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ABSTRACT: We have obtained the exact energy spectrum for a quantum mechanical 

gravitational potential, plus a harmonic oscillator potential, via the WKB approach. Also a 

special case of the potential has been considered and their energy eigen value obtained.  
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INTRODUCTION 

The bound state solutions of the Schrodinger equation (SE) are only possible for some 

potentials of physical interest [1-3]. These solutions could be exact or approximate and they 

normally contain all the necessary information for the quantum system. Quite recently, several 

authors have tried to solve problems that involve obtaining the exact or approximate solutions 

of the Schrodinger equation for a number of special potentials using different methods [4-7]. 

One of the earliest and simplest methods of obtaining approximate eigenvalues to the one-

dimensional Schrodinger equation in the limiting case of large quantum numbers was originally 

proposed by Wentzel, Kramers, and Brillouin known as the WKB approximation method [8]. 

Considering the one dimensional radial Schrodinger equation of the form [9] for s-wave case 

where 𝑙 = 0, it means that the problem has no minimum value and also doesn’t have the left 

turning point from the physical point of view [10] and the energy obtained would not produce 

a stable bound state. In order for the physical system to have a stable bound state, we use the 

Langer correction 𝑙(𝑙 + 1) → (𝑙 +
1

2
)
2

 in the centrifugal term of the radial Schrodinger 

equation [8]. The replacement of 𝑙(𝑙 + 1) → (𝑙 +
1

2
)
2

 regularizes the radial WKB wave 

function at the origin and ensure correct asymptotic behaviour at large quantum numbers. 

It was observed by Langer [11] that the reason for this modification arose from the fact that the 

quantization condition for the one-dimensional problem was derived under the assumption that 

the wave function approached zero for  → ±∞ , whereas the radial part of the solution 

approached zero for 𝑟 → 0 and r → ∞. 

http://www.eajournals.org/


International Research Journal of Pure and Applied Physics 

Vol.5, No.3, pp.27-32, August 2017 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

28 
ISSN 2055-009X(Print), ISSN 2055-0103(Online) 

In this work, our aim is to solve the Schrodinger equation for the quantum mechanical 

gravitational potential (QMGP) plus the harmonic oscillator potential (HOP) via the WKB 

approximation method. The QMGHOP potential takes the form: 

     𝑉(𝑟) = 𝑚𝑔𝑧 + 𝛿𝑒−𝑘𝑧 +
1

2
𝜇𝜔2𝑧2 (1) 

Where k is the momentum, z is the displacement, m is the mass, g is the gravitational 

acceleration, 𝛿  is an adjustable parameter, 𝜇  is the reduced mass, and 𝜔 is the angular 

frequency. The QMGP could be used to calculate the energy of a body falling under gravity 

from quantum mechanical point of view. Recently, Ita et al [12], have applied the NU method 

to the QMGHOP, where they obtained bound state s-wave solution of the SE equation. 

Berberan-Santos et al. [13] have studied the motion of a particle in a gravitational field using 

the QMGP without the exponential term. They obtained the classical and quantum mechanical 

position probability distribution function for the particle. The HOP has been widely studied in 

the literature. For example, Amore and Fernandez [14] studied the two-particle harmonic 

oscillator in a one-dimensional box and obtained energy eigen values which were comparable 

with energies from variational and perturbation method. Jasmin et al [15] also investigated the 

single particle level density in a harmonic oscillator potential well and obtained very interesting 

result.   

This paper is organized as follows: Section 1 has the introduction, the semiclassical Bohr-

Sommerfeld quantization condition is reviewed in section 2, The WKB radial solution to the 

QMGHOP is solved in section 3. Finally, we give a brief discussion in section 4 before the 

conclusion in section 5 

Semiclassical Quantization and the WKB Approximation 

In this section we consider quasiclassical solution of the Schrodinger’s equation for the 

spherically symmetric potentials. Given the Schrodinger equation for a spherically symmetric 

potentials 𝑉(𝑟) of eq. (2) as: 

(−𝑖ђ)2 (
∂2

∂r2
+

1

𝑟2

∂2

∂θ2 +
1

𝑟2sin2θ

∂2

∂ϕ2)𝜓(𝑟, 𝜃, 𝜙)  = [2𝑚(𝐸 − 𝑉(𝑟))]𝜓(𝑟, 𝜃, 𝜙) (2) 

The total wave function in eq. (2) can be defined as 

𝜓(𝑟, 𝜃, 𝜙) = [𝑟𝑅(𝑟)][√𝑠𝑖𝑛𝜃𝛩(𝜃)𝛷(𝜙)]      (3) 

And by decomposing the spherical wave function in eq. (2) using eq. (3) we obtain the 

following equations: 

