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ABSTRACT: Evolutionary algorithms have been proven to handle multi objective problems, 

and one of such finest algorithms is the Differential Evolution Algorithm. In the last five years, 

Differential Evolution (DE) has been used to solve multi objective optimization problems 

(MOOPs). Several extensions of DE for multi-objective optimization have already been 

proposed. Older approaches convert a MOOP to a single-objective problem and use DE to 

solve the single objective problem, whereas more recent and advanced approaches mainly use 

the concept of Pareto-dominance. As the number of objectives increases to four or more it is 

difficult finding the dominated solution as a result there exist conflicts among the objectives.  

In this research work, a method of controlling the dominance area of solutions using the 

Generalized Differential Evolution 3 (GDE3) Algorithm is proposed. Controlling the 

dominance area means either the expansion or contraction of the dominance area solutions 

using a user-defined parameter S. Deb-Thiele-Laumanns-Zitzler (DTLZ) test problems were 

used to benchmark the performance of the proposed DE algorithm.  
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INTRODUCTION 

Optimizing a problem involves finding the best possible values of the deciding factors of the 

problem. The fine-tuned values of these variables or factors either maximize or minimize the 

solution of the given problem.  The problem may have either a single solution or multiple 

conflicting solutions. These are termed as Single-objective Optimization Problem (SOP) and 

Multi-objective Optimization Problem (MOP) respectively. Among many existing algorithms, 

Evolutionary Algorithms (EA) were found to be effective in finding near optimal solutions. 

Some of the evolutionary algorithms are Genetic Algorithms (GA), Evolution Strategies (ES), 

and Differential Evolution (DE).  

Nowadays, most of the real time optimization problems are of multi-objective type. Multi-

objective optimization problems (MOP) can be seen in many fields like science, engineering, 

economics, etc. A MOP consists of more than one conflicting objective functions. In MOP, 

single solution that can simultaneously optimize all objective functions does not exist, instead 

it will have set of solutions that are optimal, which is called Pareto front. There are two 

requirements of MOP; (i) to find out a solution that converges to the pareto optimal front (ii) 

to find solution that will maintain diversity in population.  

A classical approach for multi-objective optimization is to convert a MOOP into a single 

objective form by predefining weighting factors for different objectives, expressing the relative 

importance of each objective apriori. The weights then define what kind of compromise 

solution is sought by a decision-maker. The decision-maker selects the final solution among 

the sets of non-dominated solutions that are equally good in the sense of Pareto-dominance 
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(Miettinen and Makela, 2000). Other ways than weights also exist to express the preference of 

the decision maker apriori, e.g. e-constraint and goal programming methods. In a situation 

where the decision maker is not able to provide relative importance of objectives beforehand, 

a better approach is to find a set of solution candidates and pick a solution which provides a 

suitable compromise between the objectives. This can be viewed as a posteriori articulation of 

the preferences of the decision maker concerning the relative importance of each objective. 

Besides apriori and a posteriori approaches, no preference and interactive approaches also exist 

(Miettinen and Makela, 2000). The no-preference approaches provide a solution without any 

preference information and the interactive approaches involve the decision-maker 

interacting/guiding the solution process. 

Review of other extensions of differenial evolution algorithms for multi-objectives 

optimization problems 

Proposed by Year Differential Evolution (DE) Extensions 

Abbass et al 2001 Pareto (frontier) DE algorithm 

Lampinen 2002 First Version, Generalized Differential Evolution 

(GDE 1) 

Madavan 2002 Pareto DE Approach (PDEA) 

Zaharie 2003 Adaptive Pareto DE (APDE) 

Parsopoulos et al. 2004 Vector Evaluated DE (VEDE) 

Iorio and Li 2004 Non-dominated Sorting DE (NSDE 

Robi£ and Filipi£ 2005 DE for Multi-objective Optimization (DEMO) 

Coello  2005 e-MyDE 

Justesen and Ursem 2009 Cluster-Forming Differential Evolution (CFDE) 

Montaño, Coello Coello, 

and Mezura-Montes 

2010 Multi-Objective Differential Evolution with Local 

Dominance and Scalar Selection (MODE-LD+SS)  

Zhong and Zhang 2011 Adaptive Multi-Objective Differential Evolution 

with Stochastic Coding Strategy (A-MODE SCS) 

Ali, Siarry, 

And Pant 

2012 Multi-Objective Differential Evolution Algorithm 

(MODEA) 

Denysiuk et al 2013 Many-Objective DE with Mutation Restriction (M-

ODEMR) 

