
European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

11

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

A CAUSE-EFFECT GRAPH SOFTWARE TESTING TOOL

Berk Bekiroglu

Department of Computer Science, Illinois Institute of Technology

ABSTRACT: This paper explains analysis and implementation of a cause-effect graph

software testing tool. The cause-effect graph software testing method and its application are

described. The method of generating test cases from software specification is discussed. In

addition, a new cause-effect graph testing tool is developed, and processes in the cause-effect

graph software testing is explained with an example. Moreover, the coverage analysis of effect

nodes is described.

KEYWORDS: Software Testing Tools, Cause-Effect, Graph Software, Testing

INTRODUCTION

Software testing is an essential part of software development processes. It is the most expensive

tasks during a software development. Software testing usually involves series of planned

processes, and the aim of these processes is to find bugs in a system. All software systems have

plenty of bugs, and the software testing decreases the number of these bugs. Although software

testing methods can find critical bugs in software, there may be still significant numbers of

bugs in well-tested systems. Thus, a bug-free system is impossible in practice. However,

software bugs cannot be tolerable in some systems, such as safety-critical, and mission critical

systems where the failure of systems can cause catastrophic results. For this reason, software

testing becomes more important because of the consequences of failures for these types of

systems.

Software testing methods are divided into two main categories, namely black box software

testing and white box software testing. Black box software testing methods are based on

software specifications. In addition, the program is considered as a closed box and is assumed

the internal structure of the program is not known. Some important black box software testing

methods are equivalence portioning, boundary value analysis, state transition and use case

testing (Burnstein, 2002; Mayers, 2004; Nook, 2008; Lewis, 2009; Everett, 2007).

Furthermore, the cause-effect graph software testing method is in this category because it is

based on software specifications. On the other hand, white box software testing methods are

performed with the knowledge of the internal structure of programs. Source code coverage

methods such as statement coverage, decision coverage, and condition coverage are some of

the most used white box software testing methods (Burnstein, 2002; Mayers, 2004; Nook,

2008; Lewis, 2009; Everett, 2007). During a software testing process, more than one software

testing method can be used complementarily, and each additional software testing method can

find new bugs in a system.

A cause-effect graph software testing considers combinations of input conditions when

generating test cases. The software tester should determine input conditions, outputs, and

constraints from software specifications. The cause-effect graph software testing may find

some types of bugs that other black box software testing method cannot find.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

12

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Because of size and complexity of software systems, performing manual software testing is

tedious, and some automation may be necessary (Burnstein, 2002). For this reason, software

testing tools are developed to carry out these software testing methods. By automated software

testing tools, software testing can be done more systematically and correctly. The cause-effect

graph testing tool is one of these software testing tools which use the cause-effect graph

software testing method. Cause-effect graph software testing tools generate decision tables

from logical circuit designs. Then, they produce test cases from decision tables (Burnstein,

2002; Bender, 2008). Although many processes can be automated with software testing tools,

cause-effect software testing tools still require many manual processes such as specifying input

conditions and developing logical circuits which also require analyzing constraints on input

conditions. So, the cause-effect graph software testing method is still an expensive technique

when comparing other black box software testing methods.

Related Works

Many software testing tools have developed to generate and execute test cases. Most of the

tools try to automate or semi-automate test case generation and execution processes. Mustafa

(Mustafa et al., 2009) analyzes and classifies 135 software testing tools. Mustafa (Mustafa et

al., 2009) also denotes that many of available software testing tools are designed for web

applications. A comprehensive survey related to automated software test case generation

techniques are described in (Anand et al., 2013). Prominent software testing tools that use

model-based, combinatorial, symbolic execution, search-based, and adaptive random testing

are also denoted (Anand et al., 2013). Another survey (Vishawjyoti et al., 2016) explains

automated software test case generation methods and algorithms. Search-based, model based

and adaptive random test case generation algorithms are explained in (Vishawjyoti et al., 2016).

