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ABSTRACT: The understanding of evolutionary relationships among biological entities enabled 

computer scientist’s researchers to developing various arithmetic number bases systems with 

remarkable genetic sequence alignment technique, where weaker analyses in homologous 

sequence are acceleratory detected and implemented. Using SWA for continuous improvement in 

the sensitivity of genes and proteins regulatory sequence alignment, three moduli sets are 

presented for DNA sequence alignment with residue of each modulus independently of each other, 

concurrently by parallel ALUs without carry propagation among them. Finally, we developed a 

reconfigurable RNS-SWA based arithmetic architecture with design support tool characterized in 

addition (ADD), subtraction (SUB), multiplication (MUX) using RNS conversion technique 

properties on a multi ALU system which provide structural VHDL simulation descriptions 

summary for the RNS-SWA Based DNA sequences; improving low Power, high speed linear 

processing acceleration required in genetic sequences computing. Our proposed design work 

when implemented in PLD-RNS-SWA based high profile acceleration comparator, exhibits a 

greater significant percentage speed when compare with the non RNS state of art profiler in real 

time processing design supporting a very high speed integrated Circuits. 

 

KEY WORDS:  Bioinformatics. Residue Number System, Smith Waterman Algorithm, DNA 

Sequence Alignment, Programmable Logic Design, Moduli set, Hardware Accelerator 

Architecture,  
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INTRODUCTION  
 

Residue Number Systems (RNS) allow the distribution of large dynamic range computations over 

small modular rings, which allow the speed up of computations. This characteristic is 

predominantly known, and already used in many mathematical computing application including 

biological computing sequences. Every living organism is made up of living cells which consist 

of genetic information that make it different and unique from another organism. These genetic 

information are carried by a chemical known as DNA in the nucleus of the cell.[14];[17]The DNA 

of an organism consists of  an interwoven strands that forms a double helix. Each strand is built 

from residues of molecules called nucleotide. A nucleotide consists of two parts viz: a phosphate 

group and a sugar group called deoxyribose, these two parts from the ribbon like backbone of the 

DNA strand and are identical in all nucleotides.[13],[17] 

 

One of the paramount parameter to be considered in the field of Bioinformatics computing is the 

emergence of precise accelerated high speed accurate performance computing architecture device. 

This become necessary as the volume of data to be processed grows continuously and demands 

for high speed accuracy in computing resources are becoming competitive, indispensable and  

should be taken into consideration. Many genetic algorithms such as FAST, BLAST, Needleman 

Wunsch Algorithm and SWA etc has been developed and used in recent past with defect in either 

accuracy or delay in computational speed process. These two factors demanding ability to rapidly 

sequence DNA information accurately are very essential tools in bioinformatics sequence 

computing, for example, the study of evolutionary trends correlating DNA information with 

disease where two genes were noted to be involved in the origins of breast cancer (Miki el at 1994) 

[13] such research is only possible through the help of high speed and accurate sequence 

comparison. 

  The choice of SWA which is the most accurate genetic algorithm for sequence alignment 

performs at the expense of delay computational time has been adopted in this work because of it 

capability to maneuver between the two ways classification models; the local and the global 

biological sequence alignment. In the first, the optimal value is calculated from the most similar 

sub-region common to both sequences while in the latter, the two sequences must be of similar 

length and the optimal value is computed from beginning to the end of the sequences [2]. In this 

phenomenon, the maximum efficiency can often be actively achieved simultaneously; where 

problem oriented approaches are used with demanding for the help of high speed sequence 

comparator. Residue Number System (RNS) is a non-weighted number system, with the absence 

of carries between the digits the arithmetic operations has been used to address the computation 

challenges of smith waterman dynamic algorithm based on Bioinformatics sequences. 

 

This research paper work enhance acceleration of SWA performance features for the 

implementation of high-speed performance computing architecture algorithms for DNA sequences 

using a conjugal Moduli sets with special method of data representation in Residue Number 

System and conversion technique to achieve the goal. [2],[5].  
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RELATED RESEARCH WORKS  

 

    Several research attempts have been reported for the systematic design of SWA performance 

implementation modules and compare both hardware and software requirement performance with 

the complete and fractional parts of the algorithm for the gene sequences. This is based among 

other factors on CRT representation, decomposition of residue number into the summation of its 

components and the final multi-operand modulo adders. 

  

      In [Gbolagade.et al,. 2009] carry out an implementation on 0(n) Residue Number System to 

Mixed Radix Conversion Technique. The Technique when compare with the state of art reduces 

the number of arithmetic operation by 5.6% and 38.64% for moduli set of length four and ten 

respectively [4].  

      In [Hassan Kehinde Bello and Kazeem Alagbe Gbolagade. 2018] proposed studies on the 

improvement on acceleration of Biological Sequence Alignment using Residue Number System. 

The percentage speed gained was compared with the state of art in which the work is 140.63% 

faster than [4] and also the run-time of the hardware implementation of the research work is 

40.66% indicating Timing simulation of RNS-SWA architecture critical delay of 10.38 ns better 

than [8]. 

       In   [Schroeder A. et al., 2014], work on implementation of the streaming architecture of the 

Graphics processing Units (GPUs) which can be used for biological sequence database scanning. 

GPUs are single-chip processors, used primarily for computing 3D functions, but is also a good 

candidate for bioinformatics applications such as sequence alignments [19]. To achieve an efficient 

mapping on this type of architecture, the authors have formulated the SWA in terms of computer 

graphics primitives and claimed that the evaluation of their implementation on a high-end graphics 

card shows a speedup of almost sixteen compared to Pentium-IV, 3.0 GHz processor. [19] 

       In [Laiq Hasan and Zaid Al-Ars 2007], the work divided the SWA into a number of functions, 

and then the time complexity of each function is measured, thus term known as code profiling. A 

software only implementation of the SWA is profiled on Pentium-IV, 3.2 GHz processor, using 

the GNU profiler. The profiling results identify the most time consuming function. This function 

is then designed in VHDL.[8] The processing run time of software -only implementation on 

Pentium-IV, 3.2 GHz processor and hardware implementation on Virtex II Pro FPGA are 

compared to evaluate the percentage runtime improvement. The results show that the hardware 

implementation is 35.82 times faster than its equivalent software-only implementation [7]. 

