
European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

63
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

A NEW APPROACH TO DISCOVER FREQUENT SEQUENTIAL PATTERNS

WITHOUT ORDERING THE SUB SEQUENCES USING DAIS ALGORITHM

1S.Suryaa and 2Dr. K. Subramanian,

1Ph.D. Research Scholar, J.J. College of Arts and Science, Pudukkottai, Tamil Nadu, India.
2Research Guide, Assistant Professor, VSS Govt. Arts College, Poolankurichi, Tamil Nadu,

India.

ABSTRACT: This paper primarily focuses on discovering the frequent sequential patterns

without sorting the subsequences present in the sequence of the dataset. The proposed

algorithm utilizes numerically converted values of subsequence item to identify the exact order

of the patterns efficiently. Most of the existing algorithms for brevity consider only the sorted

data or initially sorts the unsorted data to find the patterns. But there are certain circumstances

where the data has to be presented and mined without ordering the data. This paper proposes

a new algorithm named “DATA as it IS Algorithm” to find frequent sequential patterns and

prune away the infrequent items at the beginning stages of the process. The experimental

evaluation portrayed that the proposed DAIS algorithm performs effectively and effectively and

outscores the existing algorithms by an order of magnitude.

KEYWORDS: Sequential patterns, without ordering, frequent patterns

INTRODUCTION

Finding sequential patterns in large transaction databases is an important data mining problem.

Mining, also known as knowledge discovery in databases, has been recognized as a promising

new area for database research. This area can be denned as efficiently discovering interesting

rules from large databases. A new data mining problem, discovering the frequent sequential

patterns without sorting the subsequences present in the sequence of the dataset. The input data

is a set of sequences, called data-sequences. Each data-sequence is a list of transactions, where

each transaction is a set of literals, called items. Typically there is a transaction-time associated

with each transaction.

A sequential pattern also consists of a list of sets of items with a user-specified minimum

support. It is used in various domains such as medical treatments, natural disasters, and

customer shopping sequences, DNA sequences and gene structures.

LITERATURE REVIEW

The pioneer in this frequent sequential pattern mining is Agarwal [1] who introduced and

solved the problem of frequent sequential mining. For a given sequential data, the problem is

to find all sequential patterns with a user-defined minimum support, also named frequent

sequential patterns. But Agarwal either considers sorted data or sorts the data before

processing. A modified Apriori named Apriori-All [1] was also introduced by Agarwal but

these two algorithms doesn’t discover patterns without sorting the data. Numerous algorithms

based on the working principle of Apriori were introduced by researchers but none was

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

64
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

designed to find the patterns of unsorted data without sorting the data. The Apriori-like

sequential pattern mining methods suffer from the costs to handle a potentially huge set of

candidate patterns and scan the database repeatedly. The main disadvantage of Apriori based

approach is voluminous candidate generation especially 2-itemset candidates.

The SPAM [2] algorithm uses bitmap representations to find the I-Extended sequences and S-

Extended sequences but SPAM algorithm assumes the dataset sequences as a sorted one or it

explicitly sorts the sequences before finding the sequential patterns.

Sequential pattern mining algorithms using the vertical format are very efficient, because they

can calculate the support of candidate patterns by avoiding costly. Fast Vertical Mining of

Sequential Patterns[3]database scans. However, the main performance bottleneck of vertical

mining algorithms is that they usually spend lot of time evaluating candidates that do not appear

in the input database or are infrequent. This can be used for pruning candidates generated by

vertical mining algorithms.

An improved apriori algorithm for association rules[4] is proposed through reducing the time

consumed in transactions scanning for candidate itemsets by reducing the number of

transactions to be scanned. Whenever the k of k-itemset increases, the gap between our

improved Apriori and the original Apriori increases from view of time consumed, and

whenever the value of minimum support increases, the gap between our improved Apriori and

the original Apriori decreases from view of time consumed. The time consumed to generate

candidate support count in our improved Apriori is less than the time consumed in the original

Apriori.