Automated cause-effect graph software testing tools are not widely used like other automated

software test case generation tools. So, there are an only small number of available tools on the

market for cause-effect graph software testing. BenderRBT (Bender, 2008) is one of the

commercial tools which was designed to automate test case generation with the cause-effect

graphing software testing method. The tool does not only optimize software tests but also

provide observability of defects. The tool is recommended for safety critical, mission critical

and business critical systems (Bender, 2008).

The Cause-Effect Graph Software Testing

The cause-effect graph software testing is a test case generation method which uses the

simplified digital-logic circuit. This method originated from hardware engineering; however,

it is adapted to software engineering (Mayers, 2004). The cause-effect graph software testing

is a black box testing method and input conditions are systematically combined to generate test

cases.

In order to generate test cases, input or test conditions must be determined from software

specifications first. This process is called test analysis or test basis. Then, these test conditions

are converted to test cases. Determining test conditions is not a complex process and can be

done by just reading the software specification document. Everything in a software

specification document can be a test condition. Furthermore, some conditions can be derived

from experience, which is not documented anywhere. Test conditions may include a large range

of possibilities and may not include exact information. However, when generating test cases,

the exact software test data must be known. Test cases are derived based on software testing

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

13

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

methods. Different software testing methods can derive different test cases from the same test

conditions.

Many traditional black box software testing methods such as equivalence partitioning and

boundary value analysis do not consider the combination of test conditions. Only single input

condition may not cause a failure in the system, however, when two or more input conditions

are combined, they may cause a failure (Mayers, 2004). For this reason, each combination of

test conditions should be considered when generating test cases. However, even for small and

simple software, there is a significant number of combinations of test conditions. Thus, for

complex and large projects, the number of combinations becomes astronomical. The cause-

effect graph software testing method provides a systematic way to combine test conditions and

produce test cases from the combination of test conditions.

(Mayers, 2004) defines six processes that the cause-effect graph software testing involves when

generating test cases from software specifications. Figure 1 denotes these processes.

Figure 1. The guideline for the cause-effect graph software testing method

In the first process, the system is decomposed into logical sub-systems. The reason is applying

the cause-effect graph software testing to a whole system is cumbersome and not easily

manageable. Then each logical subsystem is decomposed into functions, and it is also possible

to decompose functions into sub-functions. The second process is identifying causes and

effects. In this context, causes refer to input and effects refer to outputs. The causes may be

distinct input conditions and equivalence classes, and the effects may be output conditions and

system transformations. Both causes and effects are identified from given software

specifications. Each keyword or phrase in the software specifications can be a cause. Causes

can include hardware events, API calls as well as return codes. In contrast, the effects can

include output conditions of equivalence classes, and interaction dialogs and messages.

Moreover, all outputs which are generated by a program are considered as an effect. After

defining causes and effects, a unique number or name should be assigned to each cause and

effect. In addition, it is important to note that the assignment of a unique number or name

should be done in such a way that causes and effects can be differentiable. Because both causes

and effects are depicted by the same node shape in a cause-effect graph, the only way to

differentiate between causes and effects is their unique IDs or names.

Convert the decision table to test cases

Convert state conditions into a decision table

Annotate constraints on the graph

Build a boolean graph to link causes and effects

Indenify and uniquely number causes and effects

Divide the system into workable pieces

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

14

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

After determining causes and effects, they are depicted as nodes in a cause-effect graph.

Connections between causes and effects nodes are identified by analyzing the semantic content

of software specifications. In this process, middle nodes can be generated to represent

combinations of causes. Furthermore, the logic of combination of causes determines the type

of middle nodes. Middle nodes are usually ‘AND’ and ‘OR’ Boolean logics. However, all

Boolean logics can be applied to causes. Besides, other Boolean logics can be used by

constraints. Middle nodes do not only connect causes, but also connect other middle nodes.

Figure 2 shows simple notations that are used to draw cause-effect graphs.

