
European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

35

ACCELERATING SMITH WATERMAN ALGORITHM FOR OPTIMIZING GENE

SEQUENCES ALIGNMENT USING PARALLEL RESIDUE NUMBER SYSTEM

ARITHMETIC BASED ARCHITECTURE.

Olatunbosun Lukumon Olawale1

ICT Department of Computer Science,

The Federal University of Agriculture, Abeokuta, Nigeria.

Lawal Tunde Dauda2

ICT Department of Computer Science,

The Federal Polytechnic, Offa, Nigeria

Babatunde Ronke Seyi3

ICT Department of Computer Science,

 Kwara state University, Malete, Nigeria.

Gbolagade Kazeem Alagbe4

ICT Department of Computer Science,

Kwara State University, Malete, Nigeria.

ABSTRACT: The understanding of evolutionary relationships among biological entities enabled

computer scientist’s researchers to developing various arithmetic number bases systems with

remarkable genetic sequence alignment technique, where weaker analyses in homologous

sequence are acceleratory detected and implemented. Using SWA for continuous improvement in

the sensitivity of genes and proteins regulatory sequence alignment, three moduli sets are

presented for DNA sequence alignment with residue of each modulus independently of each other,

concurrently by parallel ALUs without carry propagation among them. Finally, we developed a

reconfigurable RNS-SWA based arithmetic architecture with design support tool characterized in

addition (ADD), subtraction (SUB), multiplication (MUX) using RNS conversion technique

properties on a multi ALU system which provide structural VHDL simulation descriptions

summary for the RNS-SWA Based DNA sequences; improving low Power, high speed linear

processing acceleration required in genetic sequences computing. Our proposed design work

when implemented in PLD-RNS-SWA based high profile acceleration comparator, exhibits a

greater significant percentage speed when compare with the non RNS state of art profiler in real

time processing design supporting a very high speed integrated Circuits.

KEY WORDS: Bioinformatics. Residue Number System, Smith Waterman Algorithm, DNA

Sequence Alignment, Programmable Logic Design, Moduli set, Hardware Accelerator

Architecture,

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

36

INTRODUCTION

Residue Number Systems (RNS) allow the distribution of large dynamic range computations over

small modular rings, which allow the speed up of computations. This characteristic is

predominantly known, and already used in many mathematical computing application including

biological computing sequences. Every living organism is made up of living cells which consist

of genetic information that make it different and unique from another organism. These genetic

information are carried by a chemical known as DNA in the nucleus of the cell.[14];[17]The DNA

of an organism consists of an interwoven strands that forms a double helix. Each strand is built

from residues of molecules called nucleotide. A nucleotide consists of two parts viz: a phosphate

group and a sugar group called deoxyribose, these two parts from the ribbon like backbone of the

DNA strand and are identical in all nucleotides.[13],[17]

One of the paramount parameter to be considered in the field of Bioinformatics computing is the

emergence of precise accelerated high speed accurate performance computing architecture device.

This become necessary as the volume of data to be processed grows continuously and demands

for high speed accuracy in computing resources are becoming competitive, indispensable and

should be taken into consideration. Many genetic algorithms such as FAST, BLAST, Needleman

Wunsch Algorithm and SWA etc has been developed and used in recent past with defect in either

accuracy or delay in computational speed process. These two factors demanding ability to rapidly

sequence DNA information accurately are very essential tools in bioinformatics sequence

computing, for example, the study of evolutionary trends correlating DNA information with

disease where two genes were noted to be involved in the origins of breast cancer (Miki el at 1994)

[13] such research is only possible through the help of high speed and accurate sequence

comparison.

 The choice of SWA which is the most accurate genetic algorithm for sequence alignment

performs at the expense of delay computational time has been adopted in this work because of it

capability to maneuver between the two ways classification models; the local and the global

biological sequence alignment. In the first, the optimal value is calculated from the most similar

sub-region common to both sequences while in the latter, the two sequences must be of similar

length and the optimal value is computed from beginning to the end of the sequences [2]. In this

phenomenon, the maximum efficiency can often be actively achieved simultaneously; where

problem oriented approaches are used with demanding for the help of high speed sequence

comparator. Residue Number System (RNS) is a non-weighted number system, with the absence

of carries between the digits the arithmetic operations has been used to address the computation

challenges of smith waterman dynamic algorithm based on Bioinformatics sequences.

This research paper work enhance acceleration of SWA performance features for the

implementation of high-speed performance computing architecture algorithms for DNA sequences

using a conjugal Moduli sets with special method of data representation in Residue Number

System and conversion technique to achieve the goal. [2],[5].

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

37

RELATED RESEARCH WORKS

 Several research attempts have been reported for the systematic design of SWA performance

implementation modules and compare both hardware and software requirement performance with

the complete and fractional parts of the algorithm for the gene sequences. This is based among

other factors on CRT representation, decomposition of residue number into the summation of its

components and the final multi-operand modulo adders.

 In [Gbolagade.et al,. 2009] carry out an implementation on 0(n) Residue Number System to

Mixed Radix Conversion Technique. The Technique when compare with the state of art reduces

the number of arithmetic operation by 5.6% and 38.64% for moduli set of length four and ten

respectively [4].

 In [Hassan Kehinde Bello and Kazeem Alagbe Gbolagade. 2018] proposed studies on the

improvement on acceleration of Biological Sequence Alignment using Residue Number System.

The percentage speed gained was compared with the state of art in which the work is 140.63%

faster than [4] and also the run-time of the hardware implementation of the research work is

40.66% indicating Timing simulation of RNS-SWA architecture critical delay of 10.38 ns better

than [8].

 In [Schroeder A. et al., 2014], work on implementation of the streaming architecture of the

Graphics processing Units (GPUs) which can be used for biological sequence database scanning.

GPUs are single-chip processors, used primarily for computing 3D functions, but is also a good

candidate for bioinformatics applications such as sequence alignments [19]. To achieve an efficient

mapping on this type of architecture, the authors have formulated the SWA in terms of computer

graphics primitives and claimed that the evaluation of their implementation on a high-end graphics

card shows a speedup of almost sixteen compared to Pentium-IV, 3.0 GHz processor. [19]

 In [Laiq Hasan and Zaid Al-Ars 2007], the work divided the SWA into a number of functions,

and then the time complexity of each function is measured, thus term known as code profiling. A

software only implementation of the SWA is profiled on Pentium-IV, 3.2 GHz processor, using

the GNU profiler. The profiling results identify the most time consuming function. This function

is then designed in VHDL.[8] The processing run time of software -only implementation on

Pentium-IV, 3.2 GHz processor and hardware implementation on Virtex II Pro FPGA are

compared to evaluate the percentage runtime improvement. The results show that the hardware

implementation is 35.82 times faster than its equivalent software-only implementation [7].