Analysis sequential patterns mining[5,6] approaches such as Apriori-based algorithms

encounter the problem that multiple scans of the database are required in order to determine

which candidates are actually frequent. Most of the solutions provided so far for reducing the

computational cost resulting from the apriori property use a bitmap vertical representation of

the access sequence database and employ bitwise operations to calculate support at each

iteration. The transformed vertical databases, in their turn, introduce overheads that lower the

performance of the proposed algorithm, but not necessarily worse than that of pattern-growth

algorithms.

PRELIMINARIES

Let I = {i1, i2, i3, … . in} be a set of unique items. A sequence S is an unordered list of events,

denoted as <e1, e2, e3… en> where ei is an item, (i.e.) ei I for 1 i  n. For brevity, the brackets

are omitted if the element has only one element, (i.e.) (a) is written as a. An item can occur

multiple times in different event of a sequence. The number of events in a sequence is called

the length of a sequence and a sequence of l length is l-sequence. A sequence Sa = {a1, a2, a3..

an} is contained in another sequence Sb={b1,b2,b3,.. bm}, if there exist integers 1  i1< i2< i3 …

< in m such that a1= bi1, a2=bi2, …. an= bin. If sequence Sa is contained in another sequence Sb,

then Sa is called subsequence of Sb and Sb a super-sequence of Sa, denoted by Sa Sb.

From the table 1, the input sequence database S is a set of tuples (sid, s), where sid is the

sequence identifier and s is the input sequence. The number of tuples in S database is called

base size of the database S, and denoted as |S|. A tuple (sid,s) is said to contain in sequence Sa,

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

65
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

If Sais a subsequence of s. The support of a sequence Sain the database S is the number of tuples

in the database containing Sa, denoted as sup(Sa).

For a given positive integer min-sup, as the support threshold, a sequence Sais called frequent

sequential pattern in database S, if sup(Sa) min-sup. Otherwise the pattern is infrequent.

PROPOSED APPROACH

Table 1: Sample database of unordered events

The proposed approach first scan the database to find the unique items present in the database.

A table is constructed to identify whether the item is present in the sequence and if the item is

present then it is denoted by “1” else denoted by “0”. Along with this the support count of every

unique item is calculated and stored. A numerical value for the items are provided and marked

in this table as shown in the table 2.

Let us consider S1= [a (dc) ad], here there are four sequences and for brevity, the brackets are

omitted and [(a) (dc) (a) (d)] is written as [a (dc) ad]. The sequence S1 contains four events

and the second event (dc) is unsorted and this event or subsequence is not sorted to find the

frequent sequential patterns in the proposed approach.

After finding the unique items in the database the following table is constructed initially to

recognize whether the sequences contain a particular item or not.

SeqID Sequences

S1 [a (dc) ad]

S2 [acae]

S3 [cad(cbd)]

S4 [bbc]

S5 [(bcd)d]

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

66
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Table 2: Identification of unique items with count and numerical value

ITEM LOCATION AND EVENT INDEXING

Now the unique items exact location in each sequence is found and marked with the item name

or simply that location is left empty. Along with this marking of location, the number of items

in every event is found and the numerical values corresponding to the items are stored in the

table as shown in the figure 1.

Figure 1: Locating items table for sequence S1

Here in figure 1, the sequence S1 is considered and S1 consists of 4 events [E1,E2,E3,E4] and

the unique items in this sequence is identified and located in the corresponding events as shown

in the above figure 1. Similarly number of items in each event is found and if it found value

exceeds 1, the corresponding item’s numerical value is stored as shown. Here in event indexing

4 denotes “d” and 3 denotes “c”.

Figure 2: Locating item table for sequence S2

UNIQUE

ITEM

S1 S2 S3 S4 S5 SUPPORT

COUNT

NUMERICAL

VALUE

a 1 1 1 0 0 3 1

b 0 0 1 1 1 3 2

c 1 1 1 1 1 5 3

d 1 0 1 0 1 3 4

e 0 1 0 0 0 1 5

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

67
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 3: Locating item table for sequence S3

Figure 4: Locating item table for

sequence S4

Figure 5: Locating item for sequence S5

FORMATION OF ITEM COMBINATIONS

After locating the items in the sequence, the item combinations are found to check whether the

combinations are higher than the minimum support value provided by the user assuming mun-

sup value is 2. First item “a” is considered and the probable combinations are formed for the

entire unique items.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

68
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

The combinations formed are “ab”, ”abc”, ”abd”, ”abcd”, ”ac”, “acd”, ”ad”, ”bc”, ”bcd”, ”cd”,

are found. Here since “e” item support count is less than the minimum support value, it is

eliminated. To check whether the combination items produce patterns, AND operation is

performed as shown below.

