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ABSTRACT: The mathematical study of rogue wave phenomenon had been on-going for years.
Rogue waves are unusually large-amplitude surface waves that appear from nowhere in the open
ocean. Collisions with such waves have caused catastrophic damage to ships and offshore
structures. In this work, we apply an analytic technique, namely the Homotopy Analysis Method
(HAM) to derive the rogue wave solution for the fully nonlinear wave equations with nonlinear
boundary conditions. On the basis of the HAM, we obtain an analytic expression for the surface
wave elevation » and velocity potential ¢ for a rogue wave. The expressions obtained for # are

exact and depends on the computed values of the velocity potential ¢. Due to the highly nonlinear

nature of the problem (having nonlinear boundary conditions) the velocity potentials are obtained
up to 5™ order approximation. Surface plots of the wave profile are presented. These show high
level agreement with the famous New Year wave at the Draupner platform. It is expected that this
study will deepen and enrich our understanding of rogue waves.

KEYWORDS; homotopy analysis method, rogue wave, surface wave elevation, velocity potential

INTRODUCTION

Rogue Waves

Rogue waves are large surface waves that appear infrequently in the ocean without warning. Rogue
wave are also referred to in the literature as an extreme wave, giant wave, a monster in the ocean,
abnormal wave or freak wave. The popular definition of rogue wave is a wave which the height is
twice more than the average wave height present in the ocean surface (i.e. the average significant
wave height). Such waves are usually accompanied by deep troughs (holes), between which is a
high crest. These rogue waves are often described as vertical walls of water in the ocean.
Occurrences of such large waves have been reported worldwide from ships, off shore platforms
and radars (Lawton 2001; Kharif & Pelinovsky 2003; Forristall 2005). As stated by Lawton (2001),
the rogue waves have been noticeable part of marine problem for centuries. The rogue wave event,
have been extensively studied in the last years, in attempts to reveal the physics of this
phenomenon. They have been reported as unusually high waves on the sea surface, appearing for
a short time and causing eventually severe damages to the marine structures on their way (Touboul
et al 2006; Kharif and Pelinovsky, 2003). The Rogue wave event that occurred on January 1st 1995
under the Draupner platform in the North Sea (Dysthe et al, 2008) provided evidence that such
rogue waves can occur in the open ocean. During this rogue wave events, an extreme high wave
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crest with an amplitude of 18.5m occurred. The maximal wave height of 25.6m was much more
than twice the significant wave height H_of about 10.8m, which is usually the critical for rogue

wave description. Liao (2011) investigated the steady condition for the nonlinear interaction of
two trains of propagating wave in deep water and obtained the solution for both resonant and non-
resonant cases. By means of the analytical method called homotopy analysis method (HAM)
developed in (Liao 1997, 2004, 2011, 2012) a powerful analytic method for highly nonlinear
problems. Tongkai (2005) derived the exact approximation analytical rogue wave solution in
consideration of the Hirota equation with fractional and integer-order time using homotopy
analysis method. Ejinkonye (2020a,b) obtain higher order surface displacement using homotopy
analysis method (HAM).

In this work, we apply the homotopy analysis method (HAM) to the nonlinear boundary-value
problem governed by the partial differential equations to derive the mechanism for rogue wave
generation.

Basic equations and boundary conditions

Let us consider the nonlinear interactions of two trains of gravity waves with large amplitudes,
propagating in water of finite depth. We assume that the fluid is inviscid and incompressible, the
flow is irrotational and the surface tension is neglected.

Let z denote the vertical co-ordinate, X, y the horizontal co-ordinates, t the time, z=y(x y,t)the wave
elevation, respectively.

Wang et al. (2016) Shows that governing equation of the velocity potential ¢(x,y,zt) is given by

V2p(x,y,z;t)=0 —d<z<n(xy,t) 1)
Subject to the two boundary conditions on the unknown wave elevation z =7(x, y,t)

: : . 3 4 0N z= t)
an(x,y;t) | gosxy.zt) 1 1) ] (ag)(x, y,z,t)j2 _og(xy.zt) z=n(xy,
o +Vd(x,y,zt) [ Viat ZV Va(x,y,z;t)-Va(x,y,z;t) + pe pe =0

)

ot

And the bottom boundary condition
op(x,y, z;t) -0 at z=—o0 4)

oz
where del is define as veil ;2,9 (5)
However, for simplicity, let us consider a wave system consisting of two trains of primary
travelling gravity waves in deep water with wave numbers k and k,and the corresponding angular

frequencies w, and w, respectively, where k, xk, =0 (i.e. the two traveling waves are not collinear).