     In [Steve Margem, 2006], use the power of reconfigurable computing to accelerate substantially 

the performance of the SWA. The percentage time spent on calculating the elements of the matrix, 

Hi,j, was cut down by nearly a third and the absolute time spent on the algorithm dropped from 

6,461 seconds to a little over 100 seconds, approximately 64 times faster than the equivalent 

software-only implementation on AMD Opteron processors[17]. 

 



European Journal of Computer Science and Information Technology 

Vol.9, No.2, pp.35-60, 2021 

Print ISSN: 2054-0957 (Print),  

                                                                                 Online ISSN: 2054-0965 (Online) 

38 
 

       In [Oliver T. et al., 2005], showed a new approach to bio-sequence database scanning using 

reconfigurable FPGA-based hardware platforms to gain high performance at low cost.[14] Their 

FPGA implementation achieves a speedup of approximately 170, as compared to a Pentium-IV, 

1.6GHz processor. 

       In [Chiang J. et al., 2006], also studied the improvement of the computational processing time 

of the SWA using Custom Instructions (CIs) on an FPGA board.[11] This was done by first writing 

the SWA in pure software and replacing the portion which was the most computationally intensive 

with an FPGA custom instruction. Particularly, the designed CIs were on an Altera Nios II 

integrated development environment. The Nios II soft microprocessor was instantiate on an FPGA 

to allow rapid prototyping of new designs. Finally, they compared the processing runtime between 

the pure software and the hardware acceleration versions to calculate the percentage of runtime 

improvement. The results showed that the hardware accelerated algorithm improvement the 

processing runtime by an average of 287%. Thus using FPGA CIs is a promising direction for 

further research in improving genomic sequence searching [11]. 

      In [Yamaguchi Y. et al., 2002], proposed a high speed sequence alignment using run-time 

reconfigurable computing. With this approach, it is demonstrated that high performance can be 

achieved using off-the-shelf FPGA boards. The performance is almost comparable with dedicated 

hardware systems. The time for comparing a query sequence of 2048 elements with a database 

sequence of 64 millions elements by the SWA is about 34 seconds, which is about 330 times faster 

than a desktop computer with a Pentium-III, 1.0 GHz processor.[20]  

 

METHODOLOGY 

The reconfigurable RNS-SWA Based Arithmetic architecture, using appropriate RNS computer 

arithmetic property techniques is implemented to solving the computational area challenges 

associated with SWA. First, with three moduli set 2n-2 + 1, 2n, 2n-2 – 1 selection and design 

comparator having a dynamic range of 2n bits placed on a PLD system with hardware description 

language VHDL design and on a Very High Speed Integrated Circuit (VHSIC).The known 

inherent RNS arithmetic features is acquired to speeding up the SWA computation rate in the RNS 

architecture net work. 

Parallel conversions implementation in the RNS digital system which comprises of the functional 

units of RNS Processor 1, 2, 3 components; adders, subtractors, shifters, Buses for transfer of Hi,j 

data between the different Processor components and multipliers, Registers , Arithmetic and Logic 

Units (ALUs) and comparators where MAX Hi,j output Residues from the computation is returned 

and compared with non RNS the state of art profiler using CRT to accomplished the goal. 

 

Proposed Conjugal Moduli Set Selection Criteria. 

 

In this work we find it necessary to select balanced three conjugal moduli set with respect to the 

magnitude and complexity of DNA sequence computations such that any failure, resulting time 

delay for some threads is avoided. 

 



European Journal of Computer Science and Information Technology 

Vol.9, No.2, pp.35-60, 2021 

Print ISSN: 2054-0957 (Print),  

                                                                                 Online ISSN: 2054-0965 (Online) 

39 
 

We consider that the magnitude of the largest modulus which dictates the speed of the arithmetic 

operations enable us to use moduli set with smaller dynamic range; where matrix partitioning has 

to be used in this work based on the fact that the comparison of two long strings is done using a  

divide and conquer approach. 

 

Efficiency of the RNS moduli set is principally considered and high efficiency is more desirable, 

example the RNS (15|13|11) require 12 bits it can represent 212 = 4096, whereas only 2145 

numbers are presented in which the efficiency is 52%  

 

Selection of the conjugal moduli is in this work is based on relatively (pair wise) prime with gcd 

(mi, mj) = 1 for all mi ≠ mj compliance which simplify that binary to RNS and RNS to binary 

conversions as implemented are simple RNS arithmetic. 

 

The conjugal Moduli numbers set is restricted to power of 2 with optimum large dynamic range to 

avoid overflow. Noting that the smaller the moduli, the faster the arithmetic operations and also 

the higher the dynamic range of the conjugal moduli set, the faster it’s forward conversion and the 

slower its reverse conversion. 

 

Each moduli mi is kept as small as possible such that operations modulo mi which require 

minimum computational time has a well balanced decomposition of the dynamic range. This 

means that the difference in word length between these moduli is as small as possible. 

 

The RNS Modular Arithmetic Computations.  

 

RNS is based on modular non-positional representation of numbers. Each digit in RNS is a residue 

of the division by a number called a base. All bases for each digit are form a moduli set. The 

uniqueness of the representation of numbers in RNS is only guaranteed under the condition that 

all moduli are pair wise co prime. Let m1,m2,m3…mn  be a given moduli set. 

 It determines a unique RNS. A number  X  in this RNS can be represented as follows: X = 

(x1,x2.x3…..xn) , where xi = x mod mi   for  all i = 1,2,3,…n  and in according to Chinese Remainder 

Theorem  X should belong to the interval [O,M], where  M = m1,m2,m3…mn  is dynamic range of 

the RNS. 