Figure 6: Combination formation of “ab” to generate frequent patterns

Since “ab” support count is 1, the corresponding itemsets which contains “ab” will also be 1.

So the entire “ab” combinations are eliminated and pruned away.

Figure 7:Combination formation of “ac” to generate frequent patterns

Since “e” is eliminated at the first stage, the 4-itemset combination is not considered.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

69
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 8: Combination formation of “bc” to generate frequent patterns

Similarly all the unique item combinations are formed and checked whether the count is higher

or equal to the minimum support value provided. Those combinations which are higher or equal

to the minimum support values are further processed top discover the frequent sequential

patterns.

SEQUENTIAL PATTERN GENERATION

Since “ac” combination has a higher min-sup value than the threshold value provided, the result

of “ac” is scrutinized. The items “a” and “c” are present in three sequences namely S1,S2, and

S3 as shown in figure 3.The corresponding S1, S2 and S3 locating item table is fetched for

processing to find the frequent sequential patterns as shown in figure 5. Here the minimum

support is assumed to be 2.

Figure 9: Pattern discovering mechanism for S1

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

70
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

First the column 1 (COL1) is checked for a non-empty value, if found the process starts from

that row. Move from the first column towards right, up or down to identify a non-empty value

to concatenate and form the sequential patterns.

Here the event indexing value is not considered because the numerical values present in the

event indexing table is not matched with these items present here. The numerical values in

event indexing table for the second event or the second column is (4,3) that is equal to (d,c).

Here the patterns (a)(c) , (a)(c)(a) are formed and stored separately to check the min_sup.

Patterns found in S1 = (a)(c), (a)(c)(a)

Figure 10: Pattern discovering mechanism for S2

Patterns found in S2 = (a)(c), (a)(c)(a)

 Figure 11: Pattern discovering mechanism for S3

Patterns found in S3 = (a)(c), (c)(a)(c), (c)(a), (c)(c)

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

71
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Hence (a)(c) = 3, (a)(c)(a) = 2, are frequent sequential patterns whereas (c)(a) = 1, (c)(c) = 1

and (c)(a)(c) = 1 are less than the min-sup value provided are considered infrequent.

Similarly for “acd” the patterns are formed and checked. S1 and S3 contain the items “a”, “c”

and “d”. These two sequences are computed to form a sequential pattern which has a higher

min-sup value.

Figure 12: Pattern discovering mechanism for S1 -3items

Here the event indexing table plays its part by not considering (cd) instead it considers (dc) in

the second column as the numerical value is fetched and accordingly the items in the sub-

sequences are grouped to form the patterns. From the first row, since the column 1 of row 1 is

not empty, the value present in col1 of row 1 is concatenated with row 3 and then moves up to

row 2. The sequential patterns found here are (a)(dc), (a)(c)(d) and (a)(dc)(d). Similarly for the

sequence S3 the patterns are found. The patterns found for sequence S3 = (c)(a)(d), (a)(d)(c),

(a)(cd), (c)(a)(d)(c), (c)(a)(d)(d). None of the patterns found here are frequent as the values are

less than the minimum support values. Considering the sequence S1, where the second event

is (dc) and in the sequence S3, the fourth event is (cbd). In the existing algorithms like Spade,

Apriori-All, and SPAM, the sequences will be sorted and as a result of this ordering (a)(cd)

will be a frequent sequential pattern. But in the proposed methodology, (a)(dc) is different from

(a)(cd), hence the items “a”,”c”,”d” are not formed as a frequent pattern.