Figure 2. Notation of the cause-effect graph (Mayers, 2004)

The next process is specifying constraints on nodes. Some causes cannot simultaneously be

true or at least or at most one node can be true at a time. Moreover, some nodes can mask or

require other nodes. Thus, all these constraints must be defined in a cause-effect graph. Five

common constraints are defined for cause-effect graphs (Mayers, 2004). Four of them are

related to causes and one of them can only be applied to effects.‘E’, ‘I’, ‘O’ and ‘R’ constraints

can only be applied to cause nodes. The ‘E’ constraint stands for Exclusive. This constraint

states that at most one of the nodes can be true. Moreover, all nodes can be false, if only ‘E’

constraint is applied. The ‘I’ constraint stands for Inclusive, and it shows that at most one of

the nodes can be true. This means that all nodes cannot be false simultaneously, if only ‘I’

constraint is applied. One and only one constraint is represented as ‘O’. This constraint

indicates that one and only one of the nodes is true. The last constraint for causes is ‘R’

constraint, which stands for Requires. This constraint covers only one node at a time. This

means if the node ‘a’ requires the node “b”, then the node ‘b’ will be true whenever the node

‘a’ is true. In other words, if the node ‘a’ is true, the node ‘b’ cannot be false. ‘M’ constraint

can only be applied to causes, and it stands for Mask. Similar to ‘R’ constraint, it affects one

node at a time. If the node ‘a’ masks the node ‘b’, whenever the node ‘a’ is true, the node ‘b’

is forced to be false. Figure 3 shows the representation of all constraints on a cause-effect graph.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

15

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Constraint Interpretation Constraint Interpretation

‘E’ constraint stands

for the exclusive

constraint. In this

constraint, at most

one of these nodes

can be true. This

means node ‘a’ and

node ‘b’ cannot be

true simultaneously.

‘R’ constraint stands

for requires. If cause

‘a’ is true, then cause

‘b’ must be true. If

node ‘a’ is true, node

‘b’ cannot be false

‘I’ constraint stands

for inclusive. In this

constraint, at least

one of causes is true.

This means that all

causes cannot be

false simultaneously.

‘O’ constraint stands

for one and only one.

If node ‘a’ is true,

then node ‘b’ cannot

be true.

‘M’ constraint is for

effect nodes. ‘M’

stands for mask. If

node ‘a’ is true, then

node ‘b’ must be

false.

Figure 3 – Cause-effect graph constraints and their interpretations (Mayers, 2004)

In the next process, cause-effect graphs are converted to a limited entry decision table. This is

also a heuristic process. In the decision table, all causes are located in the first column. Each

other columns represents a test case. In order to fill a column, an effect node is selected. Then,

all nodes which make it true are identified. If one of these nodes is a middle node, this process

is repeated for that node until reaching a cause node. Each OR middle node causes a new row

as well as a new test case, and each AND node accumulates previous ANDed conditions. In

each iteration, ANDed conditions are combined with current conditions. When filling a

column, each row represents a cause; all causes which make it true will be 1. This process is

repeated for all effect nodes.

After the conversion, constraints are applied to the decision table. For ‘E’ constraint, if one

term is 1, then other terms must be 0. Also, if more than one term is 1 in a column, this column

must be discarded because this test case is impossible to generate. Moreover, if all terms in ‘E’

constraint are empty or 0, no additional process is required. For ‘I’ constraint, if all terms are

0 or empty in a column, this column must also be discarded. Otherwise, no additional process

is needed. For ‘O’ constraint, if one term is true, the other terms must be 0. If more than one

term is true, then this column must be discarded. For ‘R’ constraint, if one term is true and a

required term is false, then this column must also be discarded.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

16

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

A Sample Test Case Generation with the Cause-Effect Graph Software Testing

In this section, a small example which shows the test case generation by the cause-effect graph

software testing is explained. In this example, a subpart of the course registration system which

assigns course buildings based on the faculty and the number of registered students is specified.

Based on the given specification, there are two faculties, which are Engineering Faculty and

Art and Science Faculty. Also, there are four buildings, which are A, B, C and D. In addition

to that, the following software specifications are given.