 

METHODOLOGY 

Control Dominance Area of Solution (CDAS) 

Controlling the dominance area of solutions controls the degree of expansion or contraction of 

the dominance area of solutions using a user-defined parameter S. By modifying the dominance 

area of solutions, it changes their dominance relation, inducing a ranking of solutions that is 

different to conventional dominance. The user defined variable could be either S<0.5 for 

expansion or S >0.5 for contraction which is Contrary to e-dominance and α-domination, which 

are relaxed forms of Pareto dominance where  S=0.5. Some current research reveals that 

ranking by Pareto dominance on problems with an increased number of objectives might no 

longer be effective. It has been shown that the characteristics of multi-objective landscapes 

viewed in terms of non-dominated fronts can change drastically as the number of objectives 

increases, i.e. the number of fronts reduces substantially and become denser (more solutions 
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per front) just by increasing the number of objectives. That is, most solutions are assigned the 

same rank of non-dominance and Pareto selection weakens. 

Contraction and Expansion of Dominance Area (CEDA) 

 Normally, the dominance area is uniquely determined with a fitness vector f(x) = (f1(x), f2(x), 

・・・,fm(x)) in the objective space when a solution x is given. To contract and expand the 

dominance area of solutions, we modify fitness value for each objective function by changing 

the user defined parameter Si in the following equation. 

 

 

Figure 1: Transforming an objective function value  

Where ϕi = Si.π. This equation is derived from the Sine theorem. We illustrate the fitness 

modification in Figure. 1, where r is the norm of f(x), fi(x) is the fitness value in the i-th 

objective, and ωi  is the declination angle between f(x) and fi(x). In this example, the i-th fitness 

value fi(x) is increased to f’i(x) > fi(x) by using ϕi < π/2 (Si <0.5). In case of ϕi = π/2 (Si = 

0.5), fi(x) does not change and f’i (x) = fi(x). Thus, this case is equivalent to the conventional 

dominance. 

On the other hand, in case of ϕi > π/2 (Si >0.5), fi(x) is decreased so f’i (x) < fi(x). Such fitness 

modification changes the dominance area of solutions. We show an example in Figure 2 (a)-

(c), where three solutions a, b and c are distributed in 2-dimensional objective space.  

 
Figure 2(a) Si=0.5 
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Figure 2(b) Si<0.5    Figure 2(c) Si>0.5 

 

In Figure 2 (a), a dominates c, but a and b however, if we modify fitness values for each 

solution by using the equation, the location of each solution moves in the objective space, and 

consequently the dominance relationship among solutions changes. For example, if we use S1 

= S2 <0.5 as shown in Figure 2 (b), the dominance area of solutions a’, b’ and c’ is expanded 

from the original one of a, b and c. This causes that a’ dominates b’ and c’, and b’ dominates 

c’. That is, expansion of dominance area by smaller Si(<0.5) works to produce a more fine 

grained ranking of solutions and would strengthen selection. On the other hand, if we use S1 = 

S2 >0.5 as shown in Figure 2 (c), the dominance area of solutions a’, b’ and c’ is contracted 

from the original one of a, b and c. This causes that a’, b’ and c’ do not dominate each other. 

That is, contracting the area of dominance by larger Si (>0.5) works to produce a coarser 

ranking of solutions and would weaken selection.   

Proposed Multi-Objective Algorithm 

This research suggests that for selection to be effective a more careful analysis of Pareto 

dominance relation is required when dealing with problems that have more than three 

objectives. In addition, for any number of objectives, the dominance relation should be 

appropriately revised according to the characteristics of the multi-objective landscape. In this 

research work, we proposed a method to control the dominance area of solutions in order to 

induce appropriate ranking of solutions for the problem at hand, enhance selection, and 

improve the performance of Multi-Objective Evolutionary Algorithm (MOEA) on 

combinatorial optimization problems. The proposed method can control the degree of 

expansion or contraction of the dominance area of solutions using a user-defined parameter S. 

Modifying the dominance area of solutions changes their dominance relation inducing a 

ranking of solutions that is different to conventional dominance. Contrary to e-dominance and 

α-domination, the proposed method can strengthen or weaken selection by expanding or 

contracting the area of dominance and conceptually can be considered as a generalization of 

Pareto dominance.  

