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ABSTRACT: In this paper, a microscopic calculation of nuclear symmetry energy has been 

carried out with a new M3Y-type effective interaction derived from variational calculations. The 

new effective interaction, called B3Y-Fetal in this work, has been used in its DDM3Y1, BDM3Y0 

and BDM3Y1 density dependent versions within the framework of Hartree-Fock approximation to 

obtain the values of 30.5, 30.6 and 30.7 MeV respectively for symmetry energy at the nuclear 

matter saturation density, ρ0 = 0.17 fm-3. When compared with an empirical symmetry energy of 

31.6 ± 2.7 MeV established based on several analyses of terrestrial Nuclear Physics experiments 

and astronomical observations, these values of symmetry energy have been found to be in excellent 

agreement. The curves of symmetry energy obtained with the three density-dependent versions of 

the B3Y-Fetal effective interaction at different proton-neutron asymmetries in this work have also 

been found to demonstrate good agreement with previous work done with M3Y-Reid and M3Y- 

Paris effective interactions 
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INTRODUCTION 

 

In the study of asymmetric nuclear matter, the nuclear symmetry energy (NSE) is one of the most 

important quantities to consider. It is of crucial importance in testing a microscopic model for 

asymmetric nuclear matter, particularly the isospin dependence of the effective nucleon-nucleon 

interaction involved [7, 15]. The NSE plays a key role in the understanding of the structure of such 

systems as exotic nuclei, supernovae and neutron stars; and it enters as an input to heavy-ion 

reactions. The density dependence of NSE is a very crucial ingredient of the nuclear equation of 

state (EOS) needed to understand not only the important properties of isospin-rich nuclear systems 

such as radioactive nuclei, the reaction dynamics induced by rare isotopes and liquid-gas phase 

transition in asymmetric nuclear matter, but also to determine neutrino emission probability, 

cooling rate of proto-neutron stars which can be measured from X-ray bursts, mass and density 

profile of neutron stars as well as the equilibrium proton fraction [26, 27]. Experimental 

information on NSE below, close to and above nuclear saturation density, ρ0 can be obtained from 

a number of nuclear structure and heavy-ion observables such as giant resonances, isospin 

diffusion measurement, isobaric analog states or meson production (pions and kaons) in heavy-ion 

collisions, neutron/proton differential flow [26].  

 

Studies carried out with a number of effective interactions have shown NSE to be strongly model 

dependent, most especially in the high-density region. Theoretically, microscopic many-body 
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calculations and phenomenological approaches predict various forms of the density dependence 

of the symmetry energy. Two different forms have been generally identified [2, 24]. In one form, 

which is called “stiff” dependence, the symmetry energy increases monotonically with increasing 

density while the other form called “soft” dependence is such that the symmetry energy increases 

initially up to normal nuclear matter density and then decreases at higher densities [2, 24]. The 

determination of the exact form of the density dependence of the NSE is important for studying 

the structure of neutron-rich nuclei as well as for studies relating to astrophysical phenomena such 

as the structure of neutron stars and dynamics of supernova collapse [5, 24, 26]. Based on past 

studies, a “stiff” dependence of the NSE has been predicted lead to a large neutron skin, a large 

neutron star radius and rapid cooling of a neutron star compared with a ‘soft’ density dependence. 

 

Amongst a number of theoretical models, the NL3 relativistic model and Skyrme forces (SLy230a) 

have shown NSE to be an increasing function of density (stiff dependence) [27], whereas Gogny 

force have predicted a ‘soft’ dependence [24]. Similarly, the density dependent M3Y-Reid and 

M3Y-Paris interactions have predicted a ‘soft’ density dependence [16, 24, 25]. In the course of 

this work, we apply a new M3Y-type effective interaction derived from variational calculations to 

the study of NSE. The new effective interaction called B3Y-Fetal [19, 21] is used in its DDM3Yn 

and BDM3Yn density-dependent versions for this purpose. The density dependence of NSE 

predicted by the density-dependent B3Y-Fetal is to be determined and analyzed in comparison 

with the above-mentioned models. Specifically, we have, in this paper, M3Y-Reid and M3Y-Paris 

effective interactions as standards to compare the performance of the B3Y-Fetal with. With this 

goal in mind, we find it necessary to organize this paper into the following sections. Section 2.0 

gives an overview of the functional form of the density-dependent B3Y-Fetal effective interaction 

along with the functional forms of the M3Y-Reid and M3Y-Paris effective interactions. Section 

3.0 provides a succinct explanation of the theoretical layout of the nuclear symmetry energy, 

whereas Section 4.0 presents and discusses the results of the study. 