 R0101 If the number of registered students for a course is less than 10 in the

Engineering Faculty, the course building will be A block

 R0102 If the number of registered students for a course is between 10 and 50 in the

Engineering Faculty, the course building will be B block

 R0103 If the number of registered students for a course is less than 10 in the Art and

Science Faculty, the course building will be B block

 R0104 If the number of registered students for a course is between 10 and 50 in the Art

and Science Faculty, the course building will be C block

 R0105 If the number of registered students for a course is greater than 50 both for the

Engineering Faculty and the Art and Science Faculty, the course building will be D

block

From given above software specifications, causes (input conditions) and effects (outputs) are

determined in Table 1. A unique number or ID is assigned for each cause and effect to

differentiate nodes in the cause effect graph. Two counters may be used to provide a unique

number for each cause and effect. In Table 1, ID of causes start from one and ID of effects

starts from one hundred.

Table 1. Determining causes and effects

Causes (input conditions) Effects (outputs)

 1. Faculty of Engineering 100. Building is A block

 2. Faculty of Art and Science 101. Building is B block

 3. Number of registered students < 10 102. Building is C block

 4. Number of registered students >= 10

and <50

103. Building is D block

 5. Number of registered students > 50

After determining causes and effects, the cause-effect graph can be drawn by using the Boolean

logic that is described in the previous section. Figure 4 shows the cause-effect graph which is

corresponding to defined causes and effects in Table 1.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

17

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Cause:

1. Faculty of

Engineering

 AND (∧)

3. Number of

registered

students < 10

Effect:

100. Building

is A block

Cause:

2. Faculty of

Art and

Science

 AND (∧)

4. Number of

registered

students >=10

and <50

Effect:

102. Building

is C block

Cause:

1. Faculty of

Engineering

 AND (∧)

4. Number of

registered

students >=10

and <50

Effect:

101. Building

is B block

Cause:

1. Faculty of

Engineering

 AND (∧)

5. Number of

registered

students > 50

OR (⋁)

2. Faculty of

Art and

Science

 AND (∧)

5. Number of

registered

students > 50

Effect:

103. Building

is D block

Cause:

2. Faculty of

Art and

Science

 AND (∧)

3. Number of

registered

students < 10

Effect:

101. Building

is B block

Figure 4. Cause-effect graph of the university course registration system

A single constraint which a faculty cannot be both the Engineering Faculty and the Art and

Science Faculty at the same time can be derived from given specifications. For this reason, ‘E’

constraint can be applied to node1 and node2 in the university course registration system. This

constraint is represented in Figure 5.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

18

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 5. ‘E’ constraint on causes 1 and 2 in the university course registration system

The next process is converting cause-effect graphs to a decision table. Table 2 represents the

decision table of the university course registration system which is obtained after the

conversion of cause-effect graphs. For example, in Table 2, the first test case is generated from

the first column. In the first column, only “faculty of engineering” and “number of students is

less than ten” rows are true in the cause section, and only “A block” is true in the effect section.

Thus, the first test case covers the input conditions which is “when the number of students is

less than ten” and “the faculty is engineering”. The assigned block will be “A block” as an

expected output. This process is repeated for all columns. As a result, the number of test cases

will be equal to the number of columns, if no optimizations are applied to the decision table.

In that example, six test cases are produced. The test suite is shown in Table 3.

Table 2. The decision table for the university course registration system

Causes: 1 2 3 4 5 6

1. Engineering 1 1 0 0 1 0

2. Art and

Science

0 0 1 1 0 1

3. < 10 1 0 1 0 0 0

4. >= 10 and

<50

0 1 0 1 0 0

5. > 50 0 0 0 0 1 1

Effects:

100. A block 1 0 0 0 0 0

101. B block 0 1 1 0 0 0

102. C block 0 0 0 1 0 0

103. D block 0 0 0 0 1 1

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

19

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Table 3. Test suite for the university course registration system

Test case # Faculty # of students Expected Output

#1 Engineering 5 A block

#2 Engineering 20 B block

#3 Art and Science 4 B block

#4 Art and Science 25 C block

#5 Engineering 55 D block

The interface of the cause-effect test tool is depicted in Figure 6. In the cause-effect graph

software testing tool, all causes, effects, and relations between nodes should be determined

first. All causes, effects and their combinations are defined as a node in the system. In the tool,

all types of nodes are defined in the “new node” section, which is depicted in Figure 7.

