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ABSTRACT: This paper investigated the structure of indices of control systems for single – 

delay autonomous linear systems on the interval [0, 4h] and on [0, ∞) for special coefficient 

matrix cases. It also provided a note on Euclidean controllability and application instances 

of the determination of their controllability dispositions. The development of the associated 

control index matrices exploited the continuity of these matrices for positive time periods, 

change of variables technique, the method of steps and backward continuation recursions to 

obtain these matrices on successive intervals of length equal to the delay h.The indices were 

derived using the stage – wise algorithmic format, starting from the right - most interval of 

length h. The structure could be gleaned and deciphered from the emerged sign convention 

and recognizable exponential integral ordering.  
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INTRODUCTION 

 

Controllability results for multifarious and specific types of hereditary systems with diversity 

in treatment approaches are quite prevalent in control literature. Bank and Kent (1972) 

discussed Controllability of functional differential equations of retarded and neutral types to 

targets in function space; Jacobs and Langenhop (1976) obtained some criteria for function 

space controllability of linear neutral systems ; Dauer and Gahl (1977) looked at 

controllability of nonlinear delay systems; Angell (1980) discussed controllability of 

nonlinear hereditary systems, using a fixed-point approach; Onwuatu (1984) studied null 

controllability in function space of nonlinear  neutral differential systems with limited 

controls; Balachandran (1986) discussed controllability of nonlinear systems with delays in 

both state and control using a constructive control approach and an appeal to Arzela-Ascoli, 

and Shauder fixed point theorems to guarantee the existence and admissibility of such 

controls; Underwood and Chukwu (1988) investigated null controllability of nonlinear 

neutral differential equations, Balachandran(1992) , Balachandran and Balasubramaniam 

(1993) studied  controllability of Volterra Integro-differential systems;  

 

In recent years, Chukwu (2001) formulated differential models and neutral systems for 

controlling the Wealth of Nations. His monograph derives from economic principles of the 

dynamics of national income, interest rate, employment, value of capital stock, prices and 
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cumulative balances of payments. Chukwu used a Volterra neutral integro-differential game 

of pursuit where the quarry control is government intervention in the form of taxation, control 

of money and supply tariffs. Other relevant works by Chukwu in this area include Chukwu 

(2002) on Stability and time-optimal control of hereditary systems with application to the 

economic dynamics of the US, Chukwu (2003). 

 

More research efforts on controllability include Iheagwam (2003), where the author 

investigated the properties of cores for which the system with distributed delays in control is 

relatively controllable; Balachandran and Anandhi (2004); Davies and Jackreece (2005); 

where the authors established sufficient conditions for the controllability and null 

controllability of linear systems;  Other notable  results with focus on integro-differential 

equations and impulsive differential equations  with finite and infinite delays include Chang 

and Chalishajar (2008),  Chang  et al (2009), Balachandran  and Annapoorani (2009), Ye 

(2010), Ji et al (2011), Vijayakumar et al ( 2011, 2012), Selvi and Mallika (2012). Some 

author’s established sufficient conditions for the controllability and null controllability of 

linear systems using the variation of constant formula to deduce their controllability 

Grammian and exploiting the properties of the Grammian and the asymptotic stability of the 

free system, Machado et al (2013). These works and others appropriate relevant Existence 

and Uniqueness of solutions theorems; the linear systems among the cited works use the 

qualitative properties of the indices of control systems or rank conditions to characterize 

controllability for the most part. The expressions for such indices were not determined. 

 

The importance of indices of control systems matrices derives from the fact that they not only 

pave the way for the derivation of determining matrices for the determination of Euclidean 

controllability and compactness of cores of Euclidean targets but can be used independently 

for such determination. In sharp contrast to determining matrices the use of indices of control 

systems for the investigation of the Euclidean controllability of systems can be quite 

computationally challenging; however this difficulty can be mitigated if the coefficient 

matrix associated with the state variable at time t  is diagonal. This paper pioneers the 

development of the structure of these indices, with illustrative examples as they relate to 

Euclidean controllability. 

 

THEORETICAL UNDERPINNING 

 

Literature on state space approach to control studies is replete with indices of control systems 

as key components for the investigation of controllability. See Gabsov and Kirillova (1976), 

Manitius (1978), Tadmore (1984), Ukwu (1987), Chukwu (1992), and Ukwu (1992, 1996). 

Regrettably no other author has made any attempt to obtain general expressions for the 

associated matrices or special cases of such matrices involving the double - 

delay   and 2 .h h Effort is usually focused on the single – delay mode with  the usual approach 

being to start from the interval 1 1[ , ]t h t  and compute the index matrices for given problem 

instances; then the method of steps and backward continuation recursive procedure are 

deployed to extend these to the intervals 1 1[ ( 1) , ],t k h t kh   for positive integral k , not 

exceeding 2, for the most part.  Such approach is rather restrictive and doomed to failure in 

terms of structure for arbitrary k . In other words such approach fails to address the issue of 
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the structure of control index matrices. The need to address such short-comings has become 

imperative; this is the major contribution of this paper, with its wide-ranging implications for 

extensions to more general systems and holistic approach to controllability studies. 

