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ABSTRACT: This paper is on SARIMA modelling of monthly Naira-CFA Franc exchange 
rates. The time plot of the realisation from January 2004 to June 2013 in Figure 1 shows an 
overall upward secular trend with no clear seasonality. The time plot of the seasonal (i.e. 12-
monthly) differences in Figure 2 shows an overall horizontal trend with no definite 
seasonality. The time plot of further non-seasonal differences in Figure 3 shows a horizontal 
trend and still no clear seasonality. The autocorrelation function of the resultant series of 
Figure 4 has a significant negative spike at lag 12 indicating a 12-monthly seasonality and 
the involvement of a seasonal moving average component of order one. Its partial 
autocorrelation function has a significant spike at lag 12 suggesting the inclusion of a 
seasonal autoregressive component of order one. Using the duality relationship between 
autoregressive and moving average models, it is argued that this autoregressive component 
of high order (i.e. of order 12) be replaced by a moving average component of (low) order 
one. Hence an additive SARIMA model with significant lags 1 and 12 is proposed and fitted.  
The model is shown to be adequate.    
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INTRODUCTION 
 

Many economic and financial time series are observed to show seasonal as well as volatile 
behaviour. Foreign exchange rates are inclusive. Attention has been paid by many researchers 
to the time series modelling of the exchange rates of many currencies. For instance, Etuk and 
Igbudu(2013) have observed the seasonal nature of the monthly exchange rates of the Naira 
and the British pounds and fitted to them a (0, 1, 0)x(2, 1, 1)12 SARIMA model. Etuk(2013a), 
after observing a 12-monthly seasonal tendency in the monthly Naira-Euro exchange rates 
fitted a (0, 1, 1)x(1, 1, 1)12 SARIMA model to them. Etuk(2013b) has also fitted a (0, 1, 
1)x(0, 1, 1)7 model to daily Naira-Euro exchange rates.  A few other researchers who have 
studied exchange rates are Oyediran and Afieroho (2013), Onasanya and Adeniji (2013) and 
Appiah and Adetunde (2011).   It is the intention of this paper to model the monthly Naira - 
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CFA Franc exchange rates using SARIMA methods with a view to showing the usefulness of 
such models.  
 
Box and Jenkins (1976) introduced SARIMA models in order to capture the seasonality of 
seasonal data. These models have been extensively written on and applied by many authors, a 
few of whom are Etuk(2012), Surhatono and Lee(2011), Saz(2011) and Madsen(2008).  
 
LITERATURE/ THEORITICAL UNDERPINNING 
 
A stationary time series {Xt} is said to follow an autoregressive moving average model of 
orders p and q, designated ARMA(p, q), if it satisfies the following difference equation 
 
Xt - α1Xt-1 - α2Xt-2 - ... - αpXt-p = εt + β1εt-1 + β2εt-2 + ... + βqεt-q   (1) 
 
where {εt} is a white noise process and the coefficients α’s and β’s are constants such that 
the model is both stationary and invertible. Model (1) may be put as 
 
A(L)X t = B(L)εt         (2) 
 
where A(L) = 1 - α1L - α2L

2 - ... - αpL
p and B(L) = 1 + β1L + β2L

2 + ... + βqL
q and L is the 

backward shift operator defined by LkXt = Xt-k. For stationarity and invertibility it is 
necessary that the zeroes of A(L) and B(L) be outside the unit circle respectively.  
 
Suppose that {Xt} is non-stationary. Box and Jenkins(1976) proposed that differencing of the 
series to a sufficient order could make it stationary. Let this minimum order be d and let ∇dXt 
be the dth difference of Xt. Then ∇ = 1-L. If the differences {∇dXt} follow an ARMA(p, q) 
model, the original series is said to follow an autoregressive integrated moving average 
model of orders p, d and q, designated ARIMA(p, d, q). 
 
Suppose that the time series {Xt} is seasonal of period s. Box and Jenkins(1976) proposed 
further that it be modelled by 
 
A(L)Φ(Ls)∇d∇s

DXt = B(L)Θ(Ls)εt       (3) 
 
where A(L) and B(L) are the non-seasonal autoregressive(AR) and moving average(MA) 
operators as earlier defined, respectively. Φ(L) and Θ(L) are respectively the seasonal AR 
and MA operators, say of orders P and Q, their  coefficients being such that the model is both 
stationary and invertible. Also ∇s = 1-Ls. Then the original time series {Xt} is said to follow a 
multiplicative (p, d, q)x(P, D, Q)s seasonal autoregressive integrated moving 
average(SARIMA) model. 
 