In this work, the nonlinear boundary-value problem governed by the PDEs (1-4) is solved by
means of the homotopy analysis method.

a¢(x, y’Z;t)+77(x, y;t)+;{v¢(x, y,z;t)~V¢(x, yyz;t)+(5¢(x,ai/,z;t)j]:0 ONz=p(xy,t) (3)
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Let 4,q,denote the angles between the positive x-axis and the wave number Vectors g anqg g,
respectively, where k,.k=k, -k =0, i.e. the z axis is perpendicular to the wave number g .
Then

K, = k(cosaii +sine, j)and K, =k,(cosa,i +sina,j) (6)

We write r=Xi+Yj where k, =|K,| and k, =| K,|

=R, F-wt, & =K, F-wt (7)

In other words, one can express the potential function ¢(x, y,z;t)=¢(&,&,, z)and the wave elevation

n(x, y;t)=n(&,&,) respectively, then we have

V=K —+K,—

A
0 g, 2 k0
04 o5, o
So
ve—i92, 792 k9P _g 9P g, 9P 2P

x Aoy T Yo toE, oz

~ . . .\ O ~0
:k1(003a1|+5|nalj)a§1+k ,(cosa,i+sina, j) ;2 ka—f

V¢'V¢=kf(a¢j +2k1k2cos(al—a2{ ¢J[ ¢)+k§( ¢J +[@j (8)
o0& o0& N\ ag, oF, oz

Where k,.k =K, -k, =0 isused, and K, .k, = 2kk, cos(a, - z,)

In general, it holds that, the original governing equation reads

Vig=k! o ¢+2kk ,cos(a, —a,) o' +k? 0’9 & ?—O

ot 06,0%, o&; o (9)
which has the general solution

¢ =[Acos(a&, +b&,)+ Bsin(ag, +bs&, )
where a,b are integers, A Bare integral constants.

Therefore, the boundary conditions in equations (2) and (3) will become

n=w? w, M—(kf[%] +2k1k2cos(a1—a2)[a¢]( ‘3¢J Tk [aqjj [@) }
351 *o¢, 08, 06 \ 08, 0&, oz

and
2 & LA +2w, W, o'¢ o 2w,k? 9 ﬁ+2w2k1 % ¢+2W kK, cos(a, —a, 9 ﬁ+
¢t 05,06, 0&; 08, )og! ¢, )ogf 0s, )o&t

o¢) 0% op ) 0% op \ 0%
+2w,k;k, cosl +2w,k,k, cos(a, — — +2w,k,k, cosla, — — |—=+
(a1 az{@é]@fﬁ«fz 2K1K, (a1 az{aézjaéﬂafz 2KiK, (al az{afzjﬁ 2

o [%j@% 2wk [%]M 2] v¢[ 0¢+1[v¢ voo( 2 D@M
o0&, Jo&? o0&, Jogr \ar to/4 fo/4

and the bottom boundary condition
0(61.6,.2) _ as 7 o

oz (13)
where

‘K#—K‘Z

(10)

(11)

2
w; +W,

(12)
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V- (V(X+1{V¢ Vé+ [ ¢TB= o (14)

p=(k (a ¢J( o¢ +2k1k2cos(al—a2)kf(a¢J(a¢j o _klzw(6¢Ja 4 klzw{ aqu 29

o5’ \og 06 \0&, ) 0&; 04 )o&? 061)0¢ 05,

— 2k;k, cos(ay, — ar, W, ( jm 2kk, cos(ey — a, )Wz(agj ng 2k.k, cos(a, — a, )Wl(aéé?; ) 2; +

B _ k2w | 29 %\
2ok, cos(ay “Z)Wz[aézJaélafz : (652 08,08, kzw(aéjaéz (afl J(aé)ae:laéz
y

o o 8 8
+ 2k;k, cos(ey —az)kf[agj a2 6¢§2 + kszz(ag] [ 5} 2k,k, cos(ay — a, )k ( ](agzjagz

¢ | 09 |9°¢ 22| O°¢ | 9¢ _ o 0p) %
2kk, cos(ay — a, K¢ (aélj(aézjaél k2kZ (851 (ﬁfzj + 2k;k, cos(ey aZ)kz(aélj 22, 0%, +

2 2
2 22 22 )27t 22 2|2 i 2] 244 22 24)
05 N0&, )05, 08, 05 \ 08, )0&; 05, ) 0&; oz )\ oz (15)

Our aim is to find out the corresponding unknown potential function ¢(&,&,,z)and the unknown
wave elevation ,: . ), which are governed by the linear partial differential Eq. (9) subject to two
nonlinear boundary conditions (11) and (12) on the unknown free surface elevation z - 5(, &), and
the linear boundary condition (13) on the bottom.