 

The Variational Effective Interaction 

 In this work, we apply our variational effective interaction, the B3Y-Fetal interaction, whose 

matrix elements were calculated in a harmonic oscillator basis using the lowest-order constrained 

variational (LOCV) method, to the study of nuclear symmetry energy. The details of the 

calculation of the matrix elements were reported in [9, 10]. The direct (vD) and exchange (vEX) 

components of the central part of the M3Y-type nucleon-nucleon (NN) effective interaction, in 

terms of spin σ, σ′ and isospin τ, τ ' of the nucleons, are expressed as [16]: 

vD(EX)(r) = v00
D(EX)(r)+v10

D(EX)(r)(σ · σ׳)+v01
D(EX)(r)(τ · τ ′)+ 

                v11
D(EX)(r)(σ · σ׳)(τ · τ ′)                                                               (1) 

where r is the inter-nucleon distance and ρ is the nuclear density around the interacting nucleon 

pair, σ, σ′ are the spins and τ, τ ′ are the isospins of two nucleons 

participating in the interaction. The study of NSE, which is a property of ANM, 

involves the use of the isoscalar and isovector components of the M3Y-type effective interaction. 

Accordingly, the radial strengths (in MeV) of the isoscalar and 

isovector components of the central part of B3Y-Fetal NN interaction are given in 

terms of three Yukawas respectively as: 

B3Y-Fetal [10]: 
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vD
00 (r) =

10472.13𝑒−4𝑟

4𝑟
−

2203.11𝑒−25𝑟

2.5𝑟
 

 

vEX
00 (r) =

499.63𝑒−4𝑟

4𝑟
−

1347.77𝑒−25𝑟

2.5𝑟
−

7.847477𝑒−0.7072𝑟

0.7072𝑟
 

 

vD
01 (r) =

−6197.63𝑒−4𝑟

4𝑟
+

1277.38𝑒−25𝑟

2.5𝑟
 

 

vEX
01 (r)=

365.38𝑒−4𝑟

4𝑟
+

576.99𝑒−25𝑟 

2.5𝑟
+

2.6157𝑒−0.7072𝑟

0.7072𝑟
                                                      (2) 

 

Since we are interested in using M3Y-Paris, M3Y-Reid NN effective interactions as 

standards with which to compare the performance of the B3Y-Fetal effective 

interaction, the radial strengths (in MeV) of the isoscalar and isovector components 

of the former are given in terms of three Yukawas respectively as: 

M3Y-Paris [1, 15]: 

vD
00 (r) =

11061.625𝑒−4𝑟

4𝑟
−

2537.5𝑒−25𝑟 

2.5𝑟
 

vEX
00 (r) =

−1524.25𝑒−4𝑟

4𝑟
−

518.75𝑒−25𝑟 

2.5𝑟
−

7.8474𝑒−0.7072𝑟

0.7072𝑟
 

 

vD
01 (r) =

313.625𝑒−4𝑟

4𝑟
+

223.5𝑒−25𝑟 

2.5𝑟
 

vEX
01 (r) =

−4118.0𝑒−4𝑟

4𝑟
+

1054.75𝑒−25𝑟 

2.5𝑟
+

2.6157𝑒−0.7072𝑟

0.7072𝑟
                                                         (3) 

 

M3Y-Reid [3, 15]: 

vD
00 (r)=

7999.00𝑒−4𝑟

4𝑟
+

2134.25𝑒−25𝑟 

2.5𝑟
 

vEX
00 (r)=

4631.375𝑒−4𝑟

4𝑟
−

1787.125𝑒−25𝑟 

2.5𝑟
−

7.8474𝑒−0.7072𝑟

0.7072𝑟
 

 

vD
01 (r)=

−4885.5𝑒−4𝑟

4𝑟
+

1175.5𝑒−25𝑟 

2.5𝑟
 

 

vEX
01 (r)=

−1517.875𝑒−4𝑟

4𝑟
+

828.375𝑒−25𝑟 

2.5𝑟
+

2.6157𝑒−0.7072𝑟

0.7072𝑟
                                                     (4) 

 