PROPOSED ALGORITHM

The algorithm consists of many procedures and the procedures are enumerated here,

Procedure InitialProcess(Dataset D, min-sup )

Input: Dataset D

OutPut: Normalized Converted Data

Begin:

1. Load and Scan the Dataset D

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

72
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 13: Pseudo code for InitialProcess procedure

In this proposed method the procedure initial process first scans the database to identify the

unique items. Step 2 finds the location of the item support in a dataset. After identify the

location a numerical value is assigns for every data row. If the items were present in the

sequence assign 1 else assign 0. Step 3 produce the result of support count and finally prune

the unique items.

Figure 14: Pseudo code to Find Combinations

This algorithm proposed a new procedure to find a probable combination of unique items. Step

1 finds the total number of unique item to identify the combination. Step 2 identify the index

value to locate the items. In Step 3 the Item combinations are found to check whether the

combinations are higher than the minimum support value provided by the user. The result is

the combination of items produce a patterns.

2. DatarowDr D do

Mark UniqueItems in InitialTable

Mark Numerical Value for UniqueItems in InitialTable

Mark Items in ItemLocation Table

Find NumberOfEventsnEDr

Index the Item numerical values to ItemLocation Table

IF [nE = 1] Mark 0

Else Mark Numerical Values separated by comma

End IF

End For

3. Mark Count of UniqueItems, IF[count <] Prune UniqueItem

End Procedure

Procedure FindProbableCombinations(InitialTableInT)

Input: InitialTable InT

Output: Probable combinations

Begin:

1. Find The totalItems Tot in InT

2. Index I Tot

3.  Index I+1  Tot

ConcateInT[I],InT[I+1] Combination

4. End For

5. End For

6. Return Combination

End procedure

Procedure Data-as-it-IS(Dataset D, min-sup )

Input: Dataset D, minimum support 

Output: Frequent Sequential patterns

Begin:

1. Call InitialProcess(D,)

2. Call FindProbableCombinations(T)

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

73
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 15: Pseudo code of the DAIS algorithm

The proposed algorithm DAIS is the way to discover the frequent sequential patterns without

ordering the items. At first the column 1 is checked for a non-empty value. If the non-empty

value found, the process starts from that row. Move from the first column towards right, up or

down to identify a non-empty value. After identify the non-empty value, all the items were

concatenate and form the sequential patterns. This method employs event item indexing for

each sequence and uses numerical values for events which contains more than one item. This

methodology efficiently finds and discovers the frequent sequential patterns without disturbing

the data present in the events of a sequence.

EXPERIMENTAL EVALUATION

The proposed DAIS algorithm was implemented Microsoft C#.NET programming language

on a personal computer with 2.66GHz Intel Pentium core2duo processor with 1GB RAM

running on windows 7 ultimate.

The evaluations were performed on synthetic data generated by the IBM synthetic market-

basket data generator. The inputted parameters used for comparison are given below in the

table 3.

3.  Combination C  Combination do

Loop Until (Sequences in C ≠ )

Load Sequence from ItemLocationTable according to C

Check for a non-empty value in the first Column

IF Row[Column1] = Non-empty, Start from that row

Concatenate the non-empty value by moving UP,Right, Down, Diagonal

IF (Items found in same Column)

Check the EventIndex table to find the numerical values

Concatenate according to numerical values as a single sequence

End if

Store the patterns  temp

End if

End Loop

Count the patterns and check 

Store frequent sequentialpatterns

Else

Ignore infrequent patterns

End For

Return Frequent sequential patterns

End Procedure

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

74
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Table 3: Dataset parameters

The evaluation is done using different minimum support values and varying number of total

sequences in the dataset, the proposed algorithm clearly outscores Apriori-All and matches

nearly with the execution speed of SPAM. The proposed algorithm is executed on small,

medium and large datasets and it clearly performs better on most of the situations with respect

to speed and memory space. The DAIS and SPAM algorithm performed well in large dataset

due to the recursive steps it performs during pattern finding. The proposed algorithm performed

quite well on small and medium datasets when compared to its counterparts. As far as the

memory footprints are concerned, SPAM performed reasonably better than the proposed

algorithm mainly due to the bitmap representation of data. The number of frequent sequential

patterns found in the proposed algorithm is definitely lower than that of the existing algorithm

since the proposed algorithm never sorts the sub sequences.

