Biometric Authentication of Remote Fingerprint Live Scan Using Artificial Neural Network with Back Propagation Algorithm and Possibility for Wider Security Applications

Abstract

This study is aim to experiments the development of an automated foolproof university library system that integrates fingerprint technique with fingerprint-based Personally Identified Number (PIN)/password architecture for enhanced registration and login security. The development environment for creating the electronic library application for universities as RESTful Web Service is Jersey Framework. This framework implements JAS-RX 2.0 API, which is a de facto specification for developing a RESTful Web Service-based software system. Other necessary programming technologies employed in the research work are JDK, Apache Tomcat and Eclipse, which were set up prior to setting up the Jersey Framework as the development environment. The study is therefore summarized by generating hash digital values of perfectly matched reference shape signatures formed from the extraction of global minutiae features, comparing and further matching each hash value with its corresponding highly encrypted password equivalence for unique establishment of a person’s identity, minimal mean-square errors and unnecessary ambiguity introduced through false positives, as an extended security enhancement measure in biometric systems. , the study investigates the algorithm for generating templates for matching minutiae [10] together with the algorithm for generating reference axis [11], which infers that for a pair of minutiae (pn , q0) to match, there exists a reference point that corresponds between the two fingerprint images. The experimental result shows that the Sample fingerprint images were captured using a biometric scanner, which was integrated with the help of JAVA libraries, and stored in a database as raw image files..

 

Keywords: Algorithm, Artificial Neural Network, Biometric, live scan, rest architecture

Article Review Status: Published

Pages: 1-15 (Download PDF)

Creative Commons Licence
This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License