METHODOLOGY
Analytic approach based on the homotopy analysis method

The nonlinear boundary-value problem governed by the PDEs in equations (9, 11, 12, 13) will be
solved by means of the homotopy analysis method.
Let 4(2.&,.2) n(&,&)denote the initial guesses of the velocity potential (&, &,,z)and wave elevation

n(&,&,) respectively. Let pe(o1]denote an embedding parameter and let 7= 0 be the so-called

convergence-control parameter. Here, both pand 7 are auxiliary parameters without physical

meaning. Instead of solving the nonlinear PDEs (9, 11, 12, 13) directly, we first construct a family
(with respect to P) of PDEs 5(&,&,p)andg(£,&,z,p), governed by the so-called zeroth-order

deformation equations,

VY&, &2 p)=0 (16)
subject to the two boundary conditions on the unknown wave elevation z = 5(£,,&,; p),

A— P&, & p)—mo(&. &)= paN (&, &, p))] (17)

Q- PLHE &0z P) = 8o(81, &5, 2)] = 1PN, [H(&, &, 25 P))] (18)

and the bottom condition
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20l 5zp) N
oz (19)
where Lis an auxiliary linear operator with the property L(0)=0, N, and N, are nonlinear

differential operators defined respectively as

e &, 2: D))= (le O*#&.&,.2:p) O’H&.8.20) |2 OGS D) | 0966 T p)}

+ 2w, W,

0! 05,05, g oz (20)
N1[77‘ ¢] = 77(":1: ¥ p)—(Wl 6¢(§1,a§§21, Z p) + W, a¢(§1é§:22’ Z p)] - kf[a¢(§1§;v Z p)j
_ 2k, cos(a, — az)[aqﬁ(a;, &2 p)j(aqﬁ(él. &7 p)J _ k;(w(&l, &2 p)]z _ 2(a¢(§1. &2 p))z

2¢, o5, o, o (21)
and
N o wz C06unzp) L, OG0 20) L 9GS 2)

o¢! 06,05, 0¢;
+2W1k12[6¢(§1,§z,2: p)j &6 p)+2W2klz[6¢(§1,§z,z; p)] O & 1p),
0%, 1% 0¢; 1%

+2w;k,k, COS((ZI _az{aﬂé’ b0, 2 p)j az¢(§1’ 522 L p)+2W1k1kz COS(0l1 —az(aﬂé' ¢ L p)j az¢(§1: £ 7 p)+

0¢, 0¢, 0, 08,04,
+ 2W2k1k2 COS(UH _az{a¢(§ll é:z ks p)] 82¢(§1, 52 i p)+2W2k1k2 COS(a1 _a2{6¢((§11 é:z i p)j 62¢(§11 é‘522 i p)+

0, 08,06, 0, 0,
Zwlkzz[aqf(él,fz,z: p)]aw(él,éz,z; p)+2wzkf[a¢(§l,fz,z: p)jaw(él,éz,z: p)+[a¢(r§1,5z,z: p)j GG mp)_g

0%, o} 2, 08} a a

(22)
where the definition of , is in equation (15)
When j, — ¢, the zeroth-order deformation equations (16)—(19) have the solution
7(81,£,10)=170(&1. &) (23)
#60.8,20)=4(8.5,7) (24)

When p=1, the zeroth-order deformation equations (16)—(19) are equivalent to the original PDEs
(9, 11, 12,13), so we have the solution

& &) =n(4.4,) (25)
W& 21) =96, 6 2) (26)
Thus, as the embedding parameter p<[04] increases from 0 to 1, 7(£,&,; p)and ¢(&,&,,z;p)vary
continuously from their initial guess 7,(&,&,)and ¢,(&,&,,z) respectively to the exact solution
n(&,&,) and ¢(&,&,z). Thus, the zeroth-order deformation equations (16)—(19) indeed construct two
continuous deformations (g, &;p) and ¢(&,&,zp). Such continuous deformations are called
homotopies in topology, expressed by

& & p):m(6 &) =16 &) 27)
#5 5.7:0): (660 2) =06, £.7) (28)
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assuming that 7 is properly chosen that the Maclaurin series

UCCHED WACHERLY (29)

0

and égl é:z Z p = Z (4:1 ‘}:-:2 )
n=o0 (30)
exist and convergent at p=1, we have due to equation (26) the so-called homotopy-series solution

)

(&0 &) =m0 &)+ Xm0 )

(31)
N 451,82 2)= 65 (6162, 2)+ 20 (61.52,2) @)
1 anﬂ(é:l'%gz; p)
nlonge)=——
where ) Ty P =0 (33)
_ L0 zip)
foléinban2) = =0 -

are called homotopy derivatives.
We can obtain wave elevation ; (£,£,) and velocity potential 4 (£, ¢,z) which is governed by a

linear PDE, as long as ¢, ,(&,¢&,,z)is known.
Since the HAM provides freedom in the choice of auxiliary linear operator, and considering the
linear part of (17), we choose

, O°H&.5,.7p) Y 6zip) 2 966 10) | 096,62 D)
(¢(§1 &2, p)) ( P 51 +2W,W, 0208, 2 P) 6{2 o