 

   (−𝑖ђ
d

dr
)
2

𝑅(𝑟) = [2𝑚(𝐸 − 𝑉(𝑟)) −
𝑀⃗⃗ 2

𝑟2 ] 𝑅(𝑟),  (4) 

   (−𝑖ђ
d

d𝜃
)
2

𝛩(𝜃) = [𝑀⃗⃗ 2 −
𝑀𝑧

2

sin2θ
]𝛩(𝜃),    (5) 

   (−𝑖ђ
d

d𝜙
)
2

𝛷(𝜙) = 𝑀𝑧
2𝛷(𝜙)     (6) 
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Where 𝑀⃗⃗⃗⃗ 2, 𝑀𝑧
2 are the constants of separation and, at the same time, integrals of motion. The 

squared angular momentum is defined as: 𝑀⃗⃗⃗⃗ 2 = 𝛾2ђ2 𝑎𝑛𝑑 𝛾 = 𝑙 +
1

2
. [8] 

Considering eq. (4), the leading order WKB quantization condition appropriate to eq. (1) is  

   ∫ √𝑃2(𝑟)
𝑟2

𝑟1
𝑑𝑟 = 𝜋ђ (𝑛 +

1

2
), n=0, 1, 2.. .    (7) 

where 𝑟2& 𝑟1 are the classical turning point known as the roots of the equation 

𝑃2(𝑟) = 2𝑚(𝐸 − 𝑉(𝑟)) −
𝛾2ђ2

𝑟2
= 0     (8) 

eq. (7) is the WKB quantization condition which is subject for application in the preceding 

section. Consider Eq. (4)-(6) in the framework of the quasiclassical method, the solution of 

each of these equations in the leading ђ approximation can be written in the form 

  Ψ𝑊𝐾𝐵(𝑟) =
𝐴

√𝑃(𝑟,𝜆)
𝑒𝑥𝑝 [±

𝑖

ђ
∫√𝑃2(𝑟) 𝑑𝑟]    (9) 

Solutions to the Radial Schrödinger Equation   

The radial Schrodinger equation for the QMGHOP can be solved approximately using the 

WKB quantization condition eq. (7) for 𝛾 = 0. To obtain the exact solution, we consider two 

turning points.  

 

Fig 1: The plot of the quantum mechanical gravitational potential plus harmonic oscillator 

potential as a function of internuclear distance ‘𝑟’.  

The potential in eq. (1) can be written as  

   𝑉(𝑟) = 𝛽𝑟 + 𝑉0𝑒
−𝛼𝑟 +

1

2
𝜇𝜔2𝑟2,    (10) 

where 𝛽 = 𝑚𝑔, 𝛼 = 𝑘, 𝑧 = 𝑟, 𝛿 = 𝑉0 

We can also write eq. (10) as 
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  𝑉(𝑟) = 𝛽𝑟 + 𝑉0(1 − 𝛼𝑟 + 𝛼2𝑟2) +
1

2
𝜇𝜔2𝑟2,   (11) 

On arranging eq. (11), we get our working potential amendable to the WKB method as 

  𝑉(𝑟) = 𝑉0 + (𝛽 − 𝛼𝑉0)𝑟 + (𝛼2𝑉0 +
1

2
𝜇𝜔2) 𝑟2,   (12) 

We show in fig. 1, the plot the QMGHOP as a function of 𝑟 with 𝑉0 = 1, 𝛽 = 0.2 𝑓𝑚−1, 𝜔 =
0.5 for 𝛼 = 0.4 

Subs. Eq. (12) into eq. (7), we have 

∫ √𝑃2(𝑟)
𝑟2

𝑟1
𝑑𝑟 = ∫ √2𝜇 (𝐸 − 𝑉0 − (𝛽 − 𝛼𝑉0)𝑟 − (𝛼2𝑉0 +

1

2
𝜇𝜔2) 𝑟2)

𝑟2

𝑟1
𝑑𝑟 (13)   

 

Factoring out √2𝜇 , we have 

√2𝜇 ∫ √((𝐸 − 𝑉0) − (𝛽 − 𝛼𝑉0)𝑟 − (𝛼2𝑉0 +
1

2
𝜇𝜔2) 𝑟2) 𝑑𝑟 = 𝜋ђ (𝑛 +

1

2
)

𝑟2

𝑟1
 (14) 

√2𝜇 ∫ √−(𝛼2𝑉0 +
1

2
𝜇𝜔2) 𝑟2 − (𝛽 − 𝛼𝑉0)𝑟 + (𝐸 − 𝑉0)𝑑𝑟 = 𝜋ђ (𝑛 +

1

2
)

