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ABSTRACT: The mathematical study of rogue wave phenomenon had been on-going for years. 

Rogue waves are unusually large-amplitude surface waves that appear from nowhere in the open 

ocean. Collisions with such waves have caused catastrophic damage to ships and offshore 

structures. In this work, we apply an analytic technique, namely the Homotopy Analysis Method 

(HAM) to derive the rogue wave solution for the fully nonlinear wave equations with nonlinear 

boundary conditions. On the basis of the HAM, we obtain an analytic expression for the surface 

wave elevation η and velocity potential   for a rogue wave. The expressions obtained for η are 

exact and depends on the computed values of the velocity potential . Due to the highly nonlinear 

nature of the problem (having nonlinear boundary conditions) the velocity potentials are obtained 

up to 5th order approximation. Surface plots of the wave profile are presented. These show high 

level agreement with the famous New Year wave at the Draupner platform. It is expected that this 

study will deepen and enrich our understanding of rogue waves. 
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INTRODUCTION 

 

Rogue Waves  

Rogue waves are large surface waves that appear infrequently in the ocean without warning. Rogue 

wave are also referred to in the literature as an extreme wave, giant wave, a monster in the ocean, 

abnormal wave or freak wave. The popular definition of rogue wave is a wave which the height is 

twice more than the average wave height present in the ocean surface (i.e. the average significant 

wave height). Such waves are usually accompanied by deep troughs (holes), between which is a 

high crest. These rogue waves are often described as vertical walls of water in the ocean. 

Occurrences of such large waves have been reported worldwide from ships, off shore platforms 

and radars (Lawton 2001; Kharif & Pelinovsky 2003; Forristall 2005). As stated by Lawton (2001), 

the rogue waves have been noticeable part of marine problem for centuries. The rogue wave event, 

have been extensively studied in the last years, in attempts to reveal the physics of this 

phenomenon. They have been reported as unusually high waves on the sea surface, appearing for 

a short time and causing eventually severe damages to the marine structures on their way (Touboul 

et al 2006; Kharif and Pelinovsky, 2003). The Rogue wave event that occurred on January 1st 1995 

under the Draupner platform in the North Sea (Dysthe et al, 2008) provided evidence that such 

rogue waves can occur in the open ocean. During this rogue wave events, an extreme high wave 
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crest  with an amplitude of 18.5m occurred. The maximal wave height of 25.6m was much more 

than twice the significant wave height 
sH of about 10.8m, which is usually the critical for rogue 

wave description. Liao (2011) investigated the steady condition for the nonlinear interaction of 

two trains of propagating wave in deep water and obtained the solution for both resonant and non-

resonant cases. By means of the analytical method called homotopy analysis method (HAM) 

developed in (Liao 1997, 2004, 2011, 2012) a powerful analytic method for highly nonlinear 

problems. Tongkai (2005) derived the exact approximation analytical rogue wave solution in 

consideration of the Hirota equation with fractional and integer-order time using homotopy 

analysis method. Ejinkonye (2020a,b) obtain higher order surface displacement using homotopy 

analysis method (HAM).  

In this work, we apply the homotopy analysis method (HAM) to the nonlinear boundary-value 

problem governed by the partial differential equations to derive the mechanism for rogue wave 

generation.  

Basic equations and boundary conditions  

Let us consider the nonlinear interactions of two trains of gravity waves with large amplitudes, 

propagating in water of finite depth. We assume that the fluid is inviscid and incompressible, the 

flow is irrotational and the surface tension is neglected.   

Let z denote the vertical co-ordinate, x, y the horizontal co-ordinates, t the time,  tyxz ,, the wave 

elevation, respectively. 

Wang et al. (2016) Shows that governing equation of the velocity potential  tzyx ,,,  is given by  

  0;,,2  tzyx     tyxzd ,,                                                                                 (1) 

Subject to the two boundary conditions on the unknown wave elevation  tyxz ,,   
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And the bottom boundary condition 
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(5) 

However, for simplicity, let us consider a wave system consisting of two trains of primary 

travelling gravity waves in deep water with wave numbers 
21 kandk and the corresponding angular 

frequencies 
21 wandw  respectively, where 021 kk  (i.e. the two traveling waves are not collinear). 

In this work, the nonlinear boundary-value problem governed by the PDEs (1-4) is solved by 

means of the homotopy analysis method. 
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Let 
21 , denote the angles between the positive x-axis and the wave number vectors 

21 KandK


respectively, where 021  kkkk , i.e. the z axis is perpendicular to the wave number 
21 , KK

 . 