With such a representation, addition and multiplication can be done in parallel. Let X = (x1,x2,x3,   

xn) and Y = (y1,y2,y3,….yn) be numbers in RNS then their sum S = X+Y = (s1,s2,s3,…sn)  and product 

Q = X-Y = (q1,q2,q3,….qn) can be computed using following formulas si  = (xi + yi)Mod mi and qi 

=  (xi - yi)Mod mi , for all I = 1,2,3,..n. These operations do not require carries between digits as in 

positional number systems.  



European Journal of Computer Science and Information Technology 

Vol.9, No.2, pp.35-60, 2021 

Print ISSN: 2054-0957 (Print),  

                                                                                 Online ISSN: 2054-0965 (Online) 

40 
 

This property allows performing these operations independently. However, computations in RNS 

require a number of specific operations, without which it is impossible to represent numbers in 

RNS [3], 

Parallel RNS Arithmetic Operations.  

 

The main advantage of RNS in the context of high performance computing is the opportunity to 

do some operations in parallel; Addition and multiplication have asymptotical complexity O(N) 

and O(N2) respectively. In the best case multiplication has complexity O (Nlog2N log2 log2N) [6]. 

Using this property and combining addition and multiplication, we can achieve a dramatic increase 

in speed of computations, which are done in parallel in reverse conversion chamber of RNS 

comparator architecture. 

For any n - bit nonnegative integer X in the range 0 ≤ X ≤ 2n-2 - 1 can be represented in the 

weighted binary system as 

          N-1 

X=      ∑    bi 2
i      Where b є [0, 1]        [1]  

          i = 0 

The binary value of X can be converted into a set of n residues as x, where xi = X mod mi.  

The values of xi can be found by the following steps:  

 N-1 

X=      ∑    bi 2
i             

 [2] 

 i = 0 

Let X mod mi = │X│mi   Then       

        N-1 

│X│mi   =   ∑ bi │ 2i│            the term 2i    
mi        

       i = 0   mi 

Also for any n - bit signed integer X in the range 0 ≤ X ≤ 2n - 1 , the residues of X can be 

represented in the 21s   complement form as; 

                n-1 

X2
i  = (bn bn-1 ……b1 b0) = - bn 2n + ∑    bi 2

i         [3] 

                 i = 0 

Let xi = X mod mi 

 

         n-1  

Then xi   =     bn (mi -   2n    
mi )  + ∑ bi   2

i    

       i = 0        m         mi      [4] 

 
The value of    2i            can be pre computed from xi  

        
mi

 

Based on the length of the moduli set. The value of X parameter is further enhanced form equation [1] above. This is achieved by 

substitute in eq [5] with 
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X =
 x1 + mi    k1m1+ k2m1m2 + k3 m1m2m3 + kn m1m2……mn-1    m2m3 mn-1                       [5] 

X = x1 +m1    k1(x2-x1) + k2m2 (x3-x2) + ….. kn mn ( xn + 1 – xn -1)      m2m3 mn-1                        [6] 
 

Such that  k1m1  m2m3 = 1   where   k
1
 =  m

1
-1  

m2m 3   and      kn m1 m2 …..mn – 1   mn =  1 
  

-M-1 ≤ X ≤ M-1   if M is odd               [7] 

  2      2            

- M ≤ X ≤ M _ 1 if M is even           [8] 

   2     2 

The conversion of X from Eq 4 representation to RNS can be done in K iterations. But if we 

consider a full parallelization, with n modular multiplier-adders MMA, this conversion can tend 

to be logarithmic where O (log K) such that (MMA) forms the basic operator of RNS computing. 

If m1, m2. . . mn are set of moduli, then the dynamic range (M) is the product of all the moduli set.  

     It is noted that when M = (m1, m2, . . . , mn) and  Mi = (mi
1, m

i
2, . . . , m

i n) form the two RNS 

bases such that we  use from Eq [4]  the proof of the Chinese Remainder Theorem and Lemma can 

be shown, such that a solution of the following System: X = x1 (mod m1), x2 (mod m2), x3 (mod 

m3) … xn (mod mn) can be drawn from Eq [4], Eq [5], Eq [6] [7] [8] then every representable 

number (X) satisfy either of the Eq  [4,5,6] 

 

The Computations Technique and Complexity in SWA 

The Smith Waterman algorithm SWA which finds the optimal local alignment between two 

sequences has the total time complexity of the SWA is Ο(M + N) + Ο(MN) + Ο(MN) = Ο(MN). 

The total footprint of the SWA is also Ο(MN), as it fills a single matrix size MN. In order to reduce 

the Ο(MN) complexity of the matrix fill stage, multiple entries of the H(i, j) are calculated in 

parallel [8; 4];[13] which makes it compares segments of all possible lengths and optimizes the 

similarity measure. 

 However, SWA is fairly demanding of time and memory resources; in order to align two 

sequences of lengths m and n, O (kmn) time and space are required. As a result, it has largely been 

replaced in practical use by the RNS algorithm; which guaranteed to find optimum hardware 

acceleration for SWA alignments. When obtaining the local alignment, a matrix Hi;j is used to 

keep track of the degree of similarity between the two sequences to be aligned (Ai and Bj) [4][13]. 

 Table1 illustrates the Hi,j algorithm process with each element of the matrix Hi,j is calculated in 

accordance with equation 7. 
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Fig.1. – Proposed Reconfigurable Schematic RNS-SWA Based Architecture Accelerator for 

DNA Sequences computation. 

 

THE SMITH-WATERMAN ALGORITHM IMPLEMENTATION. 