(35)

Higher-order deformation equation
Differentiating the zeroth-order deformation equations (16)—(19) m times with respect to p , then
dividing them by m: and setting p-=1, we have the m"-order deformation equation
Vi4.(£.&.2:p)=0 (36)
subject to the two boundary conditions at z=y(g,&,;p)
(SR EP AL CRER L Y CRR )
37)

and Zp m'[(l PIL[#(&,. &5, 2 P)— 0 (60, & )] = 2 PAN,[B(E, £, Z; P)]] (38)
and the bottom condition

6¢(§1,§2,Z; p)_ -

a2 =0 as z— (39)

We obtain the respective wave elevation and velocity potential at the boundary conditions defined
as
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. m{( st o DN 2 p)]} (40)
Dp o
and
D"L[¢(&, &2 p ]‘ _ m[ L, D&z, DTN 6 7 p)]} (41)
Dp™ " Dp™t Dp™* oo
and the bottom condition
P&, &2.2:P) _
oz (42)
Where Xmnm — Jc_) rrtrlig_) (43)
) oge &)™ oG )"
N =Mz + Ry + mh[wl o W : - (44)
mh{kf[w(é.éz,z)“‘ljz 2k, ol _az)[w(a,ﬁz,z)”‘l ][a¢(¢1.éz,z)m‘1]+ kzz[w(él,éz,z)m‘ly . z[aqﬁ(sa,éz. z)“]z]
0&; 0 0¢, o, ik
and
W 62¢: +2W,W, ¢ +W az¢: + az¢zm =m m[wf aijn;l +2W,W, 9" +W az¢mj + az¢j1]—
04 05,05, 05, oz 04 05,05, o5, o

62¢m71 62¢m71 a¢mfl 62¢mfl a¢mfl 62 (45)

- hm[+ 2wk} ———+ 2w,k + 2wk k, cos(a;, — az{ j -+ +2wkk, cos(a; - az{ j J -
0 0&,0¢, 05, ) 04 0§ ) 0&0¢,
- hm[szklk2 cos(oz1 - az{aw_l] G + 2Wlk§[a¢m_lj 62¢m: + 2W2kf[a¢m_lJ az¢m: +[a¢m_1j +p+ aqjm_l]
0%, ) 0508, 0¢, ) 05 0, ) 05 oz oz

Therefore, the sub-problems for ;, (£,&,) and 4 (&, &,,z) are not only linear but also decoupled:

given 5, (s,&,) and g, .(&,&,,2), we can get 5, (&,&,)directly, and then ¢ (£,&,,2)is obtained
by solving the linear Laplace equation (36) with two linear boundary conditions (42) and(44).
Thus, the higher-order deformation equations can be easily solved by means of the symbolic
computation software such as mathematica.

The higher order expansion

Our interest in this investigation is obtained to higher order surface wave elevation equations and
observes the behaviour of surface wave elevation. If we choose the initial approximation of the
velocity potential as

W, w.
=M k_ll//l,o +B, k_zl//o,l (46)
1 2
where A and B e wy Y wg
0, A _iE \/[1+ 2(k, cos(a, — 052))(k22 1J[k12 1] 47
B, = +82\/[1+ 2(k, cos(a, —a, ))](\Nf _1j - [\Nf _1J
kz kl kz (48)
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We can see that A, and B, have multiple values; it can be neither positive nor negative.

Wyo = |AC0sE, +Bsin & ¢4 (49)

or = [Acos&, + Bsin &, ]0? (50)
W, W, 1| Y 1| Yu 21| Yau 21| Y1 12| V2 12| Va2

£ 7)=AM d o R ) g L PR fe R L 51

¢1(§l 52 Z) A’l kl ‘//1‘0 kz ‘//01+ 1 [ﬂ,l‘l]+ (ﬂ‘mj+yl (1211J+ 1 (12‘1j+71 [ﬂl‘z J+ 1 [ﬂuj ( )
(i) =AMy p Yy 1“("’1-1} d}{”’“] f{"’“j dl“[”/“J f‘{"’“} df‘{‘”“}

O e AL P U g M o Al oy Al g R o Al (52)

w, Vi 11| Y11 21| Va1 21| Vau 12| V12 12| V12
E,Z)= +B, + +d* +yr +d;” + +d; 53
¢3(§1 & ) A, — K, V1o kz V/01 71 [ﬂMJ 1 [ﬂmJ 71 (22,1] 1 [12,1] 71 (%,z} /112] (53)
Vi Vi You Yo Va2 Y1z
. 1B, Yoy 4yt M| TR |y 2t T2y g2t TaL 12 Th2 g g12) T2 54
&, (fl &,z ) k1 ’//10 K, ‘//01 71 [ﬂuj 1 [/1'11] 71 (/.LMJ 1 [’%1] 71 [ﬂin 1 [/112 (54)