 

METHODOLOGY 

Consider the system: 

 

       
     0 1, , , (1)X t X t A X h t A


  


     

              for 0 , , 0,1,...t t k h k         where 

                            

  

 
;

0;
, (2)nI t

t
X t












  

0 1
., are  constant matrices and ( , ), ( , ) are matrix functionsA A n n X t X t h n n        See Chukwu 

(1992), Hale (1977) and Tadmore (1984) for properties of   , .X t   Of particular importance 

is the fact that  ,X t   is analytic on the 

intervals     1 1 11 , , 0,1,...; 1 0t j h t j h j t j h       . Any such 

  1 11 ,t j h t j h      is called a regular point of  ,X t  .  

  

Definition 1: Index of control systems 
*

1The expression  ( , )c X t B  is called the index of a given control system, where c  is an n - 

dimensional constant column vector, 1( , )X t  is defined in (1), B  is an n m  constant matrix 

associated with the control system: 

0 1( ) ( ) ( ) ( )x t A x t A x t h Bu t     

 and (.)u  is an -m vector admissible control function. Thus the control index matrix, 1( , )X t  

determines the structure of the index of a given control system. 

  
Definition 2:  Euclidean Controllability 

System (1) is said to be Euclidean controllable on the interval  0 1, ,t  if for each   

in   2 , 0 ,
n

C h E  and x E n
1  , there is an admissible control   1

0, ,
n

u L t E


  such that 

 x u0  ,  and  x t u x1 1, , .   System (1.1) is Euclidean controllable if it is Euclidean 

controllable on every interval 0 01 1, ,t t  . 

A note on Euclidean controllability 

10 1
is Euclidean controllable on ] if and only if ( ) ( ) ( ) ( )   [0,A A Bx t x t x t h u t t   

 *

1
( , ) 0 0, for any .

n
c X t B c c    R

 
See Ukwu (1987, 1992, 1996). 

It is important to note that that the Euclidean controllability of a system 

1 1on an interval [0, ], [ ,( 1) ) t t qh q h
  

for some positive integer q  is equivalent to its 
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Euclidean on controllability on some sub-interval of 1[0, ],t of  length h . Thus if a system fails 

to be Euclidean controllable on 1[0, ]t , it cannot be controllable on any sub - interval of 1[0, ]t . 

On the other hand a system may fail to be Euclidean controllable on an interval 1[0, ]t , but 

turns out to be Euclidean controllable on an interval 1 1[ , ],t t jh for some positive integer .j  A 

system is Euclidean controllable on an interval if it is Euclidean controllable on any of its 

sub-intervals.

             We proceed to determine the structure of the above control index matrices. This will 

be achieved using the method of steps and a Backward Continuation Recursive procedure. 

 

RESULTS 

Theorem 1 

1 1 1 1Let ( 1) , , : ( 1) 0, and fixed 0.jK t j h t jh j t j h t          

1 1
The control index matrices are defined on successive sub-intervals of [ 4 , ] of length  byt h t h

       

2

0 1 1 0 1 2 0 2

1 1

0 1

0 1 0 1 1 0 1

1

0 1 0 1 1 0 1

1

0 1 0 1

( ) ( ) ( )

1 1 1 2

2

( )

0

( ) ( ) ( )

1 1 1

( ) ( ) ( )

1 1

1

2

( ) (

, ;

, ;

( , )
for ;

s h

A t h s A s h s A s

t h t h

A t

A t A t h s A s

t h

A t A t h s A s

t h

A t A t

e A e A e ds ds

e K

e e A e ds K

e e A e ds

X t
K

e e



 


  
















   

 



   



    



 





 



 




 





2

0 1 1 0 1 2 0 2

1 1

2

0 1 1 0 1 2 0 2 0

1 1

1 0 1

1

3

3 3

1

( ) ( ) ( )

1 1 1 2

2

( ) ( ) ( ) ( )

1 1 1 1 2

2

) ( )

1 1

3 3

3

,

, .

s h

A t h s A s h s A s

t h t h

s h s h

A t h s A s h s A s s A s

t h t h

h s A s

t h

h

t h

e A e A e ds ds

e A e A e A e ds ds

A e ds

ds K


 










   

 

 

    

 

  



 


























 

 





 

Stage 1 

Consider the 
1 1 1 1 1 1 1

-interval [ , ]. Then [ , ] ( , ) 0 on ( , ].t h t h t t h X h t t t h           

0 0 0( ) ( ) ( )

0 1( , ) ( , ) ( , ) ( , ) , ( , ) 0 .
A t A t A t

X t e X t X t A e X h t Ae X h t a e
      

 

    
             

 
0 1( )

1( , ) ,
A t

X t e C
 

 

 

where C  is some constant matrix. 1 ,nt C I    using (2). 