 In [Steve Margem, 2006], use the power of reconfigurable computing to accelerate substantially

the performance of the SWA. The percentage time spent on calculating the elements of the matrix,

Hi,j, was cut down by nearly a third and the absolute time spent on the algorithm dropped from

6,461 seconds to a little over 100 seconds, approximately 64 times faster than the equivalent

software-only implementation on AMD Opteron processors[17].

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

38

 In [Oliver T. et al., 2005], showed a new approach to bio-sequence database scanning using

reconfigurable FPGA-based hardware platforms to gain high performance at low cost.[14] Their

FPGA implementation achieves a speedup of approximately 170, as compared to a Pentium-IV,

1.6GHz processor.

 In [Chiang J. et al., 2006], also studied the improvement of the computational processing time

of the SWA using Custom Instructions (CIs) on an FPGA board.[11] This was done by first writing

the SWA in pure software and replacing the portion which was the most computationally intensive

with an FPGA custom instruction. Particularly, the designed CIs were on an Altera Nios II

integrated development environment. The Nios II soft microprocessor was instantiate on an FPGA

to allow rapid prototyping of new designs. Finally, they compared the processing runtime between

the pure software and the hardware acceleration versions to calculate the percentage of runtime

improvement. The results showed that the hardware accelerated algorithm improvement the

processing runtime by an average of 287%. Thus using FPGA CIs is a promising direction for

further research in improving genomic sequence searching [11].

 In [Yamaguchi Y. et al., 2002], proposed a high speed sequence alignment using run-time

reconfigurable computing. With this approach, it is demonstrated that high performance can be

achieved using off-the-shelf FPGA boards. The performance is almost comparable with dedicated

hardware systems. The time for comparing a query sequence of 2048 elements with a database

sequence of 64 millions elements by the SWA is about 34 seconds, which is about 330 times faster

than a desktop computer with a Pentium-III, 1.0 GHz processor.[20]

METHODOLOGY

The reconfigurable RNS-SWA Based Arithmetic architecture, using appropriate RNS computer

arithmetic property techniques is implemented to solving the computational area challenges

associated with SWA. First, with three moduli set 2n-2 + 1, 2n, 2n-2 – 1 selection and design

comparator having a dynamic range of 2n bits placed on a PLD system with hardware description

language VHDL design and on a Very High Speed Integrated Circuit (VHSIC).The known

inherent RNS arithmetic features is acquired to speeding up the SWA computation rate in the RNS

architecture net work.

Parallel conversions implementation in the RNS digital system which comprises of the functional

units of RNS Processor 1, 2, 3 components; adders, subtractors, shifters, Buses for transfer of Hi,j

data between the different Processor components and multipliers, Registers , Arithmetic and Logic

Units (ALUs) and comparators where MAX Hi,j output Residues from the computation is returned

and compared with non RNS the state of art profiler using CRT to accomplished the goal.

Proposed Conjugal Moduli Set Selection Criteria.

In this work we find it necessary to select balanced three conjugal moduli set with respect to the

magnitude and complexity of DNA sequence computations such that any failure, resulting time

delay for some threads is avoided.

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

39

We consider that the magnitude of the largest modulus which dictates the speed of the arithmetic

operations enable us to use moduli set with smaller dynamic range; where matrix partitioning has

to be used in this work based on the fact that the comparison of two long strings is done using a

divide and conquer approach.

Efficiency of the RNS moduli set is principally considered and high efficiency is more desirable,

example the RNS (15|13|11) require 12 bits it can represent 212 = 4096, whereas only 2145

numbers are presented in which the efficiency is 52%

Selection of the conjugal moduli is in this work is based on relatively (pair wise) prime with gcd

(mi, mj) = 1 for all mi ≠ mj compliance which simplify that binary to RNS and RNS to binary

conversions as implemented are simple RNS arithmetic.

The conjugal Moduli numbers set is restricted to power of 2 with optimum large dynamic range to

avoid overflow. Noting that the smaller the moduli, the faster the arithmetic operations and also

the higher the dynamic range of the conjugal moduli set, the faster it’s forward conversion and the

slower its reverse conversion.

Each moduli mi is kept as small as possible such that operations modulo mi which require

minimum computational time has a well balanced decomposition of the dynamic range. This

means that the difference in word length between these moduli is as small as possible.

The RNS Modular Arithmetic Computations.

RNS is based on modular non-positional representation of numbers. Each digit in RNS is a residue

of the division by a number called a base. All bases for each digit are form a moduli set. The

uniqueness of the representation of numbers in RNS is only guaranteed under the condition that

all moduli are pair wise co prime. Let m1,m2,m3…mn be a given moduli set.

 It determines a unique RNS. A number X in this RNS can be represented as follows: X =

(x1,x2.x3…..xn) , where xi = x mod mi for all i = 1,2,3,…n and in according to Chinese Remainder

Theorem X should belong to the interval [O,M], where M = m1,m2,m3…mn is dynamic range of

the RNS.

With such a representation, addition and multiplication can be done in parallel. Let X = (x1,x2,x3,

xn) and Y = (y1,y2,y3,….yn) be numbers in RNS then their sum S = X+Y = (s1,s2,s3,…sn) and product

Q = X-Y = (q1,q2,q3,….qn) can be computed using following formulas si = (xi + yi)Mod mi and qi

= (xi - yi)Mod mi , for all I = 1,2,3,..n. These operations do not require carries between digits as in

positional number systems.

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

40

This property allows performing these operations independently. However, computations in RNS

require a number of specific operations, without which it is impossible to represent numbers in

RNS [3],

Parallel RNS Arithmetic Operations.

The main advantage of RNS in the context of high performance computing is the opportunity to

do some operations in parallel; Addition and multiplication have asymptotical complexity O(N)

and O(N2) respectively. In the best case multiplication has complexity O (Nlog2N log2 log2N) [6].

Using this property and combining addition and multiplication, we can achieve a dramatic increase

in speed of computations, which are done in parallel in reverse conversion chamber of RNS

comparator architecture.