Vi Vi Vi Vo Vie Vi
&y, +B, + it B e I B B B e R e AL Y, Loy a8 55
¢5(§1 &2 ) As l//lo |(2 V/01 7 (’%1} 1 [/111] 71 (/12'1] 1 [12,1] 7 [1‘12] 1 ﬂin (55)

But from equation (44) we obtain the solutions of wave elevation. Taken our initial guess of wave
elevation as =0 and the initial guess of the velocity potential in equation (46) we have

771(51!52) kT( ZZZkl (SIn(zé:l) :I-)Alklkzwl2+

e A (- Gin (&) + c0s(6 s+ (cos( ) —sin(&, )+

2h
kk

+kL€Zk22 B.k,w, (_ (cos(§2)+sin(.§2 ))k22 +(cos(.§2)—sin(§2 ))W2)+
"B in(22,)-1) 0

172

e A Bok, W, Cos(al — &, )(COS(‘fl 52)_5”1(‘;:1 +&, ))"‘
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7, (fl ézz) T EZZkl (sm (251) )A1k1k2W12 + % EZkf Aokzwz (_ (Sin (51)"’ COS(§1 ))klz + (003(51)_ sin (ézl ))Wl)

e B ol e oo~ &) sin(6 &)+ Bk - eos(s ) sin(2 i+ cos(s ) -sin(s o)+
e Bdan(sn(26) 1)+ 5 14 A Ak sin(6) - coslE K+ (e0s(s)—sin(& g

e BB cosle ~aNoo(& &) -Si(6, + )+ BBk - (eos(s s e+ sl —sin(é o
e BB B2 1) S A AR (- (oin(5) - cosl '+ cos)-sin(z )+
—;ik*y”zssskwcos@ @, eos(é - &) - sm(:ﬁgz»%wwzkw( Blcos(z, )+ sin(, )? +8(cos(z,)-sin(&, ),
2: £ B,8,B kw,4(sin(22,) 1)~ ‘fl':/”ZBszcos(al @, eos(&, - &)-sin(&, + &)+
%wkzslklwz( (oo(e ) sin(e i + coss)-sins o« 521k (sin(22) 1)+

kk O Ak, (- (sin(&,) + cos( i +8lcos(&) - sin(& g )+

ii“ £ BBk, C08(a, — e, Neos(& - &) -sin(&, + &) 7)
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608 = 075 (2 ) -l + o A A (5 )+ cos& K + ol ) -sin(g o)+

Kk, kik,

i B o~ oo &) (6 )+ 5 BB (-(eo(& o sin( o+ sl e o)
" %IZEZkZBBBkWZ(S'n(Zfz) D+ fh”“%%kwl( (sin(&,)+ cos( )k +8(cos(&,) - sin(&, ) )+

iih 8B, cosle —a JoosEs &) -sin + )+ 1?k2/”zsskw( (cosl, )+ sin(&, Jk; + (cos(&,)-sin(&, Jw, )+
3 8 mbinae) 1+ % AR i) cote K + ) s

21‘:24“23 B,B,kw, cos(a; — at, )cos(§, — &) -sin(§ +&,)) +

Eih 7% A A A, A, (— 8(cos(2, )+ sin(&, )k +8(cos(&, ) —sin(&, ), )+
+%sz2BoBlesakzwﬂ(Sin(Zéz) 1- ifkt: £48,B,B Jw, Cos(ar, ~ 1, Jeos(§ ~&,)-sin(§ + &)+

BB ol s ol s o+ - B Bk (2, -1)+

f‘" 75 A AA K[ (sin() + cos(&, k2 +8(cos(&)-sin(é )+

“ih 1B BB, cos(a, — a, Neos(é, — &) -sin(4 + &)+
+ % £ sin(26,) - Ak k! +%W1Mk w, - (sin(5) + cos(& )’ + (cos(&)-sin(&, )+

?:2 7% B,B Bk, cos(ar, — a, )cos(& - &, ) - sin(fl+é))*%:zf”%BleBsklwz(f(COS( ,)+sin(&)K: + (cos(&, ) -sin(&, )w, )+
iih 75 A A A AKBL- (S0 (& )+ cos, ) +8lcos(z)—sin(e, 1)_%/“25 B,B kW, 0os(at — 1, cos(&, &) -sin(&, + &,)) +
%z 88,8 e, (e ol -si(e - S BB B on(2s )+

e AR (o5 ) o8 K ool sl - 88 8ol oo~ )il )
e AR 8o, ) sin ) +lco(s)-sine e B BB B Kdlin2z,)-1)

izk“ 1B, Bk, cos{e, - a, Ycos(&, — &) sin(ei+@))+%L‘/“Blazklwz(—(cos(§2)+sin(z:z>)k2 +(cos(éy)-sin(é, e J+

o 20 k)1 2 Ak il sl s s

ij(i‘ 1% B,B,B, By, Cos(ey -z, Ncos(&, - &) - sin(&, + &)