 

The SW algorithm finds the optimal local alignment between two sequences, such that a matrix 

Hi;j is used to keep track of the degree of similarity between the two sequences to be aligned (Ai 

and Bj) [8][4].[13] Each element of the matrix Hi,j is calculated according to the following 

equation:  

      0 

                             Hi – 1, j – 1 + Si,j       Diagonal entry 

Hi,j = Max        Hi – 1, j – d   Upper entry        ………               [9] 

 

        Hi, j - 1 – d Left entry  
 

H(i-1,j-1) 

H(i-1,j-

d) 

MAX H(i,j) 
H(i,j-1-d) 

Weighted  

Number 

Weighted  

Number 

Mod 2n 

Mod 2n-2-+1 

 

Mod 2n-2--1 

 

Binary 

 To 

RNS 

(Residue 

Converter

) 

RNS 

comparator 

RNS To 

Binary 

 

 (Binary to Residue Converter) 

 

Binary 

 

S(I,j) 

 

d 
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Where:  
  

H is the matrix value of the essential cell with H (i; j) is the maximum similarity score between 

the two sequences. S is the score of the cell Si;j which is the similarity score of comparing sequence 

Ai to sequence Bj and d is the gap alignment and penalty for a mismatch. i, j describe row and 

column  Diagonal, Upper and Left entries are the matrices entry position relative to the current 

H(i;j) calculation. 

 

. 

The instruction 

selection set of SW 

algorithm 

 

SWA Pseudo Code 

implementation 

 

Software Matrix 

implementation for DNA 

Sequences. 

 

Remark 

1. Initialization of 

matrix considering the 

two sequences A and 

B. 

2. Matrix filling with 

the suitable scores. The 

two sequences are set 

in a matrix form by 

means of A+ 1 column 

and B+1 row with the 

values in the first row 

and first column set to 

zero. 

3. The Trace back 

Matrix begin from the 

position having the 

highest value, pointing 

back, consequently 

find out the possible 

predecessor, then go to 

next predecessor and 

continue until it reach 

the score 0 the optimal 

alignment of smith 

program. 

1 Declare an n x m 

similarity matrix; 

 

2 Initialize the top row (i 

= 0) and left column (j = 

0) with 0; 

 

 3 for i = 1; i < length 

(Sequence); i++ do 

 

  4 for j = 1; j < length 

(Sequence); j++ do 

   5 H(i,j) = 

max{0;H(i-1; j-

1)+S(i;j);H(i-1; j)-d; H(i; 

j-1)-                      d}; 

   

  6 end 

 7 end 

8       Save index of 

term that contributed to 

the calculated value in 

H(i,j); 

9       Find maximum 

value in n x m matrix; 

10     Using saved 

indices in 8, trace back to 

find 0 encountered; 

 

In calculating the local 

alignment, matrix H(i; j) is 

used to keep track of the 

degree of similarity between 

the two sequences Ai and Bj 

to be aligned. Each element 

of the matrix H(i; j) is 

calculated in equation:5. 

SWA finds the optimal local 

alignment between two 

sequences. 

 

 local alignment longest 

common subsequence (LCS) 

result for the two DNA 

sequences, A and B is 

obtained with the resulting 

alignment as: G, C, C, A, G 

The 

resulting 

LCS 

alignment 

is 

obtained 

as: G, C, 

C, A, G 
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Table1 illustrates the Hi,j algorithm process with each element of the matrix Hi,j  calculated 

in accordance with equation 9. 

 

M*N Table Matrix implementation of the Smith Waterman Algorithm Based Dynamic 

Program. 

 

  G C C C T A G C G 

   0 0 0 0 0 0 0 0 0 0 

G 0          

C 0          

G 0          

C 0          

A 0          

A 0          

T 0          

G 0          
Tab1M*N Matrix Initialization: Si,j. For i = j = 0 

      

  

 

 

 

 

 

 M*N Table 3: The SWA Base DP Matrix 

            and the Trace Back Path 

 

M*N Table 2: Matrix Fill in: 

Si,j.  = + i for i → (-n ≤ i ≤ n) 

 

Review of Matrix sequence alignment statistics. 

The M*N Table Matrix above illustrates the Pairwise sequence alignment algorithms which assign 

a score to the alignment of each pair of sequences. A larger score implies a closer biological 

relationship. Iterative sequence alignment tool, SWA builds on these pairwise sequence alignment 

algorithms. In each iteration the pairwise sequence alignment algorithm is used to search a large 

sequence in database leading to a list of hits ordered by their scores. From the high scoring 

alignments, a multiple alignment is created. This determines the scoring system of the next 

iteration. The crucial step between iterations is deciding which of the hits to keep or rejected as 

  G C C C T A G C G 

 0 

 

0 0 0 0 0 0 0 0 0 

G 0 

 

1 1 1 1 1 1 1  1 1 

C 0 

 

1 2 2 2 2 2 2 2 2 

G 0 

 

1 2 2 2 2 2 3 3 3 

C 0 

 

1 2 3 3 3 3 3 4 4 

A 0 

 

1 2 3 3 3 4 4 4 4 

A 0 

 

1 2 3 3 3 4 4 4 4 

T 0 

 

1 2 3 3 4 4 4 4 4 

G 0 1 2 3 3 4 4 5 5 5 

  G C C C T A G C G 

 0 0 0 0 0 0 0 0 0 0 

G 0 1 1 1 1 1 1 1 1 1 

C 0 1 2 2 2 2 2 2 2 2 

G 0 1 2 2 2 2 2 3 3 3 

C 0 1 2 3 3 3 3 3 4 4 

A 0 1 2 3 3 3 4 4 4 * 

A 0 1 2 3 3 3 4 4 4 4 

T 0 1 2 3 3 4 4 4 4 4 

G 0 1 2 3 * 4 4 5 5 5 
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irrelevant putative members of the family. A reliable quantitative criterion for this decision is 

reflected in Eq. 10 with the optimal local alignment of two sequences:  

   A = G C C C T A G C G    :   B = G C G C A A T G  Such that: 

             +2 if (Ai = Bj ) 

 Si, j=                                

           -1 else         Where d = 2       [10] 

 

The matrix Hi.j and the trace back path shown in red bold digits. The best score found in the matrix 

is 5 and the corresponding optimal local alignment is   A: G C C C T A G C G    and        B: G C 

G C A A T ─ G 
 

The SWA Comparator Process with DNA Sequence 

 

 
 

Fig.2. Block diagram description of a basic cell for computing Hi;j values of Eq.1. 

 

 

 Computation of SWA Using Traditional Acceleration Technique. 