For any n - bit nonnegative integer X in the range 0 ≤ X ≤ 2n-2 - 1 can be represented in the

weighted binary system as

 N-1

X= ∑ bi 2
i Where b є [0, 1] [1]

 i = 0

The binary value of X can be converted into a set of n residues as x, where xi = X mod mi.

The values of xi can be found by the following steps:

 N-1

X= ∑ bi 2
i

 [2]

 i = 0

Let X mod mi = │X│mi Then

 N-1

│X│mi = ∑ bi │ 2i│ the term 2i
mi

 i = 0 mi

Also for any n - bit signed integer X in the range 0 ≤ X ≤ 2n - 1 , the residues of X can be

represented in the 21s complement form as;

 n-1

X2
i = (bn bn-1 ……b1 b0) = - bn 2n + ∑ bi 2

i [3]

 i = 0

Let xi = X mod mi

 n-1

Then xi = bn (mi - 2n
mi) + ∑ bi 2

i

 i = 0 m mi [4]

The value of 2i can be pre computed from xi

mi

Based on the length of the moduli set. The value of X parameter is further enhanced form equation [1] above. This is achieved by

substitute in eq [5] with

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

41

X =
 x1 + mi k1m1+ k2m1m2 + k3 m1m2m3 + kn m1m2……mn-1 m2m3 mn-1 [5]

X = x1 +m1 k1(x2-x1) + k2m2 (x3-x2) + ….. kn mn (xn + 1 – xn -1) m2m3 mn-1 [6]

Such that k1m1 m2m3 = 1 where k
1
 = m

1
-1

m2m 3 and kn m1 m2 …..mn – 1 mn = 1

-M-1 ≤ X ≤ M-1 if M is odd [7]

 2 2

- M ≤ X ≤ M _ 1 if M is even [8]

 2 2

The conversion of X from Eq 4 representation to RNS can be done in K iterations. But if we

consider a full parallelization, with n modular multiplier-adders MMA, this conversion can tend

to be logarithmic where O (log K) such that (MMA) forms the basic operator of RNS computing.

If m1, m2. . . mn are set of moduli, then the dynamic range (M) is the product of all the moduli set.

 It is noted that when M = (m1, m2, . . . , mn) and Mi = (mi
1, m

i
2, . . . , m

i n) form the two RNS

bases such that we use from Eq [4] the proof of the Chinese Remainder Theorem and Lemma can

be shown, such that a solution of the following System: X = x1 (mod m1), x2 (mod m2), x3 (mod

m3) … xn (mod mn) can be drawn from Eq [4], Eq [5], Eq [6] [7] [8] then every representable

number (X) satisfy either of the Eq [4,5,6]

The Computations Technique and Complexity in SWA

The Smith Waterman algorithm SWA which finds the optimal local alignment between two

sequences has the total time complexity of the SWA is Ο(M + N) + Ο(MN) + Ο(MN) = Ο(MN).

The total footprint of the SWA is also Ο(MN), as it fills a single matrix size MN. In order to reduce

the Ο(MN) complexity of the matrix fill stage, multiple entries of the H(i, j) are calculated in

parallel [8; 4];[13] which makes it compares segments of all possible lengths and optimizes the

similarity measure.

 However, SWA is fairly demanding of time and memory resources; in order to align two

sequences of lengths m and n, O (kmn) time and space are required. As a result, it has largely been

replaced in practical use by the RNS algorithm; which guaranteed to find optimum hardware

acceleration for SWA alignments. When obtaining the local alignment, a matrix Hi;j is used to

keep track of the degree of similarity between the two sequences to be aligned (Ai and Bj) [4][13].

 Table1 illustrates the Hi,j algorithm process with each element of the matrix Hi,j is calculated in

accordance with equation 7.

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

42

Fig.1. – Proposed Reconfigurable Schematic RNS-SWA Based Architecture Accelerator for

DNA Sequences computation.

THE SMITH-WATERMAN ALGORITHM IMPLEMENTATION.

The SW algorithm finds the optimal local alignment between two sequences, such that a matrix

Hi;j is used to keep track of the degree of similarity between the two sequences to be aligned (Ai

and Bj) [8][4].[13] Each element of the matrix Hi,j is calculated according to the following

equation:

 0

 Hi – 1, j – 1 + Si,j Diagonal entry

Hi,j = Max Hi – 1, j – d Upper entry ……… [9]

 Hi, j - 1 – d Left entry

H(i-1,j-1)

H(i-1,j-

d)

MAX H(i,j)
H(i,j-1-d)

Weighted

Number

Weighted

Number

Mod 2n

Mod 2n-2-+1

Mod 2n-2--1

Binary

 To

RNS

(Residue

Converter

)

RNS

comparator

RNS To

Binary

 (Binary to Residue Converter)

Binary

S(I,j)

d

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

43

Where:

H is the matrix value of the essential cell with H (i; j) is the maximum similarity score between

the two sequences. S is the score of the cell Si;j which is the similarity score of comparing sequence

Ai to sequence Bj and d is the gap alignment and penalty for a mismatch. i, j describe row and

column Diagonal, Upper and Left entries are the matrices entry position relative to the current

H(i;j) calculation.

.

The instruction

selection set of SW

algorithm

SWA Pseudo Code

implementation

Software Matrix

implementation for DNA

Sequences.

Remark

1. Initialization of

matrix considering the

two sequences A and

B.

2. Matrix filling with

the suitable scores. The

two sequences are set

in a matrix form by

means of A+ 1 column

and B+1 row with the

values in the first row

and first column set to

zero.

3. The Trace back

Matrix begin from the

position having the

highest value, pointing

back, consequently

find out the possible

predecessor, then go to

next predecessor and

continue until it reach

the score 0 the optimal

alignment of smith

program.

1 Declare an n x m

similarity matrix;

2 Initialize the top row (i

= 0) and left column (j =

0) with 0;

 3 for i = 1; i < length

(Sequence); i++ do

 4 for j = 1; j < length

(Sequence); j++ do

 5 H(i,j) =

max{0;H(i-1; j-

1)+S(i;j);H(i-1; j)-d; H(i;

j-1)- d};

 6 end

 7 end

8 Save index of

term that contributed to

the calculated value in

H(i,j);

9 Find maximum

value in n x m matrix;

10 Using saved

indices in 8, trace back to

find 0 encountered;

In calculating the local

alignment, matrix H(i; j) is

used to keep track of the

degree of similarity between

the two sequences Ai and Bj

to be aligned. Each element

of the matrix H(i; j) is

calculated in equation:5.

