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ABSTRACT: In the previous papers, I have mentioned several times of HKLam Theory and
their everyday usage but without the abstract mathematical proof. In order to remediate the
flaws, I am now trying to proof the theory through both Tensor Algebra and Analysis as well as
the statistical inference in this present paper. Indeed, people always say that mathematicians
are linear animals or participate much in the subject of linear algebra while the British Scientist
Newton observed a falling apple and discovered the gravity together with the development of
calculus. In a similar case, my proof in the part of tensor algebra will be an analogy to the
linear mapping, transformation etc while there are the corresponding corollary real physical
life cases — 2 to 3 dimensional vectors calculus or even higher dimension of tensor analysis.
Indeed, my proof will be based on the order two tensor but the HKLam theory may be extended
up to nth order tensor but NOT applicable to the topic of the planned politics or even economics
etc.The main aim is to show the proof of HKLam Theory by linear/Tensor algebra together with
some applications in fluid dynamic and stress tensor field etc.
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PROOF OF THE HKLAM THEORY
1.1 Linear Mapping (Transformation)
Theorem 1.1 [1] Let V and W be vector spaces. Let {vi,...,va} be a basis of V, and let wi,...,w, be
any arbitrary elements of W. Then there exists a unique linear mapping T: V — W such that
T(v1) =wi,...,T(¥n) = Wn.
If furthermore, ay,..., an are scalars, then
T(oryi+ ...+ 00 ¥n) = o1 W1+ ... + On Wn.
Proof:
Part A. Existence of the (linear) map — “T” (Assume the linearity first as [ will prove immediately

in the following (part B)).

@ECRTD-UK: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK


https://www.eajournals.org/

International Journal of Mathematics and Statistics Studies
Vol.10, No.5, pp.1-14, 2022

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Let V and W be vector spaces. Let {vi,...,va} be a basis of V, and let {w’i,...,w’,} be the basis of

W. Let T:V — W be a linear map that
T(v) =W, T = W, ..., T() = W
Then oy yit+ ...+ an¥n=01iff 0;=0 fori=1,2,...,n
T(ou ¥it ... + anyn) = T(0)
= wT(y1) + ... + onT( ¥n)
= 0T(v1) + ... + 0T (¥n)
=0w’1 + ...+ 0w’
=0
(N.B. [2] 1. For if {w’1, ..., W’u} are linearly dependent, then by definition, one may find scalars
Al ,..., Ai that is not equal to zero such that
MW+ AW Wi ... T AW =0
Then T( My1 + ... + AVi+ Ai+1Vir1+ An¥n) = 0 for A1 ,..., Ainot equal to zero and otherwise equals
zero. Hence, we have non-zero elements in the kernel, says v = A1y1 + ... + Ajvinot equals to zero as
A1 ,..., Ainot equal to zero.
(But {vi, ..., ¥n} 1s the base of V or if

MVt ...+ Ava=0

then all A; must be zero by the property that all y; s are linear independent for 1= 1,2, ..., n which
obviously induce a contradiction with previous assumption A ,..., Ainot equal to zero). Thus, if
kernel of T is zero, then the image vector {T(v1), ... , T(¥a)} can form a basis.

Conversely, if {T(v1), ..., T(va)} forms the basis of W, then T(x) =0 where X = (X1, ..., Xn)
belongs to a vector space V and X = x1 ¥1 + ... + Xn Vo With {v1, ..., ¥n} as the basis of V
xiT(vi) + ... + xaT(¥n) =0

Txiyvi)+ ...+ T(Xn ¥n) =0
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T(xiyi+...+ Xa¥n)=0

Hence, we may have the following corollary:
Corollary 1.2 [3] The image vectors{T(v1) , ..., T(vn)} can form a basis of V (i.e. dim(V) = dim(W)
from the fact that dim V = dim Ker T + dim Im T and Ker T = {0}) if only if the kernel of T is zero.
(N.B. Detail proofs of the Kernel and Image of a Linear Map is out of the scope of the present paper
and has been described on [1] p.59 — 63.)
Part B [1]: Linearity of the map — “T”
Suppose v be an element of V and also ai,..., a, be the unique scalars such that
Y= 01 Vit ...+ On¥Vn
Suppose further that,
T¥)= arwi+ ...+ oo Wn
and one may have additional element v’ =vy1 vi + ... + yn ¥n, then
v+yv = (uty)yi+...+ (0nt yn) Yo
By definition,
Ty +¥’)=(out+y1)) Wi+ ...+ (dnt Yn) Wa

= Wit yiwit... 0o Wn Y0 Wa

(1 Wi+ ...+ onWn)+ (Y1 W1+ ...+ 70 Wn)
=T + T
Let ¢ be a scalar, then cy = ¢ (o1 Y1 + ... + 0n ¥n)
Consider T(ev)=corwi+...+c onWn
=c(o Wi t...+ OnWn)
= T(W)