For correct description of the saturation properties of nuclear matter within 

the non-relativistic HF scheme, it has been shown [11, 13] that the introduction 

of a density dependence into the original M3Y interaction is the necessary and 
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sufficient solution. Thus, with the density dependence introduced, the isoscalar 

and isovector density-dependent M3Y-type interactions, respectively, become: 

v00
D(EX)(ρ, r) = F0(ρ)v00

D(EX)(r)                                                                               (5) 

and 

v01
D(EX)(ρ, r) = F1(ρ)v01

D(EX)(r) ,                                                                               (6) 

where F0(ρ) and F1(ρ) are the isoscalar and isovector density dependent factors 

respectively. The explicit forms of these density dependences are [12, 14, 17]:  

For the DDM3Yn interaction (n = 1), 

F0(1)(ρ) = C0(1) (1+αe-βρ)                                                                                         (7) 

In the case of the BDM3Yn (n = 0, 1, 2, 3) interaction, 

F0(1)(ρ) = C0(1) (1+αρβ)                                                                                            (8) 

The parameters C0, α and β of the isocalar density dependences are such that they 

reproduce the saturation properties of nuclear matter at density ρ0 = 0.17fm−3 

with a binding energy E/A = 16 MeV within HF calculations. It has to be stressed 

here that the isoscalar density dependence, F0(ρ) and isovector density dependence, 

F1 (ρ) have practically the same form, but may possibly be different with respect to 

the scaling factors C0 and C1, because C1 is, if necessary, adjusted to reproduce the 

empirical symmetry energy so as to construct a realistic equation of state (EOS) 

for asymmetric nuclear matter (ANM) within HF scheme. 

We have chosen to use the DDM3Yn and BDM3Yn interactions in this work 

following the approach of Khoa and co-workers [12, 13, 15, 17]; and the DDM3Y1, 

BDM3Y0 and BDM3Y1 versions are specifically used for calculations. In our earlier work [21], 

we applied the B3Y-Fetal effective interaction, in its DDM3Y1, 

BDM3Y0, BDM3Y1, BDM3Y2 and BDM3Y3 density-dependent versions, to the 

study of the symmetric nuclear matter and found it to reproduce the saturation 

properties of this nuclear matter well. Doing this, we made use of the isoscalar 

component of the B3Y-Fetal effective interaction and obtained the parameters of 

density dependence and incompressibilities in Table 1.0 along with the performance plots in Figure 

1.0. 

Table 1: Parameters of Density Dependence and Nuclear Incompressibility 

        at Equilibrium for B3Y-Fetal. 
Density dependent version 

 

 

DDB3Y-Fetal 

 

DDB3Y-Fetal 

 

DDB3Y-Fetal 

 

DDB3Y-Fetal 

 

DDB3Y-Fetal 

C 

 

 

0.2986 

 

1.3045 

 

1.1603 

 

1.0160 

 

0.9680 

Α 

 

 

3.1757 

 

1.0810 

 

1.4626 

 

4.9169 

 

20.250 

β 

 

 

2.9605 

 

2/3 

 

1 

 

2 

 

3 

K[MeV] 

 

 

176 

 

196 

 

235 

 

351 

 

467 
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Each density dependent version of the B3Y-Fetal interaction in Figure 1.0 has 

been found to reproduce the equation of state (EOS) of the symmetric nuclear 

matter acceptably when compared with the one obtained with the M3Y-Reid and M3Y-Paris 

effective interactions [19, 21]. This success is the strong basis for the application of the new 

effective interaction to the calculation of the nuclear symmetry energy, which is itself a test of the 

suitability of an effective interaction for the study of asymmetric nuclear matter, in this paper. 

However, for the study of NSE, the isovector component of the B3Y-Fetal effective interaction is 

used herein in conjunction with the isoscalar component. 

 

 

 

The Nuclear Symmetry Energy 
Many theoretical studies [27] have shown that the EOS of the ANM can be 

expressed as a power series of the form [23]: 
𝐸

𝐴
(𝜌, 𝛿) =

𝐸

𝐴
(𝜌, 𝛿 = 0) + 𝑆(𝜌)𝛿2 + 𝑂𝛿4 …                                                    (9) 

where the isospin asymmetry δ = 
𝜌𝑛−𝜌𝑝

𝜌
, ρ = ρn + ρp  is the total baryonic density with ρn and ρp 

denoting the neutron and proton densities respectively. The contribution of Oδ4 and higher-order 

terms has been shown to be negligible [8, 15, 18]; so equation (9) becomes 

 

 

E
/A

 [
M

eV
] 

ρ [m-3] 