SWA finds the optimal local

alignment between two

sequences.

 local alignment longest

common subsequence (LCS)

result for the two DNA

sequences, A and B is

obtained with the resulting

alignment as: G, C, C, A, G

The

resulting

LCS

alignment

is

obtained

as: G, C,

C, A, G

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

44

Table1 illustrates the Hi,j algorithm process with each element of the matrix Hi,j calculated

in accordance with equation 9.

M*N Table Matrix implementation of the Smith Waterman Algorithm Based Dynamic

Program.

 G C C C T A G C G

 0 0 0 0 0 0 0 0 0 0

G 0

C 0

G 0

C 0

A 0

A 0

T 0

G 0
Tab1M*N Matrix Initialization: Si,j. For i = j = 0

 M*N Table 3: The SWA Base DP Matrix

 and the Trace Back Path

M*N Table 2: Matrix Fill in:

Si,j. = + i for i → (-n ≤ i ≤ n)

Review of Matrix sequence alignment statistics.

The M*N Table Matrix above illustrates the Pairwise sequence alignment algorithms which assign

a score to the alignment of each pair of sequences. A larger score implies a closer biological

relationship. Iterative sequence alignment tool, SWA builds on these pairwise sequence alignment

algorithms. In each iteration the pairwise sequence alignment algorithm is used to search a large

sequence in database leading to a list of hits ordered by their scores. From the high scoring

alignments, a multiple alignment is created. This determines the scoring system of the next

iteration. The crucial step between iterations is deciding which of the hits to keep or rejected as

 G C C C T A G C G

 0

0 0 0 0 0 0 0 0 0

G 0

1 1 1 1 1 1 1 1 1

C 0

1 2 2 2 2 2 2 2 2

G 0

1 2 2 2 2 2 3 3 3

C 0

1 2 3 3 3 3 3 4 4

A 0

1 2 3 3 3 4 4 4 4

A 0

1 2 3 3 3 4 4 4 4

T 0

1 2 3 3 4 4 4 4 4

G 0 1 2 3 3 4 4 5 5 5

 G C C C T A G C G

 0 0 0 0 0 0 0 0 0 0

G 0 1 1 1 1 1 1 1 1 1

C 0 1 2 2 2 2 2 2 2 2

G 0 1 2 2 2 2 2 3 3 3

C 0 1 2 3 3 3 3 3 4 4

A 0 1 2 3 3 3 4 4 4 *

A 0 1 2 3 3 3 4 4 4 4

T 0 1 2 3 3 4 4 4 4 4

G 0 1 2 3 * 4 4 5 5 5

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

45

irrelevant putative members of the family. A reliable quantitative criterion for this decision is

reflected in Eq. 10 with the optimal local alignment of two sequences:

 A = G C C C T A G C G : B = G C G C A A T G Such that:

 +2 if (Ai = Bj)

 Si, j=

 -1 else Where d = 2 [10]

The matrix Hi.j and the trace back path shown in red bold digits. The best score found in the matrix

is 5 and the corresponding optimal local alignment is A: G C C C T A G C G and B: G C

G C A A T ─ G

The SWA Comparator Process with DNA Sequence

Fig.2. Block diagram description of a basic cell for computing Hi;j values of Eq.1.

 Computation of SWA Using Traditional Acceleration Technique.

The figure2 above illustrates the block diagram of a basic cell for computing elements of the Hi;j

matrix in accordance with traditional acceleration approach. The initial comparator (Comp1)

compares the two input sequences yielding the corresponding outputs value of Si;j, base on the

values of the match and mismatch scores, such that Si;j equates match score, if the corresponding

characters of Sequence1 and Sequence2 are equal, otherwise Si;j equates mismatch score. Add1 is

an adder that adds the diagonal element Hi¡1; j¡,1 and the value of Si;j .

The second comparator (Comp2) is a comparator that compares the output of the Add1 with a

constant value 0 and outputs the greater of the two numbers. Add2 is an adder that adds the left

element Hi¡1;j and -d, where d is the gap penalty. Add3 is an adder that adds the upper element

Hi;j¡1 and -d. Comp3 compares the outputs of Add2 and Add3 and outputs the greater of the two

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

46

numbers. Comp4 compares the outputs of Comp2 and Comp3 and results the greater of the two

numbers.

The output of Comp4 is the corresponding Hi;j value, which is stored in register Ri;j. The matrix

is initialized with the value zero. The gap penalty is assumed to have a value zero and a simple

scoring scheme is assumed, such that Si;j = 2, if there is a match otherwise Si;j = 0.

The next paragraph is accompanied by the architectural organization of the acceleration logic of

the RNA SWA based implementation made up of three major building blocks:

ACCELERATION IMPLEMENTATION OF RNS-SWA BASED HARDWARE

ARCHITECTURE.

Methods for Hardware Acceleration Implementation of the Matrix Fill Step are executed in three

parallel forms.

Forward converter

The forward converter implies the Binary to RNS Conversion decompose the binary value into an

array of power of two values, and sum them up with modular adders. The operands input which

are indispensable to the RNS processor are either in the decimal or binary format, and must be

converted into their respective residues before they are used for the computation. In this conversion

unit, the memory less conversion process of the SWA inputs: H (i-1; j -1), S (i; j), H (i-1; j), H (i;

j-1) and d, as in Eq [7] is executed by the Binary to RNS Converter into their residue equivalents.

 Using restricted conjugal moduli set m = 2n-2-1, 2n, 2n-2+1 where n = 4, M = 240 with 2n Bits

dynamic range having sub matrices element restricted value within the interval of -120, +119. The

unique decimal numbers in the RNS system is principal dictator and determinant and is based on

the sizes, the numbers and the length of sub matrix string such that the residue generation values

is greatly applied and simplified in the combinational logic.

 The proposed conjugal moduli set is fed into the VHDL software application of Quartus II

version 4.0 using schematic embedded software capture tool. The screen short schematic of the

RNS forward converter is represented using the design tool shown in Figure 3.

Implementation is carried out by partitioning the binary number into blocks and then concurrently

carrying out modular exponentiation on all the partitions. A 16 bit residue is implemented with the

speed of the residue computation further accelerated using 4 times as many multiplexer enabling

modular exponentiation to be performed in a clock cycle.