Hence, the map T is linear.
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Part C [5]: Uniqueness of the linear map — “T”
Let T: V— W be a linear map which satisfies T(y;) = w; for all j belongs to {1, ..., n}. At the same
time, suppose there is also another linear map S: V — W such that S(y;) = w; for all j belongs to
{1, ..., n}. It suffixes to show that the linear maps T = S. Otherwise, the uniqueness may turn out to
be the problem in change of basis [4].
Let x =civi + ... T c¥n, then T(x) = T(c1¥1 + ... + Cn¥n)

=c1T(v1) + ... + caT(¥n)

=CIW1 *+ ... + CaWn

=c1S(v1) + ... T caS(¥n)

=S(c1y1 + ... + cn¥n)

= S(x)
Thus, this author has shown that for every x belongs to V, T(x) = S(x). Hence, T=S proving
uniqueness of the original T that I have already established.
1.2 Linear Combination & Regression
Definition 1.2.1: Let V be an arbitary vector space, and let vy, ... , va be elements of V. Let
X1, ... ,Xn be scalars. Any vector w € V that can be expressed of the type

W=X1Vit...+Xp¥n

is called a linear combination of vectors {vi, ..., Va}.

Now, consider a vector equation like the following:
XiVvit...+xaVk=hb
where vi, ... , Vi, b are vectors in R"and x1, X2, ... , Xk are unknown scalars and has the same

solution set as the linear system with augmented matrix
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L v ... 1
[vl Vy ... Ui

Lr ol

l
b
l
whose columns are the v;’s and the b’s.

Corollary 1.2.2: For the vector b in R", we may always express it as the linear combination of the
basis {ei, ez, ..., en}through vector equation where ¢; = (0, ...,1, ... 0) with the i-th coordinate
equals to 1.

Proof: It follows directly from the fact that vector b = (by, ... , bs) for some scalars b;
wherei=1,2,... ,n

Thenh=b1 €1 +... ""bngn.

Corollary 1.2.3 [6]: In particular, the linear regression may be considered as the approximation of
the vector b € W through a suitable selection of combination coefficients or projection in terms of

vector equation.
V1 0
=\ (o)
I I I

Proof: By definition, b =b; y1 + ... + biyk or b = (b1, bz, ... , bx) I\ | , where yi = };i | is the i-
W

th vector with only the i-th coordinate not equals to zero for some basis {yi, y2,...,Yi,...,¥n} , hence
by considering linear regression as a special case of linear combination, one may always
approximate b by the linear function like y = m'x + ¢ or for multiple variables, one may have

V1 €1

[r2) (e

b= (b1,b’2,...,b%) Ik )I + Ik )I for other approximated scalars b’i (N.B. one may need

v/ e
to choose these approximated scalars b’; indeed) not equals to the original scalars b;
where [=1,2, ..., kin the above b =b’1y1 + b’2y> + ... + b’kyx with error terms (ci, c2, ... , ck) 18
used to adjust for the fitting of the approximated one into the original b vector’s expression. i.e.

b=b1yi+bay+...+bxyk+tci+ca+... +ck
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Or in general, for any resulted vector w € Wwhich is obtained from the space V through the linear
mapping “T” to the space like W, we may have:

w = o+ Bix1 + ... + BuXn + € for some basis {Xxi, X2, ..., Xa} iIn W and a
vector € in W with some scalars i where1=1,2, ... ,n.
Indeed, one of the most famous case is the selection of dot product as the b’; s in the orthogonal
base with positive definite scalar product and more general case. With reference to Gram-Schmidt

orthogonalization process [1], p.103, p.123, for any given arbritrary basis {yi, ¥2,...,¥x} of V, one

(b(t—nza—l)’bizl')

may always select as our b’; s such that

<biXiT:biXi>
<b1XI'bZXZ> <bzzzT'b3X3> <b(k—1)XZ;<—1)fkak>
b=y +— Yo+ y3t...+ pm vk + Error terms ---------- (*)
<bZXz 'b222> <b3 Xs'b3z3> <bkzk:bkzk>

where <bg.1)y-1)" , biyi> denotes the dot product between vectors bg.1)y(i-1) and biy; for

I1=1,2,...,k and error terms will be defined as:

The above result is defined as my dot product (of the orthogonal projection) regression. Certainly,
one may develop some other kind of regression by using the ideas of geometric mean and ordinary
least square like the prescribed dot product one etc. This author remarks that one may go a further
step by using the recursive Gram-Schmidt orthogonalization process to obtain the orthogonal basis

and perform another type of projection etc.
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In Brief,

1. given known values of b; s, one may find the corresponding b’; s by applying a suitable projection

method;

2. given values of b’; s and a known method of projection, one may find the respective b; s with the

vice versa process of applying the projection in order to reconstruct those b s.