We also analyse the effects on solutions ranking caused by contracting and expanding the 

dominance area of solutions and its impact on the search performance of a multi-objective 

optimizer when the number of objectives increases, the size of the search space, and the 

complexity of the problems vary. The Generalized Differential Evolution 3 (GDE3) algorithm 
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is chosen as the representative elitist algorithm that uses pareto dominance and compare its 

performance with GDE3 enhanced by the proposed method. The m = {3, 6, 8} objectives 

varying the number of items, n (size of search space is given by 2n) and the n feasibility ratio 

φ of the search space, which is a good indicator of the complexity of the landscapes in this kind 

of problems. This research work clearly shows that either convergence or diversity can be 

emphasized by contracting or expanding the dominance area. Also, the research work shows 

that the optimal value of S∗ that controls the area of dominance depends strongly on all factors 

analysed here: number of objectives, size of the search space, and complexity of the problems. 

Empirical Analysis 

In this research work, we used the Deb-Thiele-Laumanns-Zitzler (DTLZ) Multi-objective 

problem to study and compare the effects on search performance of controlling dominance area 

of solutions. We also used the DZTL2 problem of the problem family with objectives {6, 8.}, 

n =100, 10000 items and user defined variable (Si) {0.45, 0.5, 0.65} 

Experimental measures 

In performing an analysis on the influence of control in the dominance area of the solutions, 

especially observing how the convergence and the diversity of the MODE algorithm are 

affected the following measures were used; Hyper volume, Generational Distance (GD), 

Inverse Generational Distance (IGD), and Spacing.  

The hyper volume is used as a metric to evaluate sets of non-dominated solutions obtained by 

MOEAs. The hyper volume measures the m-dimensional volume of the region in objective 

space enclosed by the obtained non dominated solutions and a dominated reference point. The 

hyper volume is considered better when the set of non-dominated solution shows higher value. 

This happens from both convergence and diversity scenarios. In this, we used (f1,f2,…fm) = 

(0,0,0…0) as a reference point to calculate the hyper volume. The GD measures how far the 

generated approximated Pareto front PFapprox, i.e, the solutions generated by the CDASGDE 

algorithm, is from the true Pareto front of the problem. If GD is equal to 0 all points of 

PFapprox belong to the true Pareto front. With the GD we can observe if the algorithm 

converges for some region of the true Pareto Front. The IGD measures the minimum distance 

of each point of the true Pareto front to the points of the PFapprox. If IGD is equal to zero, the 

PFapprox contains every point of the true Pareto Front. With the IGD we can observe if the 

PFapprox converges to the true Pareto front and also if this set is well diversified. It is important 

to perform a joint analysis of these two indicators because with the analysis of GD we cannot 

identify if the solutions are distributed over the Pareto front, and only with IGD it is possible 

to define a sub-optimal solution as a good solution. 

The other quality indicator used is the Spacing. This metric measures the range variance 

between neighbours’ solution in the front. If the value of this metric is 0, all solutions are 

equivalently distributed in the objective space. For the comparison of the quality indicators, 

the differences among the results are defined by the Mann Whitney test. The Mann Whitney 

test is a non-parametric statistical test used to detect differences between algorithms. The test 

is applied to raw values of each metric. 
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RESULTS / FINDINGS 

This analysis was carried out using Generalized Differential Evolution on pareto dominance 

and using Control Dominance Area of Solutions on GDE (CDASGDE). In these experiments, 

we show the average performance 10 runs, each of which spent on 10000 generations, and the 

population size is set to 100 with m{3,6,8}on Si (0.25, 0.45,0.5,0.65) 

Table 1: 8 Objectives Si 0.65 

HYPERVOLUME 

(CDASGDE AND 

GDE3) 

GENERATIONAL 

DISTANCE 

(CDASGDE AND 

GDE3) 

INVERTED 

GENERATIONAL 

DISTANCE (CDASGDE 

AND GDE3) 

SPACING 

(CDASGDE AND 

GDE3) 

Min: 0.0 

Min: 0.0 

Min:0.2800089005 

Min: 0.138080992 

Min:1.1508473171 

Min: 1.0357960345 

Min:0.974895622 

Min: 0.679241167 

Median: 0.0 

Median: 0.0 

Median:0.29707588 

Median:0.14046691 

Median:1.36183888 

Median: 1.04970161 

Median:1.00421087M

edian: 0.76044690 

Max:1.129925898 

Max:0.006862412 

Max:0.3024093378 

Max: 0.1703482608 

Max:1.6330432233 

Max: 1.343819420 

Max:1.04991339833 

Max: 0.8037113369 

Count: 5 

Count: 5 

 Count: 5 

Count: 5 

Count: 5 

Count: 5 

 Count: 5 

Count: 5 

   Indifferent: 