Surhatono(2011) has differentiated between the subset, the multiplicative and the additive 
SARIMA models. According to him, for a seasonal series of period s, a multiplicative 
SARIMA model is of the form 
 
∇d∇s

DXt = εt + β1εt-1 + βsεt-s + βs+1εt-s-1      (4) 
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where βs+1 = β1βs. Otherwise (4) is a subset model. On the other hand the corresponding 
additive model is given by 
 
∇d∇s

DXt = εt + β1εt-1 + βsεt-s         (5) 
 
METHODOLOGY 
 
The data for this work are monthly Naira-CFA Franc exchange rates from January 2004 to 
June 2013 published under the Data and Statistics heading of the Central Bank of Nigeria 
publication in its website www.cenbank.org. It is to be interpreted as the amount of Naira per 
CFA Franc.  
 
Time series analysis invariably starts with the time plot and the correlogram. Certain 
characteristics of the series may become apparent from their visual inspection. For instance 
seasonality of period s is suggestive by a significant spike at lag s in the autocorrelation 
function (ACF). Moreover if the spike is negative, the involvement of a seasonal MA 
component is suggestive; if positive, the involvement of a seasonal AR component is 
suggestive.  Spikes along the partial autocorrelation function (PACF) indicate the presence of 
AR components; seasonal components for seasonal lags and non-seasonal components for 
non-seasonal lags. The seasonal orders P and Q could be determined by the highest seasonal 
lags for which the spikes are significant. Similarly the non-seasonal orders p and q may be 
estimated by the non-seasonal cut-off lags of the PACF and the ACF, respectively.  
 
Often a time series is non-stationary. If it is seasonal of period s, it is differenced seasonally 
and then non-seasonally. That is, D = d = 1. This is likely to be sufficient to rid the series of 
any non-stationarity. That means that the series ∇∇sXt is stationary. At each stage, 
stationarity may be tested by the Augmented Dickey Fuller (ADF) Test.  
 
After the orders p, d, q, P, D, Q and s have been estimated, the parameters of the model (3) 
are estimated. This is invariably by non-linear optimization techniques since the model 
involves items of a white noise process. For pure AR or pure MA models, there exist linear 
optimization techniques (see, Oyetunji, 1985). For the mixed ARMA models efforts have 
been made to propose linear techniques albeit with limited success (see, for instance, 
Etuk,1989).  
 
After model fitting, the model is subjected to diagnostic checking to ensure its adequacy. This 
is done by analysing its residuals. If the model is adequate, the residuals should be 
uncorrelated as well as possess a normal distribution with zero mean. 
 
For this work use was made of the software Eviews for every aspect of data analysis. This 
software is based on the least error sum of squares optimization criterion for model 
estimation.  
 
RESULTS AND DISCUSSION 
 
For the purpose of this work we shall be referring to the realisation of the time series as 
NXER, to its seasonal (i.e. 12-monthly) differences as SDNXER and to its further non-
seasonal differences as DSDNXER. The time-plot of NXER in Figure 1 shows an overall 
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upward trend with no obvious seasonality. That of SDNXER in Figure 2 shows an overall 
horizontal trend and still with no clear seasonality. The plot of DSDNXER in Figure 3 also 
shows an overall horizontal trend with no clear seasonality.  
 
With 1%, 5% and 10% critical values of -3.5, -2.9 and -2.6 respectively, the Augmented 
Dickey Fuller Unit-Root Test shows that with a statistic of -1.7, NXER is non-stationary; 
with statistics of -3.9 and -4.0 respectively SDNXER and DSDNXER are stationary. 
However the correlogram of SDNXER gives a contrary impression of non-stationarity. 
 
The correlogram of DSDNXER in Figure 4 has a significant negative spike at lag 12, an 
indication of a 12-monthly seasonality and the presence of a seasonal MA component of 
order one. Moreover, the significant spike at lag 12 on the PACF is suggestive of the 
involvement of a seasonal AR component of order one. However the high AR order of 12 
may be replaced by a low MA order following the AR-MA duality relationship. We hereby 
propose the additive SARIMA model 
 
DSDNXER = εt + β1εt-1 + β12εt-12     
 
which has been estimated as summarized in Table 1 as 
 
DSDNXER = εt + 0.0799εt-1 – 0.8142εt-12     (6)                   
(±0.0317)     (±0.0002) 
 
The model might be said to be adequate on the following grounds: 

1. The model closely agrees with the data as evident in Figure 5. 
2. The correlogram of the residuals in Figure 6 shows that they are uncorrelated. 
3. The Jarque-Bera normality test of Figure 7 shows that the residuals are normally distributed 

with zero mean. 
 
CONCLUSION 
 
The monthly Naira-CFA Franc exchange rates follow the additive SARIMA model (6). This 
model has been shown to be adequate in describing the variation in the time series.  
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FIGURE 4: CORRELOGRAM OF DSDNXER 
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TABLE 1: MODEL ESTIMATION 
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FIGURE 6: CORRELOGRAM OF THE RESIDUALS 
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Figure 7: Histogram of the Residuals 
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