(58)
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: 108h

nuléné)= kf”‘ (sin(25,)-1)AA, 1 A A A, (= (sin(E,) + cos(, ) + (cos(,) - sin(é, )

1 2

_48h 228 /% B,B,B.k,W, cos(ar, — ar, Jcos(&, - &, ) - Sin(ffl +&)+
24khf”2 BB,Bw (- (cos(¢, )+ sin(&, )k + (coslz,)-sin(é, Jw, )+ illkhﬁZsz BBt in(es)-1)+
Eih £ AAAAAKW, 8( (sin(&,)+ cos(& )k} +8(cos(&,)- sm(gﬂ))wl)

- ]éih [Zkg Bo B1k1W2 COS(ai - )(COS(fl - 52)_ Sin(él + Stz )) + %ZZK% Blek1W2 (_ (COS(§Z)+ Sin(é ))kzz + (005(52)_ Sin(Stz ))Wz)+

248h Vel B,B,B,kw, Cos(al a, )(COS(§1 ‘fz) 5'”(51 + éz))

12

e T AARAK oo, (e ool ) -sine )

1

Eikh/”z B,B,B,B kW, 4(sin(2¢,)-1) + %zms B, By (— (cos(&, )+ sin(&, K + (cos(&,) - sin(&, ), )+

zkih 1% B,B,B,B Bk, (sin(25,)~1) + szh £ A AAAAKW,B(- (sin(&) + cos(2 k2 +8(cos(&) - sin(z ) +
5 AR AR 25 1)+ 1 AAR AR - i ool -+l -
iikh/mz B,B,B,Bkw, cos(oz1 %)(cos(él 52) sin(§1 +§2))

250 g, o) (6 s, - o)

12h

K /Zkz B, kW COS(a1 azxcos(é 52) Sin(§1 +4 ))+ %lmg B1sz1W2(_ (COS(§2)+ Sin(§z ))kzz + (COS(§2)— Sin( 2))‘”2)"’

12 172

B BB sn(2E) -1+ o AAAJEL (6n(5) +cos I +B(es(e) - sin(e g+

350 18, Bk, 00~ ool -6 + &)+ 4 BBkt (el +sin(s I+ sl )-sin, o,

12 12

+ % N% Bo Blekzwz (sin(2§2 ) - l) + kﬁihﬁk]z A0A1A2A3kzwz (_ (Sin (51) + Cos(‘fl))klz + (005(51) - Sin(‘fl) 1)+

12

-2 st o - ol &) sl + £ )

o Ao (5K + (ol -sn(e o)
+%‘2ﬂ%50&8283k2w24(sin(2§2) 1)- ij:/Zsz BBk, cosle, — a, NCos(& — &, )-sin(& + £, ) +

e BB o) (& + o) -sine )+ 1 BB (25 )1

e T AR in ) o2 + (o) -s(e ) /B8 B K cosle ool ) -l + &)

T (22, DAk +k6—k/ﬂ“ AAK (- sin(e,) + s+ (casls)-sin(5 o+
k?: 1% B,B,B,k,w, cos(at, — at, Jcos(¢, - &,)—sin(&, + 52))+k?—:£”2 B,B,B, kiwz( (cos(&,)+sin(&, k2 +(cos(§2)—sin(§z))w2)