Then 
   jikKandjikK 22221111 sincossincos  


                                                                    (6) 

We write yjxir  ,  2211 KkandKkwhere


  

twrKtwrK 222111 , 


                                                                                               (7) 

In other words, one can express the potential function  tzyx ;,, =  z,, 21  and the wave elevation 

   21,;,  tyx respectively, then we have     
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Where  0ˆˆ
2211  kKkK


 is used, and  212121 cos2   kkKK


 

In general, it holds that, the original governing equation reads 
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which has the general solution  

     zKK
ebaBbaA




 2121 sincos                                                                     (10) 

where ba,  are integers, BA, are integral constants. 

Therefore, the boundary  conditions in equations (2) and (3) will become 
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and the bottom boundary condition 
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Our aim is to find out the corresponding unknown potential function  z,, 21  and the unknown 

wave elevation  21, , which are governed by the linear partial differential Eq. (9) subject to two 

nonlinear boundary conditions (11) and (12) on the unknown free surface elevation  21,z , and 

the linear boundary condition (13) on the bottom. 

METHODOLOGY 

Analytic approach based on the homotopy analysis method  

The nonlinear boundary-value problem governed by the PDEs in equations (9, 11, 12, 13) will be 

solved by means of the homotopy analysis method. 

Let  z,, 210  ,  210 , denote the initial guesses of the velocity potential  z,, 21  and wave elevation 

 21,  respectively. Let  1,0p denote an embedding parameter and let 0  be the so-called 

convergence-control parameter. Here, both p and  are auxiliary parameters without physical 

meaning. Instead of solving the nonlinear PDEs (9, 11, 12, 13) directly, we first construct a family 

(with respect to p ) of PDEs  p,, 21  and  pz,,, 21  , governed by the so-called zeroth-order 

deformation equations, 

   0;,, 21

2  pz                                                                                                                                 (16)
 

subject to the two boundary conditions on the unknown wave elevation  pz ;, 21  , 

         pNppp ;,,;,1 21121021                                                                 (17) 
         pzpNzpzLp ;,,,,;,,1 21221021                                                        (18)       

 

and the bottom condition 
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where L is an auxiliary linear operator with the property   00 L , 1N  and 2N  are nonlinear 

differential operators defined respectively as  
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(22) 

where the definition of   is in equation (15) 

When ,0p  the zeroth-order deformation equations (16)–(19) have the solution 

   21021 ,0;,                                                                                                               (23)
 

   zz ,,0;,, 21021                                                                                                                      (24)
 

When 1p , the zeroth-order deformation equations (16)–(19) are equivalent to the original PDEs 

(9, 11, 12,13), so we have the solution 
   2121 ,1;,                                                                                                                  (25) 

   zz ,,1;,, 2121                                                                                                                      (26) 

Thus, as the embedding parameter  1,0p  increases from 0 to 1,  p;, 21  and  pz;,, 21  vary 

continuously from their initial guess  210 , and  z,, 210   
 respectively to the exact solution 

 21,  and  z,, 21  . Thus, the zeroth-order deformation equations (16)–(19) indeed construct two 

continuous deformations  p;, 21   and  pz;,, 21  . Such continuous deformations are called 

homotopies in topology, expressed by 
     2121021 ,~,:;,  p                                                                                                           (27)

 

     zzpz ,,~,,:;,, 2121021                                                                                                      (28)
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assuming that  is properly chosen that the Maclaurin series     
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are called homotopy derivatives. 

We can obtain wave elevation  21,n
 and velocity potential  zn ,, 21   which is governed by a 

linear PDE, as long as  zn ,, 211  
is known.  

Since the HAM provides freedom in the choice of auxiliary linear operator, and considering the 

linear part of (17), we choose 
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Higher-order deformation equation 

Differentiating the zeroth-order deformation equations (16)–(19) m times with respect to p  , then 

dividing them by !m  and setting 1p , we have the thm -order deformation equation 

  0;,, 21

2  pzm                                                                                                                                 (36)
 

subject to the two boundary conditions at  pz ;, 21   
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We obtain the respective wave elevation and velocity potential at the boundary conditions defined 

as  
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Therefore, the sub-problems for  21,m  
and  zm ,, 21   

are not only linear but also decoupled: 

given  211 , m  
and  zm ,, 211  

, we can get  21,m
directly, and then  zm ,, 21  is obtained 

by solving the linear Laplace equation (36) with two linear boundary conditions (42) and(44). 

