discriminate 

between diseased and non-diseased subjects in a better way.  

3. The extended McNemar test does not require the knowledge of true status of subjects or any 

other gold standard in carrying out its analysis. 

4. The proposed extended McNemar test offers reliable statistical inferences even in small sample 

problems and circumvents the long period normally experienced while estimating the test statistics 

for the Delong et al(1988) and Bandos et al(2005) which leads to computer memory loss and time. 

6. The extended McNemar test adjusts for the possible presence of ties in the data and therefore 

eliminates erroneous conclusions occasioned by using data without adjustment. 

7. The variance of the extended McNemar test statistic is smaller than the variance of the usual 

McNemar test statistic and is relatively more efficient and is more powerful than the usual 

McNemar test statistic. The calculated chi-square value of the extended McNemar test is larger 

than that of the usual McNemar test so that the chances of committing Type II error are reduced. 

8. The extended McNemar test shows more false positive rate (FPR) when the correlation 

coefficient r is smaller than other tests considered. This is because the McNemar test are most 

suitably used when the data is correlated. 

9. Considering all the applications to data, results showed that the extended McNemar test 

discriminates better than the traditional McNemar test by Sumi et al(2010), conventional 

nonparametric test by DeLong et al(1988)and the permutation test Bandos et al(2005) when the 

AUCs are getting higher and for lower values of correlation coefficients. 

10. The extended McNemar test enables the researcher to readily estimate not only the chances 

that among a randomly selected pair of diagnostic test 1 and 2 test results of subjects, the diagnostic 

test 1 responds positive and the diagnostic test 2 responds negative; or the diagnostic test 1 

responds negative and the diagnostic test 2 responds positive, but also even when both the 

diagnostic test 1 and 2 test results of subjects have similar responses, it enables one easily estimate 

the probability that both respond positive or both respond negative. 

We therefore conclude as follows: 
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The extended McNemar test statistic is more powerful than the usual McNemar test and indeed 

test by DeLong et al(1988)and the permutation test Bandos et al(2005).Using any test statistic, the 

presence of ties in a data needs to be adjusted for before carrying out data analysis to avoid 

committing as much Type II error as possible so that decisions based on data analysis will not be 

erroneous. 

 

Acknowledgements 

I wish to appreciate Dr.Happiness Ilouno and Dr C.H Nwankwo of the Department of Statistics 

Nnamdi Azikiwe University Awka for their valuable moral support during the period of putting 

up this work. Their advice and contributions cannot be forgotten in a hurry.   

 

Competing Interests 

The authors declare that they have no competing interests. 

 

REFERENCE 

 

Bamber D. (1975). The area above the ordinal dominance graph and the area below the receiver 

operating characteristic graph. Journal of Mathematical Psychology 12, 387-415.  

Bandos, A.I., Rockette, H.E., Gur, D. (2005). A permutation test sensitive to differences in areas 

for comparing ROC curves from a paired design. Statistics in Medicine 24(18), 2873-2893.  

Leonidas E. Bantis and Ziding Feng. Comparison of two correlated ROC curves at a given 

specificity or sensitivity level. Stat Med. 2016 October 30; 35(24): 4352–4367. 

doi:10.1002/sim.7008. 

Thomas M. Braun and Todd A. Alonzo. A modified sign test for comparing paired ROC curves. 

Biostatistics (2008), 9, 2, pp. 364–372. 

Calders T., Jaroszewicz S. (2007) Efficient AUC Optimization for Classification, Proceedings of 

The 11th European Conference on Principles and Practice of Knowledge Discovery in 

Databases (PKDD'07), pp. 42-53. 

DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the area under two or 

more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 

44(3), 837-845.  

Efron B, Tibshirani RJ. An introduction to the bootstrap. Chapman & Hall: New York, NY, 1993. 

Green DM, Swets JA. Signal Detection Theory and Psychophysics. Wiley: New York, 1966. 

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating 

characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982. 

Hanley JA, McNeil BJ. A method of comparing the Areas under Receiver Operating Characteristic 

Curves Derived from the same cases. Radiology 1983 ; 148(3): 839-843.  

Karim O. Hajian-Tilaki, James A. Hanley. Comparison of Three Methods for Estimating the 

Standard Error of the Area under the Curve in ROC Analysis of Quantitative Data. Acad Radiol 

2002; 9:1278–1285. 

Hettmansperger TP. Statistical inference based on ranks. New York, NY: Wiley, 1984. 

Hoeffding, W., 1948. A class of statistics with asymptotically normal distribution. Annals of 

Mathematical Statistics, 19(3), 293 – 325. 



European Journal of Statistics and Probability 

Vol.7, No.1, pp, 49-80, October 2019  

Published by ECRTD-UK  

                                                     Print ISSN: 2055-0154(Print), Online ISSN 2055-0162(Online) 

80 

 

M.A. Islam, R.I. Chowdhury and L. Briollais, A bivariate binary model for testing dependence in 

outcomes, Bull. Malays. Math. Sci. Soc. (2) 35(4) (2012), pp. 845{858. 

F. Leisch, A.Weingessel and K. Hornik, On the generation of correlated artificial binary data, 

Working paper series. Working paper No. 13, Vienna University of Economics and Business 

Administration, August 2-6, 1090 Wien, Austria, 1998. 

Q. McNemar, Note on the sampling error of the differences between correlated proportions or 

percentages , Psychometrika. 12 (1947), pp. 153-157. 

Nahid Sultana Sumi, M. Ataharul Islam, and MD. Akhtar Hossain. Evaluation and Computation 

of Diagnostic tests: A simple Alternative. 2010 mathematics subject classification. 62p10; 92-

08; 62-07. 

National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other 

categories of glucose intolerance. Diabetes 1979; 28: 1039–1057 

Nahid Sultana Sumi and Md.Akhtar Hossain(2012).A study on parametric approaches to compare 

areas under two correlated ROC curves.Bangladesh J.Sci.Res,25(1):61-72. 

Ismael A Vergara, Tomás Norambuena, Evandro Ferrada, Alex W Slater and Francisco Melo. 

StAR: a simple tool for the statistical comparison of ROC curves. BMC Bioinformatics 2008, 

9:265.  

Venkatraman, E. S. and Begg, C. B. (1996). A distribution free procedure for comparing receiver 

operating characteristic curves from a paired experiment. Biometrika 83: 835-848. 

Weiand, S., M. H. Gail, B. R. James and K. L. James, 1989. A Family of non-parametric statistics 

for comparing diagnostic markers with paired or unparied data. Boimetrika, 76, 585 –592.  

WHO. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report 

of a WHO consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva: 

Department of Non-communicable Disease Surveillance, World Health Organization, 1999. 

Yu, W., Park, E. and Chang, Y. C. (2015). Comparison of Paired ROC Curves through a Two-

Stage Test. Journal of Biopharmaceutical Statistics 25 (5): 881-902. 

Zhou, X. H., Obuchowski, N. A. and McClish, D. K. (2002). Statistical Methods in Diagnostic 

Medicine, John Wiley and Sons, Inc., New York. 
 

 

 