2

(59)
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775(‘51:52): sokh 0 (Sin(zél)il)AlAZASAztklszlz +
T A A A Ak (- (Sin(,) + cos(E K + (cos(&) —sin( I )+
- i2§h ‘ B,B,B;B,k,w, COS(a1 -, )(COS(é:l -& )_Sin(":l +&, ))+
+ 220N 1 g B, BB, k,w, (- (cos(, )+ sin(&, )KZ +(cos(&, )—sin(&, )w, )+
+1|<2Eh ¢ B,B,B,B,B,k,W, (sin(2&,)—1)+
180h 2 . 2 :
k k — A0A1A2A3A4A5k1W18(_ (S'n(§1)+cos(§1))k1 +8(COS(§1)—SIH(§1))W1)+
T(zlgh ¢ B,B,B,B,k,w, cos(a, — a, \cos(&, — &,)—sin(&, + &£,))+
+ 3000 i g B k,w, (- (cos(&, )+ sin(£, )z + (cos(&, ) sin(£, ), )+
- 1510?1 0% B,B,B,B;B,k,w; Cos(al —a; XCOS(‘§1 - )_Sin(éfl +& ))+
L 480N . , .
Fo 0 AA A A A AW (- B(cos(&, )+ sin(&, DK +B(cos(&, )~ sin(&, w, )
T(Zshezkzs B,B,B,B, k,w,4(sin(2&,)-1)+
180h K2 . 2 :
(™ B,B,B,B,k wz( (cos(&, ) +sin(&, )k? +(cos(§2)—sm(§2))w2)+
1E6k0hfzk25 B,B,B.B,B.k,w,(sin(2&,)-1)+
360h . 2 -
D% [ A0A1A2A3A4Assz28(_ (Sln(§1)+cos(§1))k1 +8(COS(§1)—SIH(§1))W1)+
+ B0 (sin(24,) - 1A, A Ao + 100 075 A A, A AW, (- (Sin(5, )+ cos(6, )K? -+ (cos(&,)—sin(&, w1+
Ij?(h 0% B B,B,k,w, cos(a, — a, \cos(&, — &, )—sin(&, + &£,))+
24|"I A2 . 2 :
(7 B,B, Bk, w, (~ (cos(&, )+ sin(&, k2 + (cos(&, ) —sin(&; w, )+
fih 0% BB, B,B,k,w, (sin(2&,)—1)+
e A AA K () + cos(&, )+ 8(cos()—sin(&, ) ) +
_ 1447 g B, B,k,w, cos(a, — a, J(cos(&, — &,)—sin(&, + &, )+
+ T2 153 8 B, (~ (cos(£, )+ sin(£, )k + (cos(E, ) —sin(&, w, )+
i‘fh 0% B, B,B,k,W, cos(a, — ar, cos(&, — &, )—sin(&, + &)+
e A Ak (- 8(cos(&, ) +sin(e, ki +8(cos(E:)—sint )
lf‘”‘ (% B,B,B,B,k,w, 4(sin(2&, )~ 1) + fih 1% BB, Bk, (— (cos(&, )+ sin(&, )k + (cos(&, ) —sin(&, )w, )+

N 120h 228
Kk,

+ 200 A, A A Ak (- (5in(8,) + cos(&, )+ (cos(&,)—sin(, ) ) +
1Kz 107

igl(()h/”? B,B,B,B,B,k,w, cos(a, —a, (cos(&, —&,)—sin(&, + &, )+
172

240h

A1A2 A3A4k1k2W12 (Sin(2§1 ) - 1)

+ €Zk22 B1Bz B3B4 Bsk1W2 (_ (COS(éZ )+Sin(§2 ))kzz + (COS(§2)—Sin(§2 ))Wz)+
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e T AAAAKB(-in(&) +cos2 i +Sleoss) -sn(E ) 18,8888k cosle, Yoo &) i + )
7 A A A (&) oo e ) -sin(e 24 B, 8.8k coses, ool &) -6 +6,)+
e BBBB e oos, ) K+ ol ) s o AARAA (- (5(&) s cose K + eos) i g
i BBBBBkm o, ~afoos &) (e +£)+ 1‘142“/* AAAAAK(-8(c0s,) +sin(é, )+ 8loos(s,)-sin(z e
2:”:% B,B,B,B,B,k,w,4(sin(2&,) - )—%‘ﬂ B,B.kW, cos(a, — @, )(cos(&, - &,)—sin(& +&,))+

+%kr2‘zzk BB, B,B kW, ( (cos(&, )+ sin(&, )2 + (cos(, ) —sin(&, )w, ) + 1°2h !B,B,B,B,k,W,(sin(2&,) 1)+

szhﬂ AAAAAK (- (sin(& )+ cos(& ) +8(cos(,) - sin(z )—LshﬂBBBBBklvacos(al @, eos(&, ~ £,)-sin(&, + £,)
let 1% (in(2) - DA A A Ak +‘k‘ihe“f AAAA A, (- (5in(E) + cos(& )’ + (cos(,)-sin(&, )+

24h 28h

i BoBLB kg cos(o, —r Joos, ~&)-sin(g + )+ 2" BB, BB B eos(Z s K + eos( ) —sin(i, o ¢

o BB BBBI(S2E) 1)+ AR (&) s cos K +Blooss) i)

a2 180h
o B,B,B,B;B,Bsk\W, cos(al - az)(cos(fl - éz)‘sm(é +& ))+ + KK
1Kz 1Kz

30h

172

1507

KZKZZ B1Bz Ba BAK1W2 (_ (COS(§2 ) +sin (52 ))kzz + (COS(§2)— sin (52) 2)+

72h

kk élk AAAAAAK, Wz( (Sm( 1)+COS(§1))k12 +(COS(§1) Sm( 1))W1)+_W€Zk B,B,B,B;B,kw, cos(al aZXCOS(§1 52) Sin(é"’fz))'*’

e AAMAAA (- 8lcos(e) sin, i +Bloos,)—sin(e o) 1 1*18,8.8,8,8 Bk, sl ool )i + )+

120h

1%8,8,B,B. (- (cos(&,) + in(&, ) + cos(&,)sin 2))wz)+—kw“ AAAAAAKW,(- (sin(&,) +cos(& )l +8(cos(,) - sin(& g )+

BB BB ol e foos &) (6 &)+ L AAA AN ein(E ) cosE K+ ol ) -sin(6 )«

- 20 1415,8,8.8,8. ol — Joos, ~ &) -sin(6 + &)+ S 18,88, Bk - (cos(&, b+ sin(e, K¢ + cos,) s ) (60
172 172

Note that automatically ¢, satisfies the Laplace equation (9) and the bottom condition (13) for
any constants A and B,. On the other hand, given the initial guess 4, , we can calculate ’71(51’52)

directly by means of the formula (44).