Figure 1: Equations of State of Cold NM Calculated with DDB3Y1- 

                BDB3Y0-, BDB3Y1-, BDB3Y2- and BDB3Y3-Fetal Interactions. 
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𝐸

𝐴
(𝜌, 𝛿) =

𝐸

𝐴
(𝜌, 𝛿 = 0) + 𝑆(𝜌)𝛿2                                                                 (10) 

where 
𝐸   

𝐴 
(ρ, δ) is the energy per nucleon at density ρ and asymmetry δ, 

𝐸   

𝐴 
 (ρ, δ = 0) 

is the binding energy per nucleon of symmetric nuclear matter (SNM) and S(ρ) is 

the symmetry energy coefficient which is expressed as: 

 

𝐸𝑠𝑦𝑚 = 𝑆(ρ)δ2  ,                                                                                                   (11) 

 

with 𝐸𝑠𝑦𝑚 as the nuclear symmetry energy (NSE). 

Equation (10) shows that the dominant dependence of the energy per nucleon of 

asymmetric nuclear matter on isospin asymmetry is essentially quadratic. 

         Within the framework of HF mean-field calculation, the binding energy per nucleon of 

asymmetric nuclear matter is calculated by adding the isovector component of the M3Y 

interaction, which does not contribute to the symmetric nuclear matter, to the isoscalar component. 

Accordingly, with the spin dependent terms of equation (1) averaged out, it is [16, 23]: 

 

𝐸

𝐴
(𝜌) =

3ђ2𝑘𝐹
2[(1+ 𝛿)

3
5 (1− 𝛿)

3
5]

20𝑚
+ 𝐹(𝜌)

𝜌

2
[𝐶0𝐽00

𝐷 + 𝛿2𝐶1𝐽01
𝐷 +  

1

4
∫ [𝐶𝑜𝑣𝑜𝑜

𝐸𝑋𝐵0
2 +

                𝐶1𝑣𝑜1
𝐸𝑋𝐵1

2]𝑑3𝑟],                                                                                                   (12) 

where B0(δ, r) = (1+ δ) j1(kFnr)+ (1+ δ) j1(kFpr) 

and B1(δ, r) = (1+ δ) j1(kFnr) - (1+ δ) j1(kFpr)                                                               

 

The first term of equation (12) is the kinetic energy, while 𝐶0𝐽00
𝐷  = ∫ v00

D(r)d3r and 𝐶0𝐽01
𝐷  = ∫ 

v01
D(r)d3r.  j1(x) is defined in terms of the first-order spherical Bessel function as j1(x) = 3j1(x)/x. 

kFn, kFp and kF are the neutron, proton and total Fermi momenta given as kFn(p) = (3π2ρn(p))
1

3 
  and 

kF = (3π2ρ/2) 
1

3
  respectively. From the knowledge of the energy per nucleon in equation (12), 

expressions for asymmetric NM pressure and incompressibility could be derived by taking the 

partial derivatives of equation (12). 

 Using equations (10) and (12), an expression for the symmetry energy coefficient can be written 

as 

𝑆(𝜌) =
3ђ2𝑘𝐹

2[(1− 𝛿)
3
5 (1+ 𝛿)

3
5−2]

20𝑚𝛿2 + 𝐹(𝜌)
𝜌

2
[𝐶1𝐽01

𝐷 +  
1

𝛿2 ∫ (
𝐶0

4
𝑣𝑜𝑜

𝐸𝑋𝐵0
2 +              

𝐶1

4
𝑣𝑜1

𝐸𝑋𝐵1
2 −

𝐶0𝑣𝑜𝑜
𝐸𝑋[𝒋𝟏 (𝑘𝐹𝑟)]2) 𝑑3𝑟]   ,                                                                        (13) 

 

Now, with the contributions of higher-order terms neglected, one can, to a good 

approximation, estimate the symmetry energy from the two extreme cases of pure 

neutron matter and symmetric nuclear matter according to: 

 

    𝐸𝑠𝑦𝑚 =
𝐸

𝐴   
(𝜌, 1) −

𝐸

𝐴   
  (𝜌, 0)                                                                                              (14) 
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The symmetry energy, defined as the energy per nucleon required to change the 

symmetric nuclear matter to pure neutron matter (PNM), represents a penalty 

levied on the system as it departs from the symmetric limit of equal proton and 

neutron numbers [2]. This nuclear matter symmetry energy computed at the nuclear matter 

saturation density, Esym = S(ρ0) with ρ0 = 0.17fm−3 is well-known 

in the literature as the symmetry energy or symmetry coefficient. To determine its 

empirical value, the scaling factor, C1, of the isovector component of the effective 

interaction is first determined in relation to the scaling factor, C0, of the isoscalar 

component when the proton-neutron asymmetry, δ = 1.0. In addition to the asymmetry parameter, 

δ = 1.0, δ = 0.35 and 0.70 are also employed for the study of 

the density dependence of NSE in this paper. 

