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ABSTRACT: This paper primarily focuses on discovering the frequent sequential patterns 

without sorting the subsequences present in the sequence of the dataset. The proposed 

algorithm utilizes numerically converted values of subsequence item to identify the exact order 

of the patterns efficiently. Most of the existing algorithms for brevity consider only the sorted 

data or initially sorts the unsorted data to find the patterns. But there are certain circumstances 

where the data has to be presented and mined without ordering the data. This paper proposes 

a new algorithm named “DATA as it IS Algorithm” to find frequent sequential patterns and 

prune away the infrequent items at the beginning stages of the process. The experimental 

evaluation portrayed that the proposed DAIS algorithm performs effectively and effectively and 

outscores the existing algorithms by an order of magnitude. 
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INTRODUCTION 

Finding sequential patterns in large transaction databases is an important data mining problem. 

Mining, also known as knowledge discovery in databases, has been recognized as a promising 

new area for database research. This area can be denned as efficiently discovering interesting 

rules from large databases. A new data mining problem, discovering the frequent sequential 

patterns without sorting the subsequences present in the sequence of the dataset. The input data 

is a set of sequences, called data-sequences. Each data-sequence is a list of transactions, where 

each transaction is a set of literals, called items. Typically there is a transaction-time associated 

with each transaction.  

A sequential pattern also consists of a list of sets of items with a user-specified minimum 

support. It is used in various domains such as medical treatments, natural disasters, and 

customer shopping sequences, DNA sequences and gene structures. 

 

LITERATURE REVIEW 

The pioneer in this frequent sequential pattern mining is Agarwal [1] who introduced and 

solved the problem of frequent sequential mining. For a given sequential data, the problem is 

to find all sequential patterns with a user-defined minimum support, also named frequent 

sequential patterns. But Agarwal either considers sorted data or sorts the data before 

processing. A modified Apriori named Apriori-All [1] was also introduced by Agarwal but 

these two algorithms doesn’t discover patterns without sorting the data. Numerous algorithms 

based on the working principle of Apriori were introduced by researchers but none was 
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designed to find the patterns of unsorted data without sorting the data. The Apriori-like 

sequential pattern mining methods suffer from the costs to handle a potentially huge set of 

candidate patterns and scan the database repeatedly. The main disadvantage of Apriori based 

approach is voluminous candidate generation especially 2-itemset candidates. 

The SPAM [2] algorithm uses bitmap representations to find the I-Extended sequences and S-

Extended sequences but SPAM algorithm assumes the dataset sequences as a sorted one or it 

explicitly sorts the sequences before finding the sequential patterns. 

Sequential pattern mining algorithms using the vertical format are very efficient, because they 

can calculate the support of candidate patterns by avoiding costly. Fast Vertical Mining of 

Sequential Patterns[3]database scans. However, the main performance bottleneck of vertical 

mining algorithms is that they usually spend lot of time evaluating candidates that do not appear 

in the input database or are infrequent. This can be used for pruning candidates generated by 

vertical mining algorithms.  

An improved apriori algorithm for association rules[4] is proposed through reducing the time 

consumed in transactions scanning for candidate itemsets by reducing the number of 

transactions to be scanned. Whenever the k of k-itemset increases, the gap between our 

improved Apriori and the original Apriori increases from view of time consumed, and 

whenever the value of minimum support increases, the gap between our improved Apriori and 

the original Apriori decreases from view of time consumed. The time consumed to generate 

candidate support count in our improved Apriori is less than the time consumed in the original 

Apriori. 

Analysis sequential patterns mining[5,6] approaches such as Apriori-based algorithms 

encounter the problem that multiple scans of the database are required in order to determine 

which candidates are actually frequent. Most of the solutions provided so far for reducing the 

computational cost resulting from the apriori property use a bitmap vertical representation of 

the access sequence database  and employ bitwise operations to calculate support at each 

iteration. The transformed vertical databases, in their turn, introduce overheads that lower the 

performance of the proposed algorithm, but not necessarily worse than that of pattern-growth 

algorithms. 

 

PRELIMINARIES 

Let I = {i1, i2, i3, … . in} be a set of unique items. A sequence S is an unordered list of events, 

denoted as <e1, e2, e3… en> where ei is an item, (i.e.) ei I for 1 i  n. For brevity, the brackets 

are omitted if the element has only one element, (i.e.) (a) is written as a. An item can occur 

multiple times in different event of a sequence. The number of events in a sequence is called 

the length of a sequence and a sequence of l length is l-sequence. A sequence Sa = {a1, a2, a3.. 

an} is contained in another sequence Sb={b1,b2,b3,.. bm}, if there exist integers 1  i1<  i2< i3 … 

< in m such that a1= bi1, a2=bi2, …. an= bin. If sequence Sa is contained in another sequence Sb, 

then Sa is called subsequence of Sb and Sb a super-sequence of Sa, denoted by Sa Sb. 