Table 4: Evaluated results with respect to execution time

Parameters Description of parameter Dataset utilized for

evaluation

D Number of sequences in the

dataset

3K 12K

C Average events per sequence 5 12

S Average length of potentially

frequent sequential patterns

5 8

I Average length of itemsets in

maximal potentially frequent

patterns

5 8

COMPARISON WITH RESPECT TO EXECUTION TIME (sec)

Dataset

D5KC5T5S5I5

(Synthetic Data set)
D12KC12T12S8I8

(Synthetic Data set)

Algorithm
Minimum Support values Minimum Support values

2 3 4 5 6 7

Apriori-All 86 71 63 112 103 81

SPAM 58 49 28 37 29.2 23

DAIS 60 51 31 38 28 23.32

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

75
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 16(a): Execution time evaluation Figure 16(b): Execution time

evaluation

From the table 4 and from the figure 16(a),16(b) it is quite clear that the proposed algorithm

DAIS performed well when compared to Apriori-All and matched the performance of SPAM.

SPAM algorithm performance is better for small dataset, and DAIS performed extremely well

for large dataset.

CONCLUSION

A new algorithm to meet the challenge of discovering sequential patterns without ordering the

events in a sequence is proposed in this paper and the proposed algorithm DAIS performed

increasing well for larger datasets without sorting by employing event item indexing using

numerical values. The proposed algorithm should be executed on denser datasets with very

small min-sup values to test the efficiency and the accuracy.

REFERENCES

[1] R. Agarwal and R. Srikant. Mining Sequential Pattern, Fast Algorithm for Mining

Association Rule in Large Databases.In Proc.1995,1994 Int. Conf. Data Engineering,

pages 3-10, 1995., Int. Conf. Very Large DataBases, pp. 487-499, 1994.

 [2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential PAttern Mining Using A Bitmap

Representation. In Proc. 2002 Int. Conf. Knowledge Discovery and Data Mining, 2002.

[3] Philippe Fournier-Viger1, Antonio Gomariz2,Manuel Campos2, and Rincy Thomas3: In

Proc.2014 Fast Vertical Mining of Sequential Patterns Using Co-occurrence

Information,University de Moncton

[4] Mohammed Al-Maolegi1: In Proc.2014 An improved apriori algorithm for association

rules. International Journal on Natural Language Computing (IJNLC) Vol. 3.

[5] Nikhil Gundawar1, Venkatesh Akolekar2, Piyush Phalak3, Akshay Gujar4 and

L. A. Bewoor5: In Proc.2014 Analysis of Sequential Pattern Mining: international journal for

research in emerging science and technology, volume-1, issue-6.

[6] Dr. Sunita Mahajan 1, Prajakta Pawar 2and Alpa Reshamwala: In Proc.2014 Performance

Analysis of Sequential Pattern Mining Algorithms on Large Dense Datasets-

International Journal of Application or Innovation in Engineering & Management

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.4, No.1, pp.63-76, January 2016

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

76
ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

[7] Bhawna Mallick, Deepak Garg and Preetam Singh Grover. Constraint-Based Sequential

Pattern Mining: In Proc. 2014 The International Arab Journal of Information Technology,

Vol. 11, No. 1, January 2014.

[8] Goswami, Chaturvedi Anshu, Raghuvanshi: In Proc.2010 An Algorithm for Frequent

Pattern Mining Based On Apriori. International Journal on Computer Science and Eng

[9] Ms Shweta, Dr. Kanwal Garg2:In Proc.2013Mining Efficient Association Rules Through

Apriori Algorithm Using Attributes and Comparative Analysis of Various Association

Rule Algorithms. International journal of advanced research in computer science and

software engineering.

[10] C K Bhensdadia, Y P Kosta: In Proc.2012 An Efficient Algorithm for Mining Frequent

Sequential Patterns and Emerging Patterns with Various Constraints International Journal

of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-6.

http://www.eajournals.org/