The dynamic range M of the decimal number for the conjugal moduli set is an 8 bit binary number

partitioned into two 4 bits as x and y with second nibble added to the in two’s complement X→

X0, X1, X2, X3 called the high order bits of the binary representation and Y→ Y0, Y1, Y2, Y3, as

low order 2n bits. Both X and Y bits are added by a parallel adder (PARDD).

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

47

The second stage of addition emanates from X8 and form operand specifying the sum from

PARDD1, identity called P1, P2, P3, P4,P5 P6, P7,P8. Execution between PARD1 and PARD11 is

the combinatorial process done by the carry-out (Cout) and the sum from PARD1 logic.│X│2n →

M mod 16 represents the sum without the (Cout) ;│X│2n-2+1 → M mod 5 ;│X│2n-2 -1 → M mod

3 is the 4 bit Y. The residues produced are then used to execute carry free addition, borrow free

subtraction by the three RNS processors as shown in Figure 1. Each of the residue processors does

concurrent data processing, independent of each other, and thereby speeding up the arithmetic

operation involves in the calculation of the SWA

Figure 3: Schematic diagram of the RNS Forward Converter

The RNS-SWA Based Processor

The RNS-SWA based arithmetic operations is the microprocessor stage. The design logic consists

of two multiplexers (MUXs), each consisting of eight inputs and four outputs, two modulus 16

parallel adders, one modulus 5 and 3 both parallel adder and a control unit that controls the data

selections in the two MUXs .

The logic in the control unit controls the sequencing of these additions by exploiting the inherent

potential properties of RNS to do carry-free Arithmetic without partial product. These

binary/decimal values are converted into residues numbers by the Binary to RNS Converter

(BRC), called (RNS forward Conversion) [14],[11],[17].

 The residues produced using two or three sets of four bit-sliced 3 or 2-to-1 multiplexers, two

modulus 16 parallel adders, one either modulus 5 or 3 or both. The parallel adder and a control

unit are then used to execute carry free addition, borrow free subtraction by the three RNS

processors [Fig1] in accordance with Equation 5.The Sequential process of these arithmetic logic

operations is tabulated as follow:

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

48

 S/N Sequential

Process

Logical

Component of

Arithmetic

Operation

Process

Components

 Step1 Diagonal

Addition

 H(i-

1,j1+S(i,j)

H(i-1,j-1;

S(i, j),

 Step2 Upper

Addition

H(i-1,j)+ (- d)

H (i-1,j);(-d).

 Step3 Left

Addition

H(i,j-1) + (- d)

H(i, j-1);(-d)

Table2: Sequential process of arithmetic logic operations.

The Component H(i-1,j1 is added to S(i,j) as diagonal addition to produce H(i-1,j-1;S(i, j),also is

component H(i-1,j) is added to (- d) as upper addition producing H(i-1,j);(-d).lastly component

H(i,j-1) is added to (- d) as left addition yielding H(i, j-1);(-d) Each of the residue processors does

concurrent data processing, independent of each other, and thereby speeding up the arithmetic

operation involves in the SWA calculation.Fig.2.

RNS-SWA Based Reverse Comparator Implementation.

The RNS magnitude comparison stage the RNS-SWA reverse comparator performs reverse

conversion of the residue results of the arithmetic operation by the RNS processor to twos

complement (M) binary representation and compares them with zero and with each other. The

decimal values corresponding to the four values H(i-1, j-1) + S(i, j), H(i -1, j) –d, H(i, j-1) –d and

0 being compared [Fig.2] are read into two different registers in various clock cycles and then

compared by a binary comparator.

 The maximum value for the matrix score assignment is output to H (i,j) as shown in Fig.1 which

ends the comparisons process. Two sequential processes (Diagonal versus Left) Addition are

compared, yielding to the maximum summation of the three values. These three stages are

implemented on a PLD system employing the inherent RNS arithmetic properties.

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

49

Parameter

Combinational Resource

Entities

M RNS Forward

Converter

RNS-SWA

Processors

Final- RNS-SWA

Reverse Converter

Flow Status Successful – Mon Jul 27. 21:15:52. 2020

Revision Name MODULUS 16-5-3 RNS-Processor Final-SWA Processor

Top-Level Entity Name MODULUS 16-5-3 RNS-Processor Final-SWA Processor

Family MAX 7000 B Stratix II Stratix II

Total Combination

Function

 27 143

Device EPM 7032 BT 144- 5 EP2S16F484C3 EP2S16F484C3

Total I/O PINs 20/36 [55%] 26/343 [7%] 32/343 [9%]

Total Registers / Used 0/32 [0%] 10 46

Total Processors / Used 1 Processor [100%] 2 Processor [20%] 4 Processor [0%]

No Detected on Machine 4[100%]

Maximum Used /

Allowed

 3[75%]

Total memory bits 0/419,328 [0%] 0 / 920,448 [0%]

Total LABs 27 / 1,057 [2 %]

Total PLLs 0/6 [0%] 0/6 [0%]

Total DLLs 0/2 [0%] 0/2 [0%]

Total ALUTs 34/12,480 [1%] 193/12,480 [1%]

DSP block 9-bit element 0/96 [0%] 0/96 [0%]

Parallel expanders 9/30 [30%]

Sharable expanders 12/32 [37%]

Number of p-terms used 89

Maximum Fan-out node V0

Maximum Fan-out 18

Logic cells 20/32 [62%] 187 / 10,570 [1 %]

Dedicated Input/clock

Pins

0/2 [0%]

Clock pins 5 /16 [31%]

Global clocks 3 /16 [18%]

Regional clocks 0 / 16 (0 %)

Global signal 0 3

DIFFIOCLKs 0 / 16 (0 %)

SERDES transmitters 0 / 44 (0 %)

Maximum fan-out 44

Total fan-out 741

Average fan-out used 3.44 1.33 3.50

Table3: Summary of Simulation and Parallel compilation report of the Circuit Resources

Utilization for RNS-SWA Based Architecture.

The performance of the proposed accelerator was evaluated in terms of speed and hardware cost.

Table 3 shows the summary report of the parallel and final compilation and the performance

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

50

evaluation of RNS accelerator implementation where 2 out of 12,480 total logic elements within

the device are used with a negligible number of the logic cell 193/12,480 (1%) within the device

are also used when implemented on EP2S16F484C3 device (Cyclone 11).