[GDE3] 

Indifferent: 

[CDASGDE] 

 Indifferent: [] 

Indifferent:[] 

 Indifferent: [GDE3] 

Indifferent: [CDASGDE] 

Indifferent: [] 

Indifferent:[] 

 

 

Figure 3:  Si= 0.45 for 3 objectives 
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Figure 4:  Si= 0.45 for 6 objectives 

 

 

Figure 5:  Si= 0.45 for 8 objectives 
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Figure 6:  Si= 0.25 for 3 objectives 

 

DISCUSSION 

From the analysis shown in the Table 1, it can be seen that the CDASGDE algorithm performed 

better especially as the number of objectives increases. It does its evaluations using the four 

metrics. This was analyzed using the Mann Whitney nonparametric statistic test. With the 

values of the Mean, Median, Max, Count and indifferent. In situations where the indifferent 

had any of the algorithm enclosed in any of the metrics, it means that particular algorithm is 

not different in performance with the other for that particular metrics 

The configurations with Si = 0.45, obtained the best results for almost all objectives, i.e. 

obtained a significant difference with respect to the other configurations, 0.25, 0.5, 0.65. This 

was followed by 0.25, 0.65 then 0.5.  When the number of objectives grew, it is observed that 

the convergence of the original GDE deteriorates, yielding poor GD values.  These results 

stress the hypothesis, that the use of CDAS with Si <0.5 in DE improves the convergence of 

the algorithm to the true Pareto front. For the IGD, according to the Mann Whitney test, the 

results of the configurations with Si = 0.25, and 0.45 had the best values. When the number of 

objectives is small, GDE3 with the original Pareto dominance relation still has competitive 

IGD values; however, when this number grows its performance deteriorates. The configuration 

with Si = 6.5 again did not obtain the best values, however, some configurations had good 

values. With the joint examination of these two indicators it can be concluded that the CDAS 

with Si <0.5 produced very good results for many objectives than when Si = 0.5 or 0.65.  In 

this situation, the generated PFapprox converges to the true Pareto Front, furthermore the 

PFapprox is diversified and cover almost all the true Pareto Front. The configurations with Si 

<0.5 provides more convergence and diversity than the original Pareto dominance relation. For 

the spacing indicator, the best configuration defined by the Mann Whitney test is Si = 0.25. 

However, this occurs because for almost all the objectives this configuration generated only 

one solution in the PFapprox. Again, the configuration with the original Pareto dominance 

relation obtained the worst values. The configurations with Si = 0.45 obtained good spacing 
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values due to the low number of solutions in the PFapprox. Here, the use of CDAS with Si < 

0.5 in GDE diversify the search and help the algorithm to produce a well-distributed PFapprox.  

 

CONCLUSION 

In this research work, we presented a study of the influence of Controlling the Dominance Area 

of Solutions in a Multi-Objective Differential Evolution Algorithm. The concept of CDAS was 

observed and used; an empirical analysis was carried out to measure how the CDAS affects the 

convergence and diversity of a MODE algorithm in different multi-objective scenarios. The 

chosen MODE algorithm was the GDE3. It was investigated that the convergence and diversity 

aspects of the CDAS-GDE in two different situations, using Si <0.5 and Si >0.5, i.e. perform a 

relaxation of the Pareto dominance relation. The experiments were conducted with a multi-

objective problem, DTLZ2, and the objectives were varied in three different values: 3, 6, and 

8. The analysis of convergence and diversity of the algorithm was based on four quality 

indicators; hyper volume, generational distance, inverse generational distance and spacing. The 

Mann Whitney statistical test was used to detect difference between the configurations. Using 

the CDAS with Si <0.5 produced a PFapprox that converged to true Pareto Front and covered 

almost its entire area. Using the CDAS with Si >0:5 produced a PFapprox that did not converge 

to the true Pareto Front. For Si = 0.5 produced a diversified PFapprox for high degrees. 

However this diversified PFapprox do not converged to the true Pareto Front. The results 

produced by the original Pareto dominance relation deteriorate when the number of objectives 

grows and the algorithm generated sub-optimal solutions.  

Future Research 

With the experiment carried out and the results obtained; we have been able to contribute to 

knowledge by introducing CDAS into Differential Evolution algorithm as a way to bring about 

enhancement in its selection operator; induce appropriate ranking amongst solutions in 

situations where there are many multi-objectives which has really improved the performance 

of the algorithm. Future work should consider different selection operators / process and the 

results should be evaluated with that of this work for better efficiency and enhancement. 
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