The figure2 above illustrates the block diagram of a basic cell for computing elements of the Hi;j 

matrix in accordance with traditional acceleration approach. The initial comparator (Comp1) 

compares the two input sequences yielding the corresponding outputs value of Si;j, base on the 

values of the match and mismatch scores, such that Si;j equates match score, if the corresponding 

characters of Sequence1 and Sequence2 are equal, otherwise Si;j equates mismatch score. Add1 is 

an adder that adds the diagonal element Hi¡1; j¡,1 and the value of Si;j . 

The second comparator (Comp2) is a comparator that compares the output of the Add1 with a 

constant value 0 and outputs the greater of the two numbers. Add2 is an adder that adds the left 

element Hi¡1;j and -d, where d is the gap penalty. Add3 is an adder that adds the upper element 

Hi;j¡1 and -d. Comp3 compares the outputs of Add2 and Add3 and outputs the greater of the two 
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numbers. Comp4 compares the outputs of Comp2 and Comp3 and results the greater of the two 

numbers.  

The output of Comp4 is the corresponding Hi;j value, which is stored in register Ri;j. The matrix 

is initialized with the value zero. The gap penalty is assumed to have a value zero and a simple 

scoring scheme is assumed, such that Si;j = 2, if there is a match otherwise Si;j = 0. 

 

The next paragraph is accompanied by the architectural organization of the acceleration logic of 

the RNA SWA based implementation made up of three major building blocks: 

 

 

ACCELERATION IMPLEMENTATION OF RNS-SWA BASED HARDWARE 

ARCHITECTURE.  

Methods for Hardware Acceleration Implementation of the Matrix Fill Step are executed in three 

parallel forms. 

 

Forward converter 

 

The forward converter implies the Binary to RNS Conversion decompose the binary value into an 

array of power of two values, and sum them up with modular adders. The operands input which 

are indispensable to the RNS processor are either in the decimal or binary format, and must be 

converted into their respective residues before they are used for the computation. In this conversion 

unit, the memory less conversion process of the SWA inputs: H (i-1; j -1), S (i; j), H (i-1; j), H (i; 

j-1) and d, as in Eq [7] is executed by the Binary to RNS Converter into their residue equivalents.  

     Using restricted conjugal moduli set m = 2n-2-1,  2n, 2n-2+1 where n = 4, M = 240 with 2n Bits 

dynamic range having sub matrices element restricted value within the interval of -120, +119. The 

unique decimal numbers in the RNS system is principal dictator and determinant and is based on 

the sizes, the numbers and the length of sub matrix string such that the residue generation values 

is greatly applied and simplified in the combinational logic.  

     The proposed conjugal moduli set is fed into the VHDL software application of Quartus II 

version 4.0 using schematic embedded software capture tool. The screen short schematic of the 

RNS forward converter is represented using the design tool shown in Figure 3. 

 

Implementation is carried out by partitioning the binary number into blocks and then concurrently 

carrying out modular exponentiation on all the partitions. A 16 bit residue is implemented with the 

speed of the residue computation further accelerated using 4 times as many multiplexer enabling  

modular exponentiation to be performed in a clock cycle. 

 

The dynamic range M of the decimal number for the conjugal moduli set is an 8 bit binary number 

partitioned into two 4 bits as x and y with second nibble added to the in two’s complement X→ 

X0, X1, X2, X3 called the high order bits of the binary representation and Y→ Y0, Y1, Y2, Y3, as 

low order 2n bits. Both X and Y bits are added by a parallel adder (PARDD). 
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The second stage of addition emanates from X8 and form operand specifying the sum from 

PARDD1, identity called P1, P2, P3, P4,P5 P6, P7,P8. Execution between PARD1 and PARD11 is 

the combinatorial process done by the carry-out (Cout) and the sum from PARD1 logic.│X│2n → 

M mod 16 represents the sum without the (Cout) ;│X│2n-2+1 → M mod 5 ;│X│2n-2 -1 → M mod 

3  is the 4 bit Y. The residues produced are then used to execute carry free addition, borrow free 

subtraction by the three RNS processors as shown in Figure 1. Each of the residue processors does 

concurrent data processing, independent of each other, and thereby speeding up the arithmetic 

operation involves in the calculation of the SWA 

 

 
Figure 3: Schematic diagram of the RNS Forward Converter 

 

The RNS-SWA Based Processor 

 

The RNS-SWA based arithmetic operations is the microprocessor stage. The design logic consists 

of two multiplexers (MUXs), each consisting of eight inputs and four outputs, two modulus 16 

parallel adders, one modulus 5 and 3 both parallel adder and a control unit that controls the data 

selections in the two MUXs . 

 

The logic in the control unit controls the sequencing of these additions by exploiting the inherent 

potential properties of RNS to do carry-free Arithmetic without partial product. These 

binary/decimal values are converted into residues numbers by the Binary to RNS Converter 

(BRC), called (RNS forward Conversion) [14],[11],[17]. 

     The residues produced using two or three sets of four bit-sliced 3 or 2-to-1 multiplexers, two 

modulus 16 parallel adders, one either modulus 5 or 3 or both. The  parallel adder and a control 

unit are then used to execute carry free addition, borrow free subtraction by the three RNS 

processors [Fig1] in accordance with Equation 5.The Sequential process of these arithmetic logic 

operations is tabulated as follow: 
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   S/N Sequential 

Process 

Logical 

Component of 

Arithmetic 

Operation 

Process 

Components 

  Step1 Diagonal 

Addition 

 H(i-

1,j1+S(i,j) 

H(i-1,j-1;       

S(i, j), 

  Step2 Upper 

Addition 

H(i-1,j)+ (- d) 

 

H (i-1,j);(-d). 

  Step3 Left 

Addition 

H(i,j-1) + (- d)  

 

H(i, j-1);(-d) 

 

Table2: Sequential process of arithmetic logic operations. 