When defining a new node, a unique name and an ID should be assigned for each node. Then,

node logic, type, observability, true and false state description should be provided. The

following paragraph explains details of those specifications that need to be defined for each

node. (Bender, 2008) also defines similar specifications in their cause-effect graph software

testing tool to specify each node.

Figure 6. The cause-effect graph software testing tool

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

20

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 7. Adding a new node in the cause-effect graph software test tool

The node logic identifies the type of node. In the tool, causes are primary nodes and effects are

simple nodes. Other middle nodes, which are the combination of causes, are defined by

Boolean logics such as “AND” or “OR”. If a node is either a cause or an effect, the node type

will be “Standard”. In addition, if a node is a middle node, the node type will be “Explicit

Intermediate State”. The true state description determines the case when the input condition or

the output of the node is true. In the same way, the false state description determines the case

when an input condition or an output of the node is false. If a node is an explicit intermediate

state, the false state description is usually empty. The observability determines the availability

of test state during the execution of test cases. For example, all objects on screens, database

transactions, and objects on reports are considered as observable nodes. In addition, sounds

and movements can also be considered as additional observable objects. In the context of

requirement specification testing, all cause nodes are assumed to be observable and all effect

nodes are assumed to be not observable. Thus, during the software testing, if a defect is found

in an intermediate node, the cause of the defect can only be found by tracking an observable

cause node. In the tool, if a middle node is not observable, the observability must be set as a

standard node. However, if a middle node is actually observable, then the observability should

be set as “Observable Intermediate Node”. Nodes may not be testable in some cases because

of given constraints, although the node itself is observable. In that case, the observability should

be set to “Forced”.

After identifying and defining nodes, the connections of nodes should be identified. In the new

tool, there are two types of connections. The first connection type connects cause nodes to

middle nodes, or middle nodes to other middle nodes. The second connection type connects

cause nodes to effect nodes, or middle nodes to effect nodes. In the tool, the first type of

connection can be defined from “Add Relation” section and the second type of connection can

be defined from the “Connect Effect” section.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

21

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

The next process is defining constraints on nodes. In the tool, two types of constraints are

defined. The first type of constraints includes “exclusive”, “inclusive” and “one and only one”

which can be applied to more than two nodes. The second type of constraints covers “requires”,

and “mask” constraints, which involve only two nodes. Furthermore, the constraint direction

determines which node is required or masked. Constraints are defined in “Add Constraint”

section in the tool.

After defining all connections, and constraints, the decision table can be generated by using the

“Decision Table” module. In the decision table, the first column shows the effect node and

other columns represent different “primary” cause nodes. The algorithm of generating decision

table starts from “effect” nodes. For each primary node that connects to an “effect” node with

“AND” relation is marked “1” and creates a row in the decision table. If the connected node is

an intermediate node, the algorithm recursively iterates until reaching a primary node. Each

“OR” relation generates n number of rows for each connected node in the decision table. After

generating the decision table, the constraints on cause and effect nodes are applied. If a

constraint contradicts with a condition in a raw, the raw is deleted from the decision table. If a

constraint does not conflict with conditions in a raw, some cases may either turn to true or false

from “don’t care” cases which does not affect outputs. There exist different decision table

generation algorithms. (Aditya, 2008) and (Srivastava et al., 2009) cover some algorithms to

generate decision table from a cause effect graph. Depends on the selected algorithm, space

and time complexity can vary.

The decision table for the university course registration system is represented in Figure 8. Two

decision tables are produced in the tool. The first table represents the decision table which all

constraints are applied on it. The second table shows the decision table without constraints. In

this way, effects which are canceled by constraints can be detected.

Figure 8. The decision table for the university course registration system after applying

constraints on cause and effect nodes.

Test cases can be directly generated from a decision table. Each row constitutes a test case.