From the table 1, the input sequence database S is a set of tuples (sid, s), where sid is the 

sequence identifier and s is the input sequence.  The number of tuples in S database is called 

base size of the database S, and denoted as |S|. A tuple (sid,s) is said to contain in sequence Sa, 
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If Sais a subsequence of s. The support of a sequence Sain the database S is the number of tuples 

in the database containing Sa, denoted as sup(Sa). 

For a given positive integer min-sup, as the support threshold, a sequence Sais called frequent 

sequential pattern in database S, if sup(Sa) min-sup. Otherwise the pattern is infrequent. 

 

PROPOSED APPROACH 

Table 1: Sample database of unordered events 

 

 

 

 

 

 

 

The proposed approach first scan the database to find the unique items present in the database. 

A table is constructed to identify whether the item is present in the sequence and if the item is 

present then it is denoted by “1” else denoted by “0”. Along with this the support count of every 

unique item is calculated and stored. A numerical value for the items are provided and marked 

in this table as shown in the table 2. 

Let us consider S1= [a (dc) ad], here there are four sequences and for brevity, the brackets are 

omitted and [(a) (dc) (a) (d)] is written as [a (dc) ad ]. The sequence S1 contains four events 

and the second event (dc) is unsorted and this event or subsequence is not sorted to find the 

frequent sequential patterns in the proposed approach. 

After finding the unique items in the database the following table is constructed initially to 

recognize whether the sequences contain a particular item or not. 

 

 

 

 

 

 

 

SeqID Sequences 

S1 [ a (dc) ad ] 

S2 [ acae ] 

S3 [ cad(cbd) ] 

S4 [ bbc ] 

S5 [ (bcd)d ] 
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Table 2: Identification of unique items with count and numerical value 

 

 

 

 

 

 

 

 

 

ITEM LOCATION AND EVENT INDEXING 

Now the unique items exact location in each sequence is found and marked with the item name 

or simply that location is left empty. Along with this marking of location, the number of items 

in every event is found and the numerical values corresponding to the items are stored in the 

table as shown in the figure 1. 

 

 

 

 

Figure 1: Locating items table for sequence S1 

 

Here in figure 1, the sequence S1 is considered and S1 consists of 4 events [E1,E2,E3,E4] and 

the unique items in this sequence is identified and located in the corresponding events as shown 

in the above figure 1. Similarly number of items in each event is found and if it found value 

exceeds 1, the corresponding item’s numerical value is stored as shown. Here in event indexing 

4 denotes “d” and 3 denotes “c”. 

 

 

 

 

Figure 2: Locating item table for sequence S2 

UNIQUE 

ITEM 

S1 S2 S3 S4 S5 SUPPORT 

COUNT 

NUMERICAL 

VALUE 

a 1 1 1 0 0 3 1 

b 0 0 1 1 1 3 2 

c 1 1 1 1 1 5 3 

d 1 0 1 0 1 3 4 

e 0 1 0 0 0 1 5 
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Figure 3: Locating item table for sequence S3 

 

 

 

 

 

Figure 4: Locating item table for 

sequence S4 

 

 

 

 

Figure 5: Locating item for sequence S5 

 

FORMATION OF ITEM COMBINATIONS 

After locating the items in the sequence, the item combinations are found to check whether the 

combinations are higher than the minimum support value provided by the user assuming mun-

sup value is 2. First item “a” is considered and the probable combinations are formed for the 

entire unique items. 
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The combinations formed are “ab”, ”abc”, ”abd”, ”abcd”, ”ac”, “acd”,  ”ad”, ”bc”, ”bcd”, ”cd”, 

are found. Here since “e” item support count is less than the minimum support value, it is 

eliminated. To check whether the combination items produce patterns, AND operation is 

performed as shown below. 

 

 

 

 

 

 

 

Figure 6: Combination formation of “ab” to generate frequent patterns 

Since “ab” support count is 1, the corresponding itemsets which contains “ab” will also be 1. 

So the entire “ab” combinations are eliminated and pruned away. 

 

 

 

 

 

 

 

Figure 7:Combination formation of “ac” to generate frequent patterns 

Since “e” is eliminated at the first stage, the 4-itemset combination is not considered.  
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Figure 8: Combination formation of “bc” to generate frequent patterns 

Similarly all the unique item combinations are formed and checked whether the count is higher 

or equal to the minimum support value provided. Those combinations which are higher or equal 

to the minimum support values are further processed top discover the frequent sequential 

patterns.  

