Numerical Study of a Three-Bed (Unequal Bed) Adsorption Chiller with Mass Recovery

Abstract

In this paper, the performance of a three-bed (unequal bed) adsorption chiller with mass recovery has been numerically studied. The mass recovery scheme is used to improve the cooling effect and a CFC-free-based sorption chiller driven by the low-grade waste heat or any renewable energy source can be developed for the next generation of refrigeration. Silica gel/water is taken as adsorbent/adsorbate pair for the present chiller. The three-bed adsorption chiller comprises with three adsorber/desorber heat exchanger, one evaporator and one condenser. In the present numerical solution, the heat source temperature variation is taken from 500C to 900C along with coolant inlet temperature at 300C and the chilled water inlet temperature at 140C. In the new strategy, mass recovery process occurs in all beds where the configuration of Hex1 and Hex2 are identical, but the configuration of Hex3 is taken as half of Hex1 or Hex2. A cycle simulation computer program is constructed to analyze the influence of operating conditions (hot and cooling water temperature) on COP (coefficient of performance), CC (cooling capacity) and chilled water outlet temperature.

Keywords: Adsorption Chiller, Cooling Capacity and Coefficient of Performance, Mass Recovery, Renewable energy sources, Silica Gel-Water


Article Review Status: Published

Pages: 13-24 (Download PDF)

Creative Commons Licence
This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License