The behaviour of the symmetry energy around saturation can be characterized in terms of a few 

bulk parameters such as [11, 25, 27]: 

 

Esym(ρ) = S0+Lx+
1

2
 Ksymx2+…..                                                                            (15) 

 

where x = 
𝜌− 𝜌0

3𝜌0
 is a parameter representing the deviations of density from its value at saturation, 

S0 is the symmetry energy at saturation density, L and Ksym are the slope and curvature parameters 

of symmetry energy at ρ0 expressed respectively 

as: 

 

𝐿 =  3𝜌0
𝛿𝐸𝑠𝑦𝑚 (𝜌)

𝛿𝜌
|𝜌=𝜌𝟢

                                                                                          (16) 

 

𝐾𝑠𝑦𝑚 =  9𝜌0 
2 𝛿2𝐸𝑠𝑦𝑚 (𝜌)

𝛿𝜌2 |𝜌=𝜌𝟢
                                                                                           (17) 

 

Within a given set of models, these coefficients are so strongly correlated 

that their determination is generally sufficient to visualize and constrain the density dependence 

of NSE, at least, in the density interval probed by the constraint 

[11]. It is, however, challenging to obtain empirical constraints from finite nuclei as various 

calculations of the NSE even at the sub-saturation densities are known 

to demonstrate rather large differences. But, heavy-ion collisions at intermediate 

energies are believed to provide constraints on the low-density behaviour of NSE 

because the degree of isospin diffusion in these reactions is affected by the stiffness of the NSE 

[2, 24]. The high-density behaviour is, however, largely unknown or 

undetermined due to non-availability of data on simultaneously measured masses 

and corresponding radii of neutron stars [2]. But there are indirect indications 

such as the neutron star cooling processes. Even though the behaviour of Esym(ρ) 

at densities above saturation is not well constrained and predictions of different 

models diverge, numerous many-body calculations and those from the empirical 

liquid-drop mass formula predict its value at saturation density to be 30 ± 2 MeV 

[16, 26]; but a direct experimental determination of the symmetry energy does 
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not exist [10]. Similarly, Khoa and his co-researchers estimated the most realistic 

value of the symmetry energy to be about 31 ± 2 MeV from the analysis of experimental cross 

section data carried out with an optical potential based on the 

isospin dependent CDM3Y6 interaction in a charge exchange p(6He,6 Li∗) reaction 

[24, 25]. While the curvature parameter Ksym is poorly known, the values of symmetry energy and 

its slope parameter, L have been established based on analyses 

of the terrestrial Nuclear Physics experiments and astrophysical observations to 

be 31.6±2.7 MeV and L = 58±16 MeV, respectively, as shown in [8]. We have chosen in this work 

to explore the density dependence of NSE, using the density dependent B3Y-Fetal effective 

interaction in the hope to have a good insight into its performance strength to be compared with 

empirical standards. Consequently, the values of NSE and its slope parameter at saturation density 

are to be determined to give a quantitative picture of the viability and position of the B3Y-Fetal 

effective interaction in relation to M3Y-Reid and M3Y-Paris effective interactions in this study. 

The findings from this study will certainly determine the suitability of the B3Y-Fetal interaction 

for a successful and comprehensive study of asymmetric nuclear matter in our subsequent papers. 

 
RESULTS AND DISCUSSION 

                                 
Figure 2: Symmetry Energy of Cold NM Calculated with Density Dependent M3Y-Paris,    

           M3Y-Reid and B3Y-Fetal Interactions at the Asymmetry Parameters (δ) between  

           0 and 1.00. The solid rectangle is the empirical value of symmetry energy at p ~ p0 
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 In this study, the isovector component of the density-dependent M3Y-type interaction was used 

in conjunction with the isoscalar component. The determination of NSE was first carried out with 

M3Y-Paris and M3Y-Reid effective interactions whose predictions of this nuclear matter property 

had been well determined previously [23]; the B3Y-Fetal effective interaction was then substituted 

for them in the same computational procedure with results that have demonstrated good agreement.  