Test cases can be produced by checking input conditions in a row. For example, for node100

in Figure 8, the node1 and node3 are 1 (true) and node2 is 0 (false). So, the test case will cover

the case when statements in node1 and node3 are true, and node2 is false. The expected output

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

22

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

will be the case when the statement in node100 is true. In the tool, test cases can be produced

by “Generate Test Case” section. Figure 9 shows the test cases which are produced from the

decision table in Figure 8.

Figure 9. The test suite for the university course registration system in the cause-effect

graph software test tool

The Effect Coverage Analysis

After the cause-effect graph software testing, at least one test case is generated for each effect

(output). However, some effects may not be covered after generating all test cases because

some constraints may cause contradictions with given input conditions or an effect relation

may not be defined or deleted by mistake. The effect coverage (EC) can be calculated by the

following formula.

𝐸𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠
 𝑥 100

One of the goals of cause-effect graph software testing tools is reaching 100% effect coverage

so that all effects (outputs) are tested at least once. Figure 10 represents the coverage analysis

of the university course registration system when adding an extra effect node (node1000) which

has no relation to any causes. Thus, after the node1000, the effect coverage is reduced to 80%.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

23

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Figure 10. The effect coverage analysis in the cause-effect graph software test tool

Having less than full (100%) coverage does not always indicate a problem. However,

uncovered effects should be investigated to find potential problems in software specifications.

Coverage analysis can also find some minor mistakes such as missing connections to effect

nodes.

CONCLUSION

Software test case generation tools are one of the important tools to automate generation of test

cases. The cause-effect graph software testing tool is one of the test generation tools that use

software specifications as an input to generate test cases. The cause-effect graph software

testing tool provides a systematic way to combine input conditions. The combination of

different input conditions may reveal new bugs which may not be found with other software

test case generation methods.

In this paper, a new cause-effect graph software testing tool is described. Although the tool

automates test case generation from cause-effect graphs, building a cause-effect graph still

requires manual processes such as finding causes, effect, and constraints from software

specifications.

Cause-effect graph software testing tools are not usually preferred by small sized software

projects. Some of the reasons are the cost of processes and insufficient tools. In cause-effect

graph software testing tools, all input conditions and outputs should be formally or semi-

formally defined in the tool. In additions, all relations between causes and effects should be

defined. This process requires huge resources in terms of tester labor. However, cause-effect

graph software testing method is just found some part of bugs in the system. For this reason, it

must be used complementarily with other testing methods.

REFERENCES

Aditya, P. (2008) Software Testing, Pearson Publication.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.5, No.4, pp.11-24, August 2017

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

24

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman, M.,

Harrold, M. J. and McMinn, P. (2013) An orchestrated survey of methodologies for

automated software test case generation, Journal of Systems and Software, Volume 86,

Issue 8, Pages 1978 – 2001.

Bender, R. (2008) Cause-Effect Graphing User Guide (1st ed.), NY: Bender RBT Inc.

Burnstein I. (2002) Practical Software Testing: a process-oriented approach (1st ed.), NY:

Springer-Verlag Inc.

Everett, G. D. and McLeod, R. (2007) Software testing: testing across the entire software

development life, IEEE Press, USA: A John Wiley & Sons Inc.

Lewis, W. E. (2009) Software Testing and Continuous Quality Improvement. Third Edition,

CRC Press.

Mayers, G. J. (2004) The art of software testing (2nd ed.), USA: John Wiley & Sons Inc.

Mustafa, K. M., Al-Qutaish, R.E. and Muhairat, M. I. (2009) Classification of Software Testing

Tools Based on the Software Testing Methods, 10.1109/ICCEE.2009.9, Pages: 229 –

233, IEEE Conference Publications.

Nook, R. (2008) Advanced Software Testing Vol. 1, Rock Nook Inc.

Srivastava, P. R., P. Patel and Chatrola, S. (2009) Cause effect graph to decision table

generation, ACM SIGSOFT Software Engineering Notes, Volume 34 Issue 2.

Vishawjyoti and Gandhi, P. (2016) A survey on prospects of automated software test case

generation methods, 2016 3rd International Conference on Computing for Sustainable

Global Development (INDIACom) IEEE, Pages: 3867 – 3871.

http://www.eajournals.org/