From fig.3 below it is seen that the simulation tool displays B0 and B1 in respect of 0 and 1 and

also indicate at initial start of simulation 20.0 ns, with V = v3 v2 v1 v0 = 0010 and U = u3 u2 u1 u0

= 0010, which signifies in twos complement the representation of the number is 0010 0010 .3410.

at the said time P = V= 34 MOD 16 = 2 = p3 p2 p1 p0 = 0010 and Q = 34 MOD 5 and 4 = q3 q2 q1

q0 = 0100.

In the implementation, our n = 4 gives m = {16, 5, 3} with a dynamic range (M) of 240. Since the

M is an even number, Eq [5] is applied, meaning the range of numbers that can be represented by

this scheme is given to be - 120 ≤ X ≤ 119, which makes, the values representable by this dynamic

range for signed number as shown in Table 4. On applying the scoring parameters {gap, match or

mismatch} and RNS to equation [7], the range of our values will fall within Table 4.

Decimal

Number
-120 -119 -118 … -3 -2 -1 … 0 1 2 3 … 117 118 119

Hexadeci

mal No.
88 89 8A … FD FE FF … 00 01 02 03 … 75 76 77

Mod [16]
8 9 A … D E F … 0 0 2 3 … 5 6 7

Mod [5]
3 4 1 … 3 4 0 … 0 1 2 3 … 0 1 2

Mod [3]

1 2 0 … 1 2 2 … 0 1 2 0 … 2 0 1

Conjugal

Mod [16,

5 and 3]

8,3.

1

9,4,

2

A,1,

0

…

D,3

,1

E,4

,2

F,0,

2

…

0,0,

0

0,1

,0

2,3,

2

3,3

,0

…

5,0,2

6,1,0

7,2,1

Table 4: The Residues Table for Conjugal Mod 16, 5 and 3 for signed numbers in

hexadecimals.

Figure: 3 Simulation snapshots view of the RNS-SWA Based Forward Converter

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

51

Figure 4. Simulation results of the RNS-SWA Based Processor

PERFORMANCE EVALUATION OF THE ACCELERATOR IMPLEMENTATION.

The % runtime improvement ratio of the RNS-SWA based implementation as compared to the

state of art [9] is computed as

The code was run using (6.4 GHz) processor, with the time period of the clock is
 1
 = 0.15625ns. [Proposed]
6.4GHz

No of Clock cycle = Clock Ticks * 64

The actual times consumed by fill matrix functions.

= 5.23 ms

 100

 = 0.05232 ms → 52.32 µs

Total Simulation delay = 0.0146 µs

The % runtime improvement is calculated using the equation below:

 1 1

 Hardware time Fill matrx-2 time

=

 1 * 100 % [11]

 Fill matrx-2 time

 1 1

 Hardware time A Hardware time B or Soft ware-Runtime

= * 100 %

 1

 Hardware time B or Soft ware-Runtime [12]

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

52

 1 1

= (12.012)*10-9 (14.6)* 10-9

 1 *100 % = 21.56536%

 (14.6) * 10-9

Clock speed = 185.53 MHz the runtime improvement design is achieved by substituting the

software runtime value and the propagation delay of the proposed accelerator from [Eq.11] into

[Eq.12]. Thus:

Percentage Runtime Ratio: = (14.6 x 10-9) / (12.012 x 10-9)* 100

 =121.5451

Hardware Runtime Improvement

= 82.272%

The performance of the proposed accelerator improvement was evaluated in terms of speed and

hardware cost. The timing simulation of the proposed accelerator shows:

The total delay = 12.012ns

Function Related

Scheme

[9][14]

Proposed

Scheme

(%) Ratio

Deference

The time

period of the

clock [MHz]

0.3120 0.15625 49.9190

No of Clock

cycle

16769280 19210426 12.7000

Total times

consumed by

Fill matrix

functions µs]

52.3200 65.5300 20.1587

Total

Simulation

delay [ns]

14.6010 12.0120 21.5534

Hardware

Runtime

Improvement[

%]

72.3300 82.2720 12.0840

Table 5: Performance Evaluation Accelerator Implementation.

The percentage runtime improvement of the hardware accelerator implementation of the fill matrix

is achieved relatively as shown in Eq. 12 above.

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

53

Fig.5. Graphical implementation report for performance evaluation accelerator.

Based on the implementation of the conjugal moduli set 2
n-2 + 1, 2n, 2n-2 – 1 and the runtime

improvement of the hardware accelerator implementation. It is seen in Fig.5 that total simulation

delay in our proposed scheme exhibits an approximate delay difference of 22% ns significance

compare with [9][14]. Also the time period of the clock and it running time cycle, couple with total

time of matrix fill exhibits corresponding 50% MHZ, and 13% and 20% µs respectively, this is an

indication of efficient design procedure expected of RNS arithmetic algorithm for improving

acceleration of SWA based gene sequences.

Fig. 6. Graphical implementation Report of Circuit Resources Utilization for the Proposed

Architecture.

The result presented shows the circuit consumption levels of the various bar chart classifiers used

for the conjugal moduli set simulation experiments. From the result presented in the figure 6 above

0

5000

10000

15000

20000

25000

 Tim.P.Clock 50%
[MHz]

No. Clock cycle
13% [MHz]

Tot.Tim Fill matx
20% µs]

Tot Siml delay
22% [ns]

Rwlated Scheme [14]

Related Scheme [9][14]

Proposed Scheme

0
20
40
60
80

100
120
140
160

M RNS Forwd Covt[%]

RNS-SWA Procsr [%]

RNS-SWA Revs Covt [%]

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

54

and considering all the very top ten level bar chart simulation experiment, indicate that one or two

or both out of the three simulation classifications dataset used in this work from the decision bar

chart classifier algorithms shows a negligible lowest mean utilization of less 2% consumptions of

the hardware resources.

Testing Result and Time Consumed in SWA.

Numbe

r of

cells

1*SCM

(ms)

Run/cell

(ms)

Numb

er of

cells

1*SC

M

(ms)

Run/

cell

(ms)

Numb

er of

cells

1*SC

M

(ms)

Run/

cell

(ms)

2*2 0.119 0.03 24*24 13.992 0.024 46*46 51.319 0.024

4*4 0.395 0.025 26*26 16.389

0.024 48*48 55.842

0.024

6*6 0.909 0.025 28*28 17.974 0.023 50*50 60.599 0.024

8*8 1.607 0.025 30*30 21.845 0.024 52*52 65.488 0.024

10*10 2.487 0.025 32*32 23.457 0.023 56*54 70.607 0.024

12*12 3.550 0.025 34*34 28.031 0.024 56*56 75.974 0.024

14*14 4.795 0.024 36*36 31.401 0.024 58*58 81.537 0.024

16*16 6.224 0.024 38*38 35.004 0.024 60*60 87.268 0.024

18*18 7.888 0.024 40*40 36.625 0.023 62*62 93.123 0.024

20*20 9.738 0.024 42*42 42.780

0.024 64*64 99.210

0.024

22*22 11.772 0.024 44*44 46.923 0.024

Table 6: The SWA performance in custom instruction through Cyclone IV board.