 

The Component H(i-1,j1 is added to S(i,j)  as diagonal addition to produce  H(i-1,j-1;S(i, j),also is 

component H(i-1,j) is added to (- d) as upper addition producing H(i-1,j);(-d).lastly component 

H(i,j-1) is added to (- d) as left addition yielding  H(i, j-1);(-d) Each of the residue processors does 

concurrent data processing, independent of each other, and thereby speeding up the arithmetic 

operation involves in the SWA calculation.Fig.2. 

 

RNS-SWA Based Reverse Comparator Implementation.  
 

The RNS magnitude comparison stage the RNS-SWA reverse comparator performs reverse 

conversion of the residue results of the arithmetic operation by the RNS processor to twos 

complement (M) binary representation and compares them with zero and with each other. The 

decimal values corresponding to the four values H(i-1, j-1) + S(i, j), H(i -1, j) –d, H(i, j-1) –d and 

0 being compared [Fig.2] are read into two different registers in various clock cycles and then 

compared by a binary comparator. 

   The maximum value for the matrix score assignment is output to H (i,j) as shown in Fig.1 which 

ends the comparisons process. Two sequential processes (Diagonal versus Left) Addition are 

compared, yielding to the maximum summation of the three values. These three stages are 

implemented on a PLD system employing the inherent RNS arithmetic properties.  

 

 

 

 

 

 

 

 

 

 



European Journal of Computer Science and Information Technology 

Vol.9, No.2, pp.35-60, 2021 

Print ISSN: 2054-0957 (Print),  

                                                                                 Online ISSN: 2054-0965 (Online) 

49 
 

Parameter 

Combinational Resource 

Entities 

M RNS Forward 

Converter 

RNS-SWA  

Processors  

Final- RNS-SWA 

Reverse Converter 

Flow Status  Successful – Mon Jul     27. 21:15:52. 2020 

Revision Name MODULUS  16-5-3 RNS-Processor Final-SWA Processor 

Top-Level Entity Name MODULUS  16-5-3 RNS-Processor Final-SWA Processor 

Family MAX 7000 B Stratix  II Stratix  II 

Total Combination 

Function 

 27 143 

Device EPM 7032 BT 144- 5 EP2S16F484C3 EP2S16F484C3 

Total I/O PINs  20/36                [55%] 26/343        [7%] 32/343           [9%] 

Total Registers / Used  0/32                 [0%] 10 46 

Total Processors / Used 1 Processor     [100%] 2 Processor [20%] 4 Processor     [ 0%] 

No Detected on Machine  4[100%]  

Maximum Used / 

Allowed 

 3[75%]  

Total memory bits   0/419,328    [0%] 0 / 920,448     [0%] 

Total LABs   27 / 1,057       [2 %] 

Total PLLs   0/6               [0%] 0/6                  [0%] 

Total DLLs  0/2               [0%] 0/2                  [0%] 

Total ALUTs    34/12,480    [1%] 193/12,480     [1%] 

DSP block 9-bit element  0/96             [0%] 0/96                [0%] 

Parallel expanders 9/30                [30%]   

Sharable expanders 12/32               [37%]   

Number of p-terms used 89   

Maximum Fan-out node V0   

Maximum Fan-out 18   

Logic cells 20/32                [62%]  187 / 10,570  [1 %] 

Dedicated Input/clock 

Pins 

0/2                    [0%]   

Clock pins   5 /16       [31%] 

Global clocks   3 /16       [18%] 

Regional clocks   0 / 16 ( 0 % ) 

Global signal 0  3 

DIFFIOCLKs   0 / 16 ( 0 % ) 

SERDES transmitters   0 / 44 ( 0 % ) 

Maximum fan-out   44 

Total fan-out   741 

Average fan-out used 3.44 1.33 3.50 

 

Table3: Summary of Simulation and Parallel compilation report of the Circuit Resources 

Utilization for RNS-SWA Based Architecture. 

 

The performance of the proposed accelerator was evaluated in terms of speed and hardware cost. 

Table 3 shows the summary report of the parallel and final compilation and the performance 
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evaluation of RNS accelerator implementation where 2 out of 12,480  total logic elements within 

the device are used with a negligible number of the logic cell 193/12,480  (1%) within the device 

are also used when implemented on EP2S16F484C3 device (Cyclone 11). 

 

From fig.3 below it is seen that the simulation tool displays  B0 and B1 in  respect of 0 and 1 and 

also indicate at initial start of simulation 20.0 ns, with V = v3 v2 v1 v0  = 0010 and U = u3 u2 u1 u0 

= 0010, which signifies in twos complement the representation of the number is 0010 0010 .3410. 

at the said time P = V= 34 MOD 16 = 2 = p3 p2 p1 p0  = 0010 and Q = 34 MOD 5 and 4 = q3 q2 q1 

q0 =  0100.  

 

In the implementation, our n = 4 gives m = {16, 5, 3} with a dynamic range (M) of 240. Since the 

M is an even number, Eq [5] is applied, meaning the range of numbers that can be represented by 

this scheme is given to be - 120 ≤ X ≤ 119, which makes, the values representable by this dynamic 

range for signed number as shown in Table 4. On applying the scoring parameters {gap, match or 

mismatch} and RNS to equation [7], the range of our values will fall within Table 4. 

 
Decimal 

Number 
-120 -119 -118 … -3 -2 -1 … 0 1 2 3 … 117 118 119 

Hexadeci

mal  No. 
88 89 8A … FD FE FF … 00 01 02 03 … 75 76 77 

 

Mod [16] 
8 9 A … D E F … 0 0 2 3 … 5 6 7 

 

Mod [5] 
3 4 1 … 3 4 0 … 0 1 2 3 … 0 1 2 

Mod [3] 
 

1 2 0 … 1 2 2 … 0 1 2 0 … 2 0 1 

 

Conjugal

Mod [16, 

5 and 3] 

 

 

8,3.

1 

 

9,4,

2 

 

A,1,

0 

 

… 

 

D,3

,1 

 

E,4

,2 

 

F,0,

2 

 

… 

 

0,0,

0 

 

0,1

,0 

 

2,3,

2 

 

3,3

,0 

 

… 

 

5,0,2 

 

6,1,0 

 

7,2,1 

 

Table 4: The Residues Table for Conjugal Mod 16, 5 and 3 for signed numbers in 

hexadecimals. 