 

SEQUENTIAL PATTERN GENERATION 

Since “ac” combination has a higher min-sup value than the threshold value provided, the result 

of “ac” is scrutinized. The items “a” and “c” are present in three sequences namely S1,S2, and 

S3 as shown in figure 3.The corresponding S1, S2 and S3 locating item table is fetched for 

processing to find the frequent sequential patterns as shown in figure 5. Here the minimum 

support is assumed to be 2. 

 

 

 

 

 

 

 

 

Figure 9: Pattern discovering mechanism for S1 
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First the column 1 (COL1) is checked for a non-empty value, if found the process starts from 

that row. Move from the first column towards right, up or down to identify a non-empty value 

to concatenate and form the sequential patterns.  

Here the event indexing value is not considered because the numerical values present in the 

event indexing table is not matched with these items present here. The numerical values in 

event indexing table for the second event or the second column is (4,3) that is equal to (d,c). 

Here the patterns (a)(c) , (a)(c)(a) are formed and stored separately to check the min_sup. 

Patterns found in S1 = (a)(c), (a)(c)(a) 

 

 

 

 

 

 

 

Figure 10: Pattern discovering mechanism for S2 

Patterns found in S2 = (a)(c), (a)(c)(a) 

  

 

 

 

 

 

 

 

 

 

       Figure 11: Pattern discovering mechanism for S3 

Patterns found in S3 = (a)(c), (c)(a)(c), (c)(a), (c)(c) 
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Hence (a)(c) = 3, (a)(c)(a) = 2, are frequent sequential patterns whereas (c)(a) = 1, (c)(c) = 1 

and (c)(a)(c) = 1 are less than the min-sup value provided are considered infrequent. 

Similarly for “acd” the patterns are formed and checked. S1 and S3 contain the items “a”, “c” 

and “d”. These two sequences are computed to form a sequential pattern which has a higher 

min-sup value. 

 

 

 

 

 

 

 

 

 

Figure 12: Pattern discovering mechanism for S1 -3items 

Here the event indexing table plays its part by not considering (cd) instead it considers (dc) in 

the second column as the numerical value is fetched and accordingly the items in the sub-

sequences are grouped to form the patterns. From the first row, since the column 1 of row 1 is 

not empty, the value present in col1 of row 1 is concatenated with row 3 and then moves up to 

row 2. The sequential patterns found here are (a)(dc), (a)(c)(d) and (a)(dc)(d). Similarly for the 

sequence S3 the patterns are found. The patterns found for sequence S3 = (c)(a)(d), (a)(d)(c), 

(a)(cd), (c)(a)(d)(c), (c)(a)(d)(d). None of the patterns found here are frequent as the values are 

less than the minimum support values. Considering the sequence S1, where the second event 

is (dc) and in the sequence S3, the fourth event is (cbd). In the existing algorithms like Spade, 

Apriori-All, and SPAM, the sequences will be sorted and as a result of this ordering (a)(cd) 

will be a frequent sequential pattern. But in the proposed methodology, (a)(dc) is different from 

(a)(cd), hence the items “a”,”c”,”d” are not formed as a frequent pattern. 

 

PROPOSED ALGORITHM 

The algorithm consists of many procedures and the procedures are enumerated here, 

 

 

Procedure InitialProcess( Dataset D, min-sup ) 

Input: Dataset D 

OutPut: Normalized Converted Data 

Begin: 

1. Load and Scan the Dataset D 
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Figure 13: Pseudo code for InitialProcess procedure 

In this proposed method the procedure initial process first scans the database to identify the 

unique items. Step 2 finds the location of the item support in a dataset. After identify the 

location a numerical value is assigns for every data row. If the items were present in the 

sequence assign 1 else assign 0. Step 3 produce the result of support count and finally prune 

the unique items. 

 

 

 

 

 

 

 

 

Figure 14: Pseudo code to Find Combinations 

This algorithm proposed a new procedure to find a probable combination of unique items. Step 

1 finds the total number of unique item to identify the combination. Step 2 identify the index 

value to locate the items. In Step 3 the Item combinations are found to check whether the 

combinations are higher than the minimum support value provided by the user. The result is 

the combination of items produce a patterns. 