The table above shows the identical length that is being tested in this work and is at ranges 1 to 64

base pair shows the performance of custom instruction through Cyclone 4 board. The time taken

for each cell is average with 0.024 ms/cell. Increasing for the full run time is reduced by 3.319 to

1.065 with average runtime from 0.02 to 0.03

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

55

Figure 7: SWA Operating Characteristics Curve Performance in Cyclone IV board.

The justification and demand for the enhanced implementation of the RNS-SWA accelerator

arises. Fig.7 above illustrates the weakness of SWA, when the length per cell increases, the run

time per cell fluctuate which later maintain constant.

Comparison Scheme for Improving Bit Efficiency for the Three Moduli Set

The bit efficiency of our proposed scheme in compares is better than the existing related scheme

of O (n) linear complexity.

Proof:

Given the result for three moduli set, a three moduli set {m1 , m2 , m3 } and three moduli set {m1
1,

m2
1 , m3

1} such that the Bit count of m1 , m2 , m3 → [log (m1)] + [log (m2)] + [log (m3)] is better

than that of {m1
1, m2

1 , m3
1} → [log(m1

1)]+[log(m2
1)] +[log(m3

1)]

If m1 + m2 + m3{m1
1+ m2

1 + m3
1} and considering the tree types of three-moduli set, in table

7 i.e. our proposed scheme (2n-2- 1,2n,2n-2 + 1)1 one (2n, 2n+1,2n-1) related scheme and another

one related scheme 2n, 2n+1,2n-1 and lastly related scheme (2n, 2n-1,2n-1-1.with s0 + s1 + s2 + s3

respectively: S0
1 s1, s0

1 s2, s0
1 s3 the equality can only exist when 2n can be represented as 2n

, less than otherwise

 Proposed Scheme Related Scheme [5] Related Scheme [1] Related Scheme [24]

N 3-Moduli Set

S0 (2n-2- 1,2n,2n

2+1)

No

of

Bits

3-Moduli Set

S1 : (2n, 2n+1,2n-1)
No

of

Bits

3-Moduli Set

S2 : (2n, 2n+1,2n-1)

No

of

Bits

3-Moduli Set

S3 : (2n, 2n-1,2n-1-1)

No

of

Bits

6 2,7,3 8 6,7,5 9 8,9,7 11 8,7,3 9

10 3,16,5 12 12.13.11 12 17,17,15 14 16,15,7 12

16 7,32,9 16 42,43,41 18 64,65,63 20 64,63,31 18

24 15,64,17 24 256,257,255 26 512,513,511 29 512,511,255 27

32 51,128,33 32 1626,1627,1625 33 2048,2049,2047 35 4096,4097,2047 37

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

56

Table 7: Comparison of Bit efficiency for three moduli set of proposed scheme with existing

related scheme.

In Table 7 comparison were performed for three-moduli set with different schemes indicated as:

S1 : [5], S2 : [1], S3 : [24] such that all these moduli exhibits co-prime numbers.

The results has illustrated graphically in table 7 Figure 8 respectively as compared it is observed

that bits required in our proposed scheme is minimum than that of other schemes of order O(n)

hence our proposed algorithm generates the most efficient moduli set than all other related schemes

[1],[5],[24] given in the Literature. This is an indication that our selected working moduli set

parameters is able to optimized the time complexity and the corresponding bit efficiency to the

dynamic range for the Reconfigurable accelerated RNS SWA based processor

Steps Process Implementations Remark

1 Moduli Set

Selection

The first stage implementation was done by carefully

considering the magnitude and the bits efficiency of

the conjugal modulus with respect to the dynamic

range which dictates the speed and architecture

resources optimization of the RNS arithmetic

operations.

Magnitude

of moduli

sets is

highly

considered

2 The Design Entry RNS forward converter is entered into a Quartus II

version 4.0 VHDL application software using the

schematic embedded capture tool where selected pre-

stored library logic functions are interconnected to

enabling the logic design.

Both logic

design and

functions

are

integrated

3 Implementation The implementation process is device dependent

fitting resulting in a bit output.

Logics are

mapped

into

0

10

20

30

40

6 10 16 24 32

N
u

m
b

e
r

o
f

R
e

q
u

ir
e

d
 B

it
s

Require Bit for Corresponding Dynamic Range

Comparison of Bit Efficiency for the moduli sets

Proposed scheme S0

Related Scheme S1 : [5]

Related Scheme S2 : [1]

Related Scheme S3 : [24]

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

57

specific

device

4 Functional

Simulation

This done by the software to confirm the expected

functionalities of the logic circuit which also to verify

that the correct outputs is produced for a specified set

of inputs.

Verifies

the

correctness

of I/O

logic

circuit

5 Timing

Simulation

This is employed to ensure that the circuit works at

the design frequency without either timing problems

or propagation Delays that may affect the overall

operational implementations of the circuit and

hardware device.

Post

design

work put

into the

specific

Device

Table 8: Summary table for the Implementations Process

CONCLUSION

The act of performing a Smith Waterman algorithm search task for biological gene pairs is both

time consuming and computer resources intensive. In this work, we design a RNS SWA processor

which can be reconfigured dynamically to compute some pre determined DNA functions where

the unit operations need was analyzed and sequenced in terms of the inputs and arithmetic

operations. The local alignment reduces the running time and increases accuracy of the sequence

matching within two sequences. The improvement of parallel sequencing based RNS reduces

greatly the system times, area and memory utilization. A reconfigurable RNS processor for specific

conjugal moduli set 2n-2 + 1, 2n, 2n-2 – 1 and design comparator having a dynamic range of 2n bits

were proposed with CRT and implemented in PLD system. The design generates a high speed

conversion process with an efficient significant hardware requirement for the DNA sequences. The

timing simulation accelerator of the proposed RNS-SWA architecture indicates that the total delay

summation is 12.0120ns at a clock speed of 185.53 MHz The percentage speed gained in our work

shows a significant percentage ratio difference of 12.0840 which is 82.273 % faster than the non

RNS state of art profiler [9].This is an indication that there is hope in future prospect for the

computer scientist researchers in the field of RNS arithmetic and bioinformatics in addressing the

speed threats challenge in SWA.