 

  

Figure: 3 Simulation snapshots view of the RNS-SWA Based Forward Converter 
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Figure 4. Simulation results of the RNS-SWA Based Processor 

 

 

PERFORMANCE EVALUATION OF THE ACCELERATOR IMPLEMENTATION. 

 

The % runtime improvement ratio of the RNS-SWA based implementation as compared to the 

state of art [9] is computed as 

 

The code was run using (6.4 GHz) processor, with the time period of the clock is    
     1                    
             = 0.15625ns.  [Proposed] 
6.4GHz 
 
No of Clock cycle = Clock Ticks * 64            

The actual times consumed by fill matrix functions. 

= 5.23 ms 

   100    

 = 0.05232 ms → 52.32 µs  

 

Total Simulation delay = 0.0146 µs  

 

The % runtime improvement is calculated using the equation below: 

 

 

      1   1 

       Hardware time     Fill matrx-2 time 

=  

   1      * 100 %           [11] 

  Fill matrx-2 time   

 

 

      1     1 

       Hardware time A     Hardware time B or Soft ware-Runtime 

=          * 100 % 

         1                        

  Hardware time  B or Soft ware-Runtime             [12] 
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    1   1 

=     (12.012)*10-9        (14.6)* 10-9 

        

  1       *100 % = 21.56536% 

         (14.6) * 10-9  

 

Clock speed = 185.53 MHz the runtime improvement design is achieved by substituting the 

software runtime value and the propagation delay of the proposed accelerator from [Eq.11] into 

[Eq.12]. Thus: 

  

Percentage Runtime Ratio:  = (14.6 x 10-9) / (12.012 x 10-9)* 100 

 =121.5451 

Hardware Runtime Improvement 

= 82.272%   

The performance of the proposed accelerator improvement was evaluated in terms of speed and 

hardware cost. The timing simulation of the proposed accelerator shows:  

The total delay = 12.012ns 

 

Function Related 

Scheme 

[9][14] 

Proposed 

Scheme 

(%) Ratio 

Deference 

The time 

period of the 

clock [MHz] 

0.3120 0.15625     49.9190 

No of Clock 

cycle 

16769280 19210426 12.7000 

Total times 

consumed by 

Fill matrix 

functions µs] 

52.3200 65.5300 20.1587 

Total 

Simulation 

delay  [ns]  

14.6010 12.0120 21.5534 

Hardware 

Runtime 

Improvement[

%] 

72.3300 82.2720 12.0840 

 

 

Table 5: Performance Evaluation Accelerator Implementation. 

 

The percentage runtime improvement of the hardware accelerator implementation of the fill matrix 

is achieved relatively as shown in Eq. 12 above. 
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Fig.5. Graphical implementation report for performance evaluation accelerator. 

 

Based on the implementation of the conjugal moduli set  2
n-2 + 1, 2n, 2n-2 – 1 and the runtime 

improvement of the hardware accelerator implementation. It is seen in Fig.5 that total simulation 

delay in our proposed scheme exhibits an approximate delay difference of 22% ns significance 

compare with [9][14]. Also the time period of the clock and it running time cycle, couple with total 

time of matrix fill exhibits corresponding 50% MHZ, and 13% and 20% µs respectively, this is an 

indication of efficient design procedure expected of RNS arithmetic algorithm for improving 

acceleration of SWA based gene sequences. 

 

  

 
 

Fig. 6.  Graphical implementation Report of Circuit Resources Utilization for the Proposed 

Architecture. 

 

The result presented shows the circuit consumption levels of the various bar chart classifiers used 

for the conjugal moduli set simulation experiments. From the result presented in the figure 6 above 

0
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and considering all the very top ten level bar chart simulation experiment, indicate that one or two 

or both out of the three simulation classifications dataset used in this work from the decision bar 

chart classifier algorithms shows a negligible lowest mean utilization of less 2% consumptions of 

the hardware resources. 

 

Testing Result and Time Consumed in SWA. 

 

Numbe

r of 

cells 

1*SCM 

(ms) 

Run/cell 

(ms) 

Numb

er of 

cells 

1*SC

M 

(ms) 

Run/

cell 

(ms) 

Numb

er of 

cells 

1*SC

M 

(ms) 

Run/

cell 

(ms) 

2*2 0.119 0.03 24*24 13.992 0.024 46*46 51.319 0.024 

4*4 0.395 0.025 26*26 16.389

  

0.024 48*48 55.842

  

0.024 

6*6 0.909 0.025 28*28 17.974 0.023 50*50 60.599 0.024 

8*8 1.607 0.025 30*30 21.845 0.024 52*52 65.488 0.024 

10*10 2.487 0.025 32*32 23.457 0.023 56*54 70.607 0.024 

12*12 3.550 0.025 34*34 28.031 0.024 56*56 75.974 0.024 

14*14 4.795 0.024 36*36 31.401 0.024 58*58 81.537 0.024 

16*16 6.224 0.024 38*38 35.004 0.024 60*60 87.268 0.024 

18*18 7.888 0.024 40*40 36.625 0.023 62*62 93.123 0.024 

20*20 9.738 0.024 42*42 42.780

  

0.024 64*64 99.210

  

0.024 

22*22 11.772 0.024 44*44 46.923 0.024    

 

Table 6:  The SWA performance in custom instruction through Cyclone IV board. 

The table above shows the identical length that is being tested in this work and is at ranges 1 to 64 

base pair shows the performance of custom instruction through Cyclone 4 board. The time taken 

for each cell is average with 0.024 ms/cell. Increasing for the full run time is reduced by 3.319 to 

1.065 with average runtime from 0.02 to 0.03 
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Figure 7: SWA Operating Characteristics Curve Performance in Cyclone IV board. 

The justification and demand for the enhanced implementation of the RNS-SWA accelerator 

arises. Fig.7 above illustrates the weakness of SWA, when the length per cell increases, the run 

time per cell fluctuate which later maintain constant. 