 

In the course of the HF calculation of nuclear symmetry energy, the M3Y-Paris forces have been 

observed to be more realistic as the empirical value of symmetry energy could be reproduced well 

without the need for further renormalization of the C1 factor; thus, C1 = C0 for this effective 

interaction in this work. Accordingly, the values of symmetry energy obtained with the DDM3Y1, 

BDM3Y0 and BDM3Y1 versions of the M3Y-Paris at the saturation density are 31.3, 30.8 and 

30.8 MeV respectively. On the contrary, the isovector components of the B3Y-Fetal and M3Y-

Reid interactions were found to be too strong, so the C1 factor had to be reduced by C1 = 0.62C0 

in both cases to be able to obtain the correct value of symmetry energy (Esym) at equilibrium. Based 

on this adjustment, the values of symmetry energy at the saturation density obtained with 

DDB3Y1-, BDB3Y0- and BDB3Y1-Fetal effective interactions are 30.5, 30.6 and 30.7 MeV 

respectively; 

 

whereas 30.0, 30.6 and 30.6 MeV are the values of symmetry energy obtained 

with DDM3Y1-, BDM3Y0- and BDM3Y1-Reid effective interactions respectively. In addition, 

the values of the slope parameter, L obtained with DDM3Y1, BDM3Y0 and BDM3Y1 versions 

of the M3Y-Paris, M3Y-Reid and B3Y-Fetal effective interactions are 48.2, 48.2 and 48.2; 51.0, 

51.0 and 51.0; and 53.0, 53.0 and 53.0 respectively. These results obtained in the present work 

tally well with such empirical standards as 31±2 MeV [24, 25], 30±2 MeV [16, 26] and 31.6±2.7 

MeV [8] for symmetry energy; and L = 58±16 MeV for the slope parameter. Specifically, the B3Y-

Fetal effective interaction appears to demonstrate excellent agreement with the M3Y-Reid and 

M3Y-Paris effective interactions. This is more clearly depicted in Figure 2.0.  

 

The results of the calculated symmetry energy obtained with the DDM3Y1, BDM3Y0 and 

BDM3Y1 versions of the B3Y-Fetal, M3Y-Reid and M3Y-Paris effective interactions at different 

neutron-proton asymmetries (δ) are displayed in Figure 2.0. The first obvious thing is that the 

quadratic dependence of the symmetry energy upon the asymmetry parameter up to high nuclear 

matter densities is well illustrated in Figure 2.0 in which the curves of Esym/δ2 are portrayed to be 

almost independent of δ. This is known to demonstrate good agreement with relativistic 

Brueckner-Hartree-Fock (RBHF) calculations [16], confirming the empirical quadratic law up to 

the highest asymmetry parameter, δ = 1. Also evident from Figure 2.0 is a steady increase of Esym 

with increasing nuclear density, up to about 2ρ0; but at much higher densities, the Esym obtained 

with the BDM3Y0- as well as BDM3Y1-based effective interaction reaches a maximum and 

decreases smoothly as density increases in a manner typical of all BDM3Y-type effective 

interactions. This form of density dependence of Esym is called ‘soft’ dependence [2, 27]. The 

curves of Esym representing the DDM3Y1-based effective interaction evidently demonstrate a 

continuous increase with increasing nuclear density, depicting a form of density dependence 

referred to as ‘stiff’ dependence [2, 27]. 
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CONCLUSION 
  

The goal of this work has been the microscopic study of the nuclear symmetry energy with a new 

M3Y-type effective interaction derived from variational calculations. The new effective 

interaction, called B3Y-Fetal interaction, has been used in its DDM3Y1, BDM3Y0 and BDM3Y1 

density-dependent versions alongside the M3Y-Reid and M3Y-Paris effective interactions to study 

the density dependence and reproduce the values of symmetry energy at the saturation density, ρ0 

= 0.17fm−3, which have been found to fall agreeably within established empirical range. The 

empirical symmetry energies of 30.5, 30.7 and 30.7 obtained with the DDB3Y1-, BDB3Y0- and 

BDB3Y1-Fetal interactions, when compared with those obtained with their counterparts based on 

the M3Y-Reid and M3Y-Paris effective interactions, have been found to be in excellent agreement, 

validating the B3Y-Fetal as a viable tool for probing asymmetric nuclear matter. 
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