(N.B. Actually, you may consider the corollary 1.2.3 as a kind of projection etc as b’; s are selected

by the users which technically forms a geometric projection. i.e. projects part of the vector b’s

suitable values with b’; s or takes a proportion of the original values of b; s. Conceptually, this is just

like the famous orthogonal projection [7]. Practically, we may use the set.seed command in JASP

and R or machine learning in guessing the level/degree of b’; s etc required. They constitute a kind

of philosophy. However, the computer stimulation of the vector projection or any computational

tasks etc are NOT the focus of the present paper. The main aim of this paper has been described in

the abstract.)

1.3 Matrix (or Array) as a Linear Mapping

Definition 1.3.1 [8] Let V' and W’ be two vector spaces. Let {vi, ¥, ..., Va} be a basis for V’ and

{W1, W2, ..., Wm} be a basis for W’. For anyv € V' and any w € W', denote by [v]v> and [w]w their

mX1 and nX1 coordinate vectors with respect to the two bases of V' and W’ respectively. Let £: V’

— W’ be a linear map. An mxn (i.e. m rows and n columns) matrix [f],~w such that, for anyv € V',
fW)]w = flvwl¥lv

is called a matrix of the linear map f with respect to the bases V' and W”’.

Moreover, the resulted [f(v)]w is a vector of rank m.

Theorem 1.3.1.2 A map fis linear if only if it has a matrix A and transform coordinates.

“If” part: Assume that the mapping is linear, then according to [1], p.83 there exists a unique matrix

A such that [f]lv'w = [fla;
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“Only if” part: Assume there is a mxn matrix A, then we may construct a map f: V' — W’ with the

basis of V’ =n independent column vectors and the basis of W’ = m independent row vectors such

that [f]v'w = [f]a. Then we may verify the map is linear like the case in the previous section.

Obviously, the map also transforms coordinates.

Corollary 1.3.1.3 For any matrix A, according to Theorem 1.3.1.2, there exists a unique linear map

L such that L(x) = Ax and results a coordinate transformed vector b in the matrix equation form:
Ax=b

By the theorems in section 1.1, the corollary 1.2.3 and the proof in Lam (March, 2020), one may

have the following theory:

Theorem 1.3.2 (HKLam Theorem) For any matrix equation AX = b, one may express it as a linear

transformation such that T: V. — W. Then one may approximate (or project) the resulted vector b €

W by selecting a suitable linear combination coefficients with some error terms. Furthermore, by

Lam (29 March, 2020) [9], one may also expand the projection or approximation by an expression

with a series of recursive linear regression substitution.

Proof: Follows directly from the

1. Theorem 1.1 — existence, linearity and uniqueness of linear transformation,

2. Corollary 1.2.3 — linear regression as an approximation/projection of the linear combination of

the domain in linear map),

3. Definition 1.3.1 — matrix equation as a kind of linear transformation;

4. Theorem 1.3.1.2 — A map is linear iff it has a matrix A and transform coordinates;

5. Corollary 1.3.1.3 — Given any matrix A, one may construct its linear map together with its its

matrix equation and results its transformed coordinate vector b, b is then expressed as the linear

combination or regression etc;
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6. Lam (March, 2020) — the approximated regression of the domain in the matrix linear
transformation can then be expressed as a series of recursive regression substitution.

N.B. The theorem may be proved by contrapositive: Assume that Ax =b with b #

b'1y1+... +b'nyn + c1+... +cy. But by the assumption b’y y1+... +b"yyn + c1+... +cp =

bl& +... +bny_n . This implies b # blﬂ +... +bny_n which obviously contradicts to the fact that Ax

=b=biyi + ... + baya !!!!!! Hence, one may always approximate or project vector “b” by the
vector equation: b’y +b’2y2 + ... + b’nyn + €1 + ... + e With {ci, €2, ..., €a} as the error terms or
the linear regression to the combination. Suppose further that Ax = b, then in matrix form, one may
have [1]:

x1
X2

o
y

where bi = Y- a;; x; for I=1,2,...,m

I
i
|

I
I
I
I
n
) am]xj/
Butb =biyi +boya + ... + bmym = (Xj=1 1% ) Y1 + =1 azj x)¥2+ ... + (Xhoq Amj x;)¥m for
some basis {yi, ¥2, ... , yn} spans b. In other words,
b=biyi +boys + ... + bmym= (Xf=g a1 % ) Y1 + Xhzq azj x)¥2 + ... + (=g Qmj X%)¥m
=[QF1a'jx) yitel+ Xl a2y +el+ ..+ (X a'mj x)¥m + em]

=by1+b2y2+ ... tbmymter+te2+... +em
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=b’ + error term where ( X7, a;j x)yi=( Xj=1 @'y x;)yi + ¢i for [ =