FUTURE WORK

In the upcoming future, we will try to a built redundant Residue Number System Architecture

Model Based DNA Processor capable to detect and correct single bit LCS error in DNA sequences

and also include the possibility to build an optimal RNS Polynomial Arithmetic algorithm with

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

58

capability to optimize Scaling division complexity for addressing biological gene sequences

computing complication.

REFERENCES

Abdallah, M. Skavantzos, A. (1995) A systematic approach for selecting practical moduli sets

for residue number systems, 27th Southeastern Symposium on System Theory, pp. 445.

Altschul, S. F., et al., (1990), A Basic Local Alignment Search Tools. In Journal of Molecular

Biology, vol 215, pp403 – 410.

Parhami, B.(1990) Generalized signed-digit number system. A unifying framework for redundant

number representation, IEEE Transactions on Computers,Vol. 39, No. 1, pp. 89-98,

Chang, C.H. Molahosseini, A.S., Zarandi, A.A.E., Tay, T.F.A (2015). New Paradigm to Data path

Optimization for Low-Power and High Performance Digital Signal Processing Applications. IEEE

Circuits and Systems Magazine .15 (4),26-44.

Chaitali B. D,, Partha.G and Amitabha.S.(2012).Design of a reconfigurable DSP processor with

bit efficient Residue Number System. International Journal of VLSI design and Communication

Systems (VLSICS) Vol.3, No.5,

Gbolagade. K.A. and Coton et al. (2009). An implementation on 0(n) Residue Number System to

Mixed Radix Conversion Technique. Proceedings –IEEE International Symposium on Circuits

and Systems.

 Gbolagade. K.A. (2012). An efficient MRC based RNS to Binary Converter for the {22n - 1, 2n,

22n-1 –1} moduli Set. International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET).2013; 2(10).

Gbolagade K.A et al.. Chaves R, Sousa. L, Cotofana .S. D. (2010). An Improved RNS reverse

converter for the {22n+1- 1,2n, 2n-1} moduli set. An IEEE International Conference on Circuits

and Systems (ISCAS 2010). Paris, France.2010;2103-2106.

 Hasan..L. and Al-Ars, .Z.(2007). Performance improvement of the Smith Waterman Algorithm.

An Annual workshop on circuits, systems and signal processing (ProRISC), (Veldhoven, The

Netherlands), November 29 - 30 2007.

Hassan. K. B. and Gbolagade .K. A. (2018). An Acceleration of Biological Sequence Alignment

Using Residue Number System. Asian Journal of Research in Computer Science 1(2): 1-10, 2018;

Article no.AJRCOS.42834

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

59

Hassan .K .B. Kazeem .A. G. (2016). Application of Smith-Wateman and Needleman Wunsch

algorithm in pairwise Sequence alignment of deoxyribonucleic acid. Proc. of the 1st International

conference of IEEE Nigeria Computer Chapter In collaboration with Dept. of Computer Science,

University of Ilorin, Ilorin, Nigeria;2016.

Hassan. K B. Gbolagade. K. A. (2018) Acceleration of algorithm of Smith-Waterman using

Recursive variable expansion. International Journal of Advanced Research in Computer

Engineering and Technology (IJARCET). 2018;7;(5). ISSN: 2278 – 1323

.

Chiang, J. Shaw, M. Stenberg, and K. Truong, (2006) Hardware accelerator for genomic sequence

alignment, August 30 - September 3, 2006.

Kwame O. Boateng and Edward Y. Baagyere (2012), A Smith-Waterman Algorithm Accelerator

Based on Liao

.

 Y.K, et al (2004) M. L. Yin, and Y. Cheng.. A parallel implementation of the Smith-Waterman

Algorithm for Massive Sequences Searching. September 1-5, 2004.

Miki,Y.,J. Swensen, D.Shattuck-Eidens, P.A. Futreal and K.Harshman et al,(1994).A Strong

candidate for the breast and ovarian cancer susceptibility gene BRCA1 Science,266;66-71.

Olatunbosun. L.O. et al 2019] Lawal .T. D. and Gbolagade .K. A.(2019) An Efficient RNS

Arithmetic in Bioinformatics- sequences. IJCSI International Journal of Computer Science Issues,

Volume 16, Issue 6, November 2019. ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784.

Oliver.T.B. et al Schmidt, and D. Maskell, (2005) hyper customized processor for bio-sequence

database scanning on FPGAs,

Omar Abdel Fattah (2011). Data Conversion in Residue numbers system. A thesis submitted to

Department of Electrical and Computer Engineering McGill University Montreal, Canada; 2011

Park. et al (1996) Karplus K., Barrett, C. Hughey, D. Haussler, T. Hubbard, and C. Chothia

Sequence comparisons using multiple sequences detect three times as many remote homologues

as pairwise methods. J. Mol. Biol., 284(4) : 1201– 1210.

Residue Number System (2012) . International Journal of Electronics and Communication

Engineering. ISSN 0974 2166 Volume 5, Number 1 (2012), pp. 99-112.

Margerm, (2006) Reconfigurable computing in real world applications, Cray Inc., FPGA and

Structured ASIC, February, 7, 2006.

Smith, T.F. and Waterman, M. S., (1981), Identification of common molecular sub sequences,

journal of molecular Biology, vol. 147, pp 195-197. Stanford University, USA,

European Journal of Computer Science and Information Technology

Vol.9, No.2, pp.35-60, 2021

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

60

Schroeder, M. R.(1984) Number Theory in Science and Communication. Germany: Springer-

Verlag, 1984.

Wei, Wang. Swamy, , M.N.S and. Ahmad, M.O. (2003) Moduli Selection in RNS for Efficient

VLSI Implementation, International Symposium on Circuits and Systems, vol.4, pp. IV-512- IV-

515, 25-28 .

Yamaguchi.Y. et al (2002) T. Maruyana, Y. Miyajima, and A. Konagaya,(2002) “High speed

homology search using run-time reconfiguration,

Yang, B. H. W.(2002). A parallel Implementation of Smith -Waterman Sequence Comparison

Algorithm.

