Tag Archives: Uncertainty

Sense-Making, Entrepreneurial Orientation and Their Influence on Firm Performance in Kenya (Published)

Manufacturing firms constitute an integral part of the economic rubric of developing countries. In Kenya, they contribute 14% of gross domestic product, and train and employ 30% of the workforce. However, they exhibit low organization capacity, and struggle to survive as competitive enterprises. The purpose of this study was to establish how entrepreneurial orientation (EO) influences the relationship between sense-making and firm performance in Kenya. Anchored on the resource-based view and strategic entrepreneurship concept, the study used a self-administered questionnaire to survey owners/managers of 83 small and medium enterprise (SME) food-manufacturing firms registered by the Kenya Association of Manufacturers. Data were analyzed using structural equation modeling, employing Statistical Software for Social Sciences (SPSS) Version 20 and SmartPLS 3. The study found that EO fully mediates the relationship between sense-making and firm performance. This study concludes that EO is a critical strategy that firms should exploit to maximize their performance. The study recommends that, manufacturing SMEs should encourage employee entrepreneurial behaviours, and the government should support policies that promote entrepreneurial business management capabilities in manufacturing firms.

Keywords: Manufacturing Firms, Uncertainty, market diversity, new products portfolio, sense-making, technology variety


The “mode” has been proposed as an appropriate statistic to improve estimate especially in situations when data distributions are skewed or contain outliers such as activity duration in project scheduling. Since the underlying distribution of activity duration may be unknown and different modes can be obtained using different bin sizes of the histogram method, this paper,investigates the effect of varying  histogram bin width and data distribution on the behaviour of the mode. Random numbers were generated from five distributions commonly used to model project activity duration at five different levels and varying sample sizes. Each set of sample is then binned using varying histogram bin width, Sturges’rule and Scott’s rule.  The grand mode for all levels per classification is recorded and analyzed. It was found that bin width does not significantly affect the behaviour of the mode but the value of the mode is significantly dependent on the data distribution and sample size.

Keywords: : Statistical mode, Bin size, Estimate, Statistical distribution, Uncertainty