1,....m
Now, consider the approximated vector b’, one may get:

) (

b’=(a’11,a’12, ..., 2 1) k ' | x+...+(@m,a2,...,a m)

y \i
a (o

| |
=[(@1,a’12,...,2"1n) | | +...+ (@m1, 222, ..., 2 mn) K

0
[@1yr ayr o dy
| - I
=[| Ix
la’mlym almzym almnme
[@1y1 a2y - i)
| . . .
Now consider the transpose of | . . . . |, Le.
lavlmlym almzym a,mnme

bT=(A"y) x=W'x where W' = (ATy)
Now, by adding the error vector C to the above vector equation, one may further get:

b’ + error term = (W'x)T + C=Wx"+ C.
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In terms of dot product projection (or equation (*)), we may get:

. <21i1=1 a(i—l)jiji—lTJ2?=1 aijxjﬁ>

bi’=

(B aeyl i, aijxjve)

Or one will get the wanted result that can connect the statistical model recursive vector-matrix
equation as mentioned early in my paper named “Evaluation of the Weather-Influenza Pattern with
a Regression Model Approximation to Casuality” etc. This completes the proof in my HKLam
Theory or in general the so-called statistical modeling theory. From the above proof of linear
regression is just a proportion of linear combination one may find that the converse is also true. This
is because if one get a regression vector equation such as b> = W'x + ¢ and a set of data, say (x1,y1),
(x2,y2), --- » (Xn,¥n), together with the error term, one may get back the vector b. Then one may
revese the previous proof procedure and finally get the proportional ratio between the coefficients
of linear regression and combination or (a’; / aj)’s for 1= 1,2, ... ,n so as the matrix A etc. This
writer will omit the reverse of the proof and leave it to those interested readers.

N.B. Indeed, one may further compute the values of the error term C by considering the monic
polynomials as a basis for the linear regression (/ combination) to approximate the vectors yis.

Practically, one may have:
€= (Xjo1 @i xj - Xj=1a'ij Xj ) Yi

=(Xji(ay—d'i) %)y

where f(xl-)is an approximation toy;

If one selects the set of monic polynomial {1, x, X2, ..., Xn'l} or {f(x;)} for [ =1, ..., n as the basis

for spanning f (x;), then one may get the following linear regression or combination:
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f(x) = Z?:l(wif(xi))

To be precise,

¢ =( Z}l=1(aij —a';;) xj) (min ( =1 (& — Y1 Wikfik(x)))z)

and our goal is to minimize

(Zs (31— Sk wifue @)
The method of finding the minimum point may be by using gradient descent etc just as mentioned
in my paper “A Saddle Point Finding Method for Lorenz Attractor through Business Machine
Learning Algorithm” etc.
N.B. It is true that there is a Johnson Lindenstrauss Lemma for the random matrix which may be
used for high dimensional space mapping to the lower one, however, this is not the focus of the
present section as its aim is to prove my HKLam theory. The lemma may be related to the distance
between data during the analysis in the topic of machine learning. This author will leave such
lemma and the usage for those interested readers in their further study. I should also note that there
is a need considering the order of those data points or vectors in the daily usage of the HKLam
theory. Indeed, two different types of result may be given.
N.B. As we may have the Moore-Penrose inverse of a given matrix A belongs to the R™*" one may
get the corresponding singular value decomposition (SVD) and hence get the pseudo-inverse. Once
we have get the inverse, we may find the solution x to the matrix equation AX = b with the linear
least-squares [12]:
where the modified x = A" (Regression Approximation) + (I - A*A)w

and (Regression Approximation) is well defined in corollary 1.2.3.
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Theorem 1.3.3 The converse of the theorem 1.3.2 or HKLam Theory is also true.

Proof: Let o+ PiX1 + ... + BnXn + € be the regression approximation of the matrix linear

transformation of Ax = b. Then by the definition of inverse to a vector x, we may have [10]:

x!'= 1”2§ (since the inner product of <x x'>=1)

[l

Hence, we may have A’= (Bo+ Bixi + ... + BuXn + £)x

=(Bo+Pixi+ ...+ PnXn + &) (Wz)

1
= @bt xobh+ .t xbhtetet .t e) (Wz)
x

= (Xl bl +... +§nbn) (LX)

[
=A

(where the accuracy of A’ or A depends completely on the precision of g that we have taken).

CONCLUSION

In a nutshell, this author has proved the HKLam Theory (both the “if” part and the “only if” part) by

the elementary or basic linear algebra. It is no doubt that the theory has its extension for the tensor

algebra and tensor analysis parts and has plenty of applications in physics and astronomphy etc.

This author will left those discussions in the following series of the paper together with another one

about its direct daily usage such as the real numerical data application of oral cavity teeth curvature

in the field of 3D teeth modeling or even the controversial 3D cognitive brain signal input/output

into human physical mind etc.
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