2. DatarowDr D do 

Mark UniqueItems in InitialTable 

Mark Numerical Value for UniqueItems in InitialTable 

Mark Items in ItemLocation Table 

Find NumberOfEventsnEDr 

Index the Item numerical values to ItemLocation Table 

IF [nE = 1] Mark 0 

Else Mark Numerical Values separated by comma 

End IF 

End For 

3. Mark Count of UniqueItems, IF[ count < ] Prune UniqueItem 

End Procedure 

 

Procedure FindProbableCombinations(InitialTableInT) 

Input: InitialTable InT 

Output: Probable combinations 

Begin: 

1. Find The totalItems Tot in InT 

2. Index I Tot 

3.  Index I+1  Tot 

ConcateInT[I],InT[I+1] Combination 

4. End For 

5. End For 

6. Return Combination 

End procedure 

Procedure Data-as-it-IS( Dataset D, min-sup ) 

Input: Dataset D, minimum support  

Output: Frequent Sequential patterns 

Begin: 

1. Call InitialProcess(D,) 

2. Call FindProbableCombinations(T) 
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Figure 15: Pseudo code of the DAIS algorithm 

The proposed algorithm DAIS is the way to discover the frequent sequential patterns without 

ordering the items. At first the column 1 is checked for a non-empty value. If the non-empty 

value found, the process starts from that row. Move from the first column towards right, up or 

down to identify a non-empty value. After identify the non-empty value, all the items were 

concatenate and form the sequential patterns. This method employs event item indexing for 

each sequence and uses numerical values for events which contains more than one item. This 

methodology efficiently finds and discovers the frequent sequential patterns without disturbing 

the data present in the events of a sequence.  

 

EXPERIMENTAL EVALUATION 

The proposed DAIS algorithm was implemented Microsoft  C#.NET programming language 

on a personal computer with 2.66GHz Intel Pentium core2duo processor with 1GB RAM 

running on windows 7 ultimate. 

The evaluations were performed on synthetic data generated by the IBM synthetic market-

basket data generator. The inputted parameters used for comparison are given below in the 

table 3. 

 

 

 

 

3.  Combination C  Combination do 

Loop Until (Sequences in C ≠ ) 

Load Sequence from ItemLocationTable according to C 

Check for a non-empty value in the first Column 

IF Row[Column1] = Non-empty, Start from that row 

Concatenate the non-empty value by moving UP,Right, Down, Diagonal 

IF (Items found in same Column) 

Check the EventIndex table to find the numerical values 

Concatenate according to numerical values as a single sequence 

End if 

Store the patterns  temp 

End if 

End Loop 

Count the patterns and check  

Store frequent sequentialpatterns 

Else 

Ignore infrequent patterns 

End For 

Return Frequent sequential patterns 

End Procedure 
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Table 3: Dataset parameters 

 

The evaluation is done using different minimum support values and varying number of total 

sequences in the dataset, the proposed algorithm clearly outscores Apriori-All and matches 

nearly with the execution speed of SPAM. The proposed algorithm is executed on small, 

medium and large datasets and it clearly performs better on most of the situations with respect 

to speed and memory space. The DAIS and SPAM algorithm performed well in large dataset 

due to the recursive steps it performs during pattern finding. The proposed algorithm performed 

quite well on small and medium datasets when compared to its counterparts. As far as the 

memory footprints are concerned, SPAM performed reasonably better than the proposed 

algorithm mainly due to the bitmap representation of data. The number of frequent sequential 

patterns found in the proposed algorithm is definitely lower than that of the existing algorithm 

since the proposed algorithm never sorts the sub sequences. 

                        

Table 4: Evaluated results with respect to execution time 

 

Parameters Description of parameter Dataset utilized for 

evaluation 

D Number of sequences in the 

dataset 

3K 12K 

C Average events per sequence 5 12 

S Average length of potentially 

frequent sequential patterns 

5 8 

I Average length of itemsets in 

maximal potentially frequent 

patterns 

5 8 

COMPARISON WITH RESPECT TO EXECUTION TIME (sec) 

Dataset 

  

D5KC5T5S5I5 

( Synthetic Data set) 
D12KC12T12S8I8 

( Synthetic Data set) 

Algorithm 
Minimum Support values Minimum Support values  

2 3 4 5 6 7 

Apriori-All 86 71 63 112 103 81 

SPAM 58 49 28 37 29.2 23 

DAIS 60 51 31 38 28 23.32 
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Figure 16(a): Execution time evaluation                               Figure 16(b): Execution time 

evaluation 

From the table 4 and from the figure 16(a),16(b)  it is quite clear that the proposed algorithm 

DAIS performed well when compared to Apriori-All and matched the performance of SPAM. 

SPAM algorithm performance is better for small dataset, and DAIS performed extremely well 

for large dataset. 

 

CONCLUSION 

A new algorithm to meet the challenge of discovering sequential patterns without ordering the 

events in a sequence is proposed in this paper and the proposed algorithm DAIS performed 

increasing well for larger datasets without sorting by employing event item indexing using 

numerical values. The proposed algorithm should be executed on denser datasets with very 

small min-sup values to test the efficiency and the accuracy.  
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