The above approach has general meaning. In a similar way, we can obtain , () and 4,(.¢,.2)
successively, in the order m = 1,2,3, and so on.

k, =0.70399, k, = % =0.62831835, o, = %” a, = % w, =0.83904, w, =0.79266535

A=t \/[1+2(k1 cos(al—az))](\liv—::—lj—{——lJ+[l+2(k Cos(al—az))](k—z— J

k2

1 (61)
B, =+ k2 \/[1 + 2(k, cos(e, — a, ))][\II(VTl2 - lJ — [\% - ] +[1+2(k, cos(a, — , ))]( \|I<V§ B 1} (62)
& = [+ 2lk; cos{e, — a, ) + 1+ 2k, cos(a, —z,))-1) (63)
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APPLICATIONS

Using these values, the higher-order deformation equations that was solved by means of the
symbolic computation software mathematica
The higher order deformation of the surface wave’s elevation is given by

1(68)=m(6 &)+ m2(6. &)+ m5(6, &)+ a6, &)+ 156,55 (64)
and the higher order deformation of the velocity potential is given by
¢(§1,§2,Z)=¢0(§1,§2,Z)+¢1(§1,§2,Z)+¢2(§1,§2,Z)+¢3(§1,§2,Z)+¢4(§1,§2,Z)+¢5(§1,§2,Z) (65)

where 7(5,,£,) s the higher order surface wave elevation. #(¢1:¢2,2) isthe higher order potential

function.

The analytical analysis of the rogue waves equations have been carried out using Homotopy
Analysis Method. Higher order deformation equation of the waves elevation and velocity potential
have been derived in equations (64) and (65).

THE HIGHER ORDER DEFORMATION EQUATION TO GENERATE ROGUE WAVE
The Higher order deformation equation of wave elevation to generate Rogue wave in random sea
state is given by equation (64). At different values convergence-control parameter h using

equation (64) we have these plots as
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Fig. 1
The plot of wave elevation at the convergence-control parameter h = -1 using equation (64).

Fig. 2
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The plot of wave elevation at the convergence-control parameter h= 0.8 using equation (64)

| 7
7
{ /
—
“<7 ~10
10

Fig. 3  The plot of wave elevation at the convergence-control parameter h = -0.6 using equation
(64).
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Fig. 4
The plot of wave elevation at the convergence-control parameter h = -0 4 using equation (64).
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S

Fig. 5 The plot of wave elevation at the convergence-control parameter h = -0.2 using equation
(64).

RESULTS AND CONCLUSION

The analytical analysis of the Rogue wave equations have been carried out using Homotopy
Analysis Method. Higher order deformation equation of the wave elevation and velocity potential
have been derived in equations (64) and (65). Using differenent values of the convergence- control
parameter nh say —1<h <0.2 we observe the behaviour of the waves; and check if the optimal
value of h we chose provdies the waves that satisfied the definition and characteristic of Rogue
wave.

We plot the graph using equation (64) and different values of h against ¢ and¢,. Fig 1 is at the

values of h=—1 shows a very clear graph of a Rogue wave that is showing giant wave (a monster)

in the middle of an ocean. Such waves are usually accompanied by deep troughs (holes), between
which is a high crest. Fig 2 is at the values of h=-0.8 shows that Rogue wave can appear
concurrently, in the plot we can see two giant waves appearing in different location in the middle
of an ocean, these waves are very dangerous to on coming ships and the marine structures. Figs 3-
5 are at the values of h—=_0.6,-0.4,-0.2 show the plot Rogue as a natural phenomenon, we have

different shapes of Rogue wave. These waves satisfied the definition and characteristic of Rogue
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wave. The popular definition of Rogue wave is a wave whose height is twice more than the average
wave height present in the ocean surface (i.e. the average significant wave height). These Rogue
waves are often described as vertical walls of water in the ocean.

In fact, as we can see h the convergence-control parameter shows that the optimal value of the
convergence-control parameter h =-1. It does not only make the series to converge fast but descries
a Rogue waves.

Physically, we found that, the higher order deformation equations of wave elevation satisfied the
definition and characteristic of Rogue wave, for a fully developed Rogue wave system.
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