𝑟2

𝑟1
 (15) 

If (𝛼2𝑉0 +
1

2
𝜇𝜔2) = 𝑉̃  and factoring out 𝑉̃, we obtain 

√2𝜇𝑉̃ ∫ √−𝑟2 − (
𝛽−𝛼𝑉0

𝑉̃
) 𝑟 + (

𝐸−𝑉0

𝑉̃
)𝑑𝑟

𝑟2

𝑟1
= 𝜋ђ (𝑛 +

1

2
)    (16) 

let −(
𝛽−𝛼𝑉0

𝑉̃
) = 𝐵, and  (

𝐸−𝑉0

𝑉̃
) = −𝐶, we have 

√2𝜇𝑉̃ ∫ √(−𝑟2 + 𝐵𝑟 − 𝐶)𝑑𝑟
𝑟2

𝑟1
= 𝜋ђ (𝑛 +

1

2
)     (17) 

√2𝜇𝑉̃ ∫ √(𝑟 − 𝑟1)(𝑟2 − 𝑟)𝑑𝑟
𝑟2

𝑟1
= 𝜋ђ (𝑛 +

1

2
)     (18) 

Where we obtain the turning points 𝑟2& 𝑟1 from the terms inside the square roots as 

𝑟1 =
−𝐵 − √𝐵2 − 4𝐶

2
 

𝑟2 =
−𝐵 + √𝐵2 − 4𝐶

2
 

Solving the integral of eq. (18) explicitly, we obtain 

  √2𝜇𝑉̃ (−(
𝛽−𝛼𝑉0

𝑉̃
) − 2√(

𝐸−𝑉0

𝑉̃
)) = 2ђ (𝑛 +

1

2
)   (19) 
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  √𝐸 − 𝑉0 = −
1

2√2𝜇
[2ђ (𝑛 +

1

2
) +

√2𝜇(𝛽−𝛼𝑉0)

√(𝛼2𝑉0+
1

2
𝜇𝜔2)

]   (20) 

 

  𝐸 − 𝑉0 =
1

4
[
2ђ(𝑛+

1

2
)

√2𝜇
+

(𝛽−𝛼𝑉0)

√(𝛼2𝑉0+
1

2
𝜇𝜔2)

]

2

   (21) 

𝐸𝑛,𝑙 = 𝑉0 +
ђ2

2𝜇
{(𝑛 +

1

2
) [(𝑛 +

1

2
) +

2𝜇/ђ2(𝛽−𝛼𝑉0)

√2𝜇/ђ2(𝛼2𝑉0+
1

2
𝜇𝜔2)

] +
((2𝜇/ђ2)(𝛽−𝛼𝑉0))

2

4[(2𝜇/ђ2)(𝛼2𝑉0+
1

2
𝜇𝜔2)]

} (22) 

Eq. (22) turns out to be similar to eq. (22) of Ref. [12]. 

And from eq. (9), the exact ground state wave function expression of eq. (10) for the classically 

allowed region (𝑟1 < 𝑟 < 𝑟2) is given as  

R(𝑟) ∝

𝐴

((𝐸−𝑉0)−(𝛽−𝛼𝑉0)𝑟−(𝛼2𝑉0+
1

2
𝜇𝜔2)𝑟2)

1 4⁄ 𝑐𝑜𝑠 (∫ √(𝐸 − 𝑉0) − (𝛽 − 𝛼𝑉0)𝑟 − (𝛼2𝑉0 +
1

2
𝜇𝜔2) 𝑟2𝑟

𝑟2
𝑑𝑟 −

𝜋

4
)(23) 

where A is the normalization constant. 

 

DISCUSSION 

Equation (22) is the energy eigen value for the QGMP+ HOP. If  𝛽 = 𝑉0 = 0 in eq. (1), the 

potential model turns back into the harmonic oscillator potential and the energy equation (22) 

yields the energy eigen values for the harmonic oscillator potential as 

   𝐸𝑛,𝑙 =
ђ2

2𝜇
(𝑛 +

1

2
)
2

      (24) 

Eq. (24) is similar to eq. (35) of Ref. [16] obtained for the harmonic oscillator potential in 

electric field when the field strength𝜀 was set to zero.  

 

CONCLUSIONS 

The WKB approximation method is general for all types of problems in quantum mechanics, 

simple from the physical point of view, and its correct application results in the exact energy 

eigenvalues for all solvable potentials.In summary, we have obtained the exact energy eigen 

value and its corresponding un-normalized wave function using the WKB approximation 

method for the radial Schrodinger equation with the quantum mechanical gravitational 

potential plus the harmonic oscillator potential for s-state, excluding the centrifugal term. 
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