 

Comparison Scheme for Improving Bit Efficiency for the Three Moduli Set 

 

The bit efficiency of our proposed scheme in compares is better than the existing related scheme 

of O (n) linear complexity. 

Proof: 

Given the result for three moduli set, a three moduli set {m1 , m2 , m3 } and  three moduli set {m1
1, 

m2
1 , m3

1} such that the  Bit count of m1 , m2 , m3 → [ log (m1 )] + [log (m2)] + [log (m3)] is better 

than that of    {m1
1, m2

1 , m3
1} →  [log(m1

1)]+[log(m2
1)] +[log( m3

1)]   

 

If   m1 + m2 + m3{m1
1+ m2

1 + m3
1} and considering the tree types of three-moduli set, in table 

7 i.e. our proposed scheme (2n-2- 1,2n,2n-2 + 1)1 one (2n, 2n+1,2n-1) related scheme and another 

one related scheme 2n, 2n+1,2n-1 and  lastly  related  scheme  (2n, 2n-1,2n-1-1.with s0 + s1 + s2 + s3  

respectively: S0
1  s1, s0

1 s2, s0
1   s3 the equality can only exist when 2n can be represented as 2n 

, less than otherwise 

 

 Proposed Scheme Related Scheme  [5] Related Scheme [1] Related Scheme  [24] 

N 3-Moduli Set 

S0  (2n-2- 1,2n,2n 

2+1) 

 

No 

of 

Bits 

3-Moduli Set 

S1 : (2n, 2n+1,2n-1) 
No 

of 

Bits 

3-Moduli Set 

S2 : (2n, 2n+1,2n-1) 

No 

of 

Bits 

3-Moduli Set 

S3 : (2n, 2n-1,2n-1-1) 

No 

of 

Bits 

6 2,7,3 8 6,7,5 9 8,9,7 11 8,7,3 9 

10 3,16,5 12 12.13.11 12 17,17,15 14 16,15,7 12 

16 7,32,9 16 42,43,41 18 64,65,63 20 64,63,31 18 

24 15,64,17 24 256,257,255 26 512,513,511 29 512,511,255 27 

32 51,128,33 32 1626,1627,1625 33 2048,2049,2047 35 4096,4097,2047 37 
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Table 7: Comparison of Bit efficiency for three moduli set of proposed scheme with existing 

related scheme. 

 

In Table 7 comparison were performed for three-moduli set with different schemes indicated as: 

S1 : [5], S2 : [1], S3 :  [24] such that all these moduli exhibits co-prime numbers. 

 

 

 

 

The results has illustrated graphically in table 7 Figure 8  respectively as compared it is observed 

that bits required in our proposed scheme is minimum than that of other schemes of order O(n) 

hence our proposed algorithm generates the most efficient moduli set than all other related schemes 

[1],[5],[24] given in the Literature. This is an indication that our selected working moduli set 

parameters is able to optimized the time complexity and the corresponding bit efficiency to the 

dynamic range for the Reconfigurable accelerated RNS SWA based processor 

 

 

Steps Process Implementations Remark 

1 Moduli Set 

Selection 

The first stage implementation was done by carefully 

considering the magnitude and the bits efficiency of 

the conjugal modulus with respect to the dynamic 

range which dictates the speed and architecture 

resources optimization of the RNS arithmetic 

operations. 

Magnitude 

of moduli 

sets is 

highly 

considered 

2 The Design Entry RNS forward converter is entered into a Quartus II 

version 4.0 VHDL application software using the 

schematic embedded capture tool where selected pre-

stored library logic functions are interconnected to 

enabling the logic design. 

Both logic 

design and 

functions  

are 

integrated 

3 Implementation The implementation process is device dependent 

fitting resulting in a bit output. 

Logics are 

mapped 

into  

0
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specific 

device 

 

4 Functional 

Simulation 

This done by the software to confirm the expected                 

functionalities of the logic circuit which also to verify 

that the correct outputs is produced for a specified set 

of inputs. 

Verifies 

the  

correctness 

of I/O 

logic 

circuit 

5 Timing 

Simulation 

This is employed to ensure that the circuit works at 

the design frequency without either timing problems 

or propagation Delays that may affect the overall 

operational implementations of the circuit and 

hardware device.  

Post 

design 

work put 

into the 

specific 

Device 

 

Table 8: Summary table for the Implementations Process 

 

CONCLUSION  

The act of performing a Smith Waterman algorithm search task for biological gene pairs is both 

time consuming and computer resources intensive. In this work, we design a RNS SWA processor 

which can be reconfigured dynamically to compute some pre determined DNA functions where 

the unit operations need was analyzed and sequenced in terms of the inputs and arithmetic 

operations. The local alignment reduces the running time and increases accuracy of the sequence 

matching within two sequences. The improvement of parallel sequencing based RNS reduces 

greatly the system times, area and memory utilization. A reconfigurable RNS processor for specific 

conjugal moduli set 2n-2 + 1, 2n, 2n-2 – 1 and design comparator having a dynamic range of 2n bits 

were proposed with CRT and implemented in PLD system. The design generates a high speed 

conversion process with an efficient significant hardware requirement for the DNA sequences. The 

timing simulation accelerator of the proposed RNS-SWA architecture indicates that the total delay 

summation is 12.0120ns at a clock speed of 185.53 MHz The percentage speed gained in our work 

shows a significant percentage ratio difference of 12.0840 which is 82.273 % faster than the non 

RNS state of art profiler [9].This is an indication that there is hope in future prospect for the 

computer scientist researchers in the field of RNS arithmetic and bioinformatics in addressing the 

speed threats challenge in SWA. 

 

 

FUTURE WORK 

 

In the upcoming future, we will try to a built redundant Residue Number System Architecture 

Model Based DNA Processor capable to detect and correct single bit LCS error in DNA sequences 

and also include the possibility to build an optimal RNS Polynomial Arithmetic algorithm with 
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capability to optimize Scaling division complexity for addressing biological gene sequences 

computing complication. 
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