Thus, the higher-order deformation equations can be easily solved by means of the symbolic 

computation software such as mathematica. 

 

The higher order expansion
 

Our interest in this investigation is obtained to higher order surface wave elevation equations and 

observes the behaviour of surface wave elevation. If we choose the initial approximation of the 

velocity potential as 
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We can see that 
00 BandA  have multiple values; it can be neither positive nor negative. 
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But from equation (44) we obtain the solutions of wave elevation. Taken our initial guess of wave 

elevation as 00      and the initial guess of the velocity potential in equation (46) we have 
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Note that automatically 1  
satisfies the Laplace equation (9) and the bottom condition (13) for 

any constants .11 BandA  On the other hand, given the initial guess
0 , we can calculate  211 ,  

directly by means of the formula (44).

 

The above approach has general meaning. In a similar way, we can obtain    ,,,, 2121 zand mm   
successively, in the order m = 1,2,3, and so on.  
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APPLICATIONS 

 

Using these values, the higher-order deformation equations that was solved by means of the 

symbolic computation software mathematica 

The higher order deformation of the surface wave’s elevation is given by 
           21521421321221121 ,,,,,,                                                    (64) 

and the higher order deformation of the velocity potential is given by 
             zzzzzzz ,,,,,,,,,,,,,, 21521421321221121021                              (65)

 

where  21, is the higher order surface wave elevation.   z,, 21   is the higher order potential 

function. 
The analytical analysis of the rogue waves equations have been carried out using Homotopy 

Analysis Method. Higher order deformation equation of the waves elevation and velocity potential 

have been derived in equations (64) and (65).   

 

THE HIGHER ORDER DEFORMATION EQUATION TO GENERATE  ROGUE WAVE  

The Higher order deformation equation of wave elevation to generate Rogue wave in random sea 

state is given by equation (64). At different values convergence-control parameter h  using 

equation (64) we have these plots as 
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Fig. 1 

The plot of wave elevation at the convergence-control parameter h = -1 using equation (64). 

 

 
Fig. 2 
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The plot of wave elevation at the convergence-control parameter h = -0.8 using equation (64) 

 

 

 
Fig. 3      The plot of wave elevation at the convergence-control parameter h = -0.6 using equation 

(64). 
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Fig. 4 

The plot of wave elevation at the convergence-control parameter h = -0.4 using equation (64). 
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Fig. 5 The plot of wave elevation at the convergence-control parameter h = -0.2 using equation 

(64). 

  

RESULTS AND CONCLUSION 

 

The analytical analysis of the Rogue wave equations have been carried out using Homotopy 

Analysis Method. Higher order deformation equation of the wave elevation and velocity potential 

have been derived in equations (64) and (65). Using differenent values of the convergence- control 

parameter h  say 2.01  h  we observe the behaviour  of the waves; and check if the optimal 

value of h  we chose provdies the waves that satisfied the definition and characteristic of Rogue 

wave.  

We plot the graph using equation (64) and different values of h  against 
21  and . Fig 1 is at the 

values of 1h ,shows a very clear graph of a Rogue wave that is showing giant wave (a monster) 

in the middle of an ocean. Such waves are usually accompanied by deep troughs (holes), between 

which is a high crest. Fig 2 is at the values of 8.0h  shows that Rogue wave can appear 

concurrently, in the plot we can see two giant waves appearing in different location in the middle 

of an ocean, these waves are very dangerous to on coming ships and the marine structures. Figs 3-

5 are at the values of 2.0,4.0,6.0 h  show the plot Rogue as a natural phenomenon, we have 

different shapes of Rogue wave. These waves satisfied the definition and characteristic of Rogue 
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wave. The popular definition of Rogue wave is a wave whose height is twice more than the average 

wave height present in the ocean surface (i.e. the average significant wave height). These Rogue 

waves are often described as vertical walls of water in the ocean. 

 In fact, as we can see h  the convergence-control parameter shows that the optimal value of the 

convergence-control parameter 1h . It does not only make the series to converge fast but descries 

a Rogue waves. 

Physically, we found that, the higher order deformation equations of wave elevation satisfied the 

definition and characteristic of Rogue wave, for a fully developed Rogue wave system.  
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