Therefore 

                        

   0 1( )

1 1 1)( , ) , for ( , . (3)
A t

X t e t h t


 


    

 

1 1
Observe that  ( , ) .

n
X t t I




 

 We will continue to rely on the relation 
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0 0
1

( ) ( )
( , ) ( , ) (4)A t A t

X t X h t Ae e 
 



 
   

 

 

for the rest of this investigation.  The process is terminated as soon as  t1 – ( j

 

+

 

1)  <  0,  for 

some non-negative integer  j.  If  t1 – 2h  <  0,  STOP. Else proceed to the next stage.

 

Stage 2
 

0 1

1 1 1 1 1
Consider the -interval [ 2 , ]. Then [ , ] ( , ) (5)

A t h
t h t h h t h t X h t e


  

 
       

 
0 1 0 1 0 1( ) ( ) ( )

1 1(4) and (5) ( , ) (6)
A t A t h A t

X t e e Ae
  



   
    

 
0 1 0 1 1 0 1 1 0 1

1

1 1 1 1

( ) ( ) ( ) ( )

1( , ) ( , ) (7)
A t A t h t A t h s A s t

t h

X t X t h t Ae e e e ds





     



    
  

 1 1 1

1

0 1 0 1( ) ( )

1 1, using ; then (8)

t h

A s A s h
s t h se Ae ds

 



  



  
     

 
0

1 1 1 1

0 1 1( )
Clearly, ( , ) ( , ) (9)

A h A t h t

nX t h t e X t h t e I
 

    
   

  
                                 

1

0 1 0 1 0 1 0 1( ) ( ) ( ) ( )

1 1 1
(10)( , )

   






    
   

t h
A t A s A h s A t

X t e e Ae e ds
  

                          

 

1

1

0 1 0 1 0 1( ) ( ) ( )

1 1 1
(11)( , )

 







  

   
t h

A t A s A t h s
X t e e Ae ds

 

            

1 1 10 1 0 0

1

( ) ( ) ( )

1 1 1 (12)or   ( , )





   



 
hA t A t s A s

t h

X t e e Ae ds

 

0

1 1 1 1 1 1
Observe that  (( ) , ) (( ) , ) ; Therefore ( , ) 0.

A h
X t h t X t h t e X t h t

 
        

0 1
( )

1 1 1 1 1

0

0 1

1

( )

1

[ ( 1) , ] ( , ) ( , )

( , (13)

A t

j

jA h

A s t

j j

t jh

t j h t jh X t e X t jh t e

X s h A e ds





 
 





      

                            

      

00 1

1

( )( )

1 1 1 1 1( , ) ( , ) ( , ) (14)jA sA t jh

j j

t jh

X t X t jh t e X s h t Ae ds



 



    
          

If t1 – 3h  <  0,  STOP. Else proceed to the next stage. 

 

Stage 3 

2 1 1 1 1 1
Consider the -interval .Then ( , ) and ( 2 , ) are applicable on K h K X h t X t h t K      

                            

     

1

0 1 0 1 0 1 1( ) ( ) ( )

1 1 1( , ) , (15)

t h

A t h A s h A t h s

h

X h t e e Ae ds
 







     



       
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1

0 1 10 0 1 1

1

2

( 2 )2 ( )

1 1 1 1( 2 , ) , (16)

t h

A s h tA h A t h s

t h

X t h t e e Ae ds



  



   
 

      

0 1 0 2

1

( 2 ) ( )

1 1 1 2 1 1 1

2

( , ) ( 2 , ) ( , ) (17)
A t h A s

t h

X t X t h t e X s h t Ae ds


 


  



    
 

    

1

0 1 0 1 1 0 1 0 1 1 0 1

1 1

2

( ) ( ) ( ) ( ) ( )

1 1 1 1 1

2

( , ) (18)

t h

A t A t h s A s A t h s A s

t h t h

X t e e Ae ds e Ae ds


  





      

 

    
  

 

                           

 

1

0 1 2 0 1 1 0 2

1 2

( ) ( ) ( )

1 1 1 2

2

(19)

t h

A s h s A t h s A s

t h s h

e Ae Ae ds ds






    

 

  
      

  

0 1 0 1 1 0 1

1

( ) ( ) ( )

1 1 1( , )
A t A t h s A s

t h

X t e e Ae ds


 


   



   
    

                        

0 1 1 0 2

1

0 1 2

1 2

( ) ( )

1 1 1 2

( )

2

(20)
A t h s A s

t h

A s h s

t h s h

Ae Ae ds dse 


  



 

 

    

We preserve the single integral in (20) and transform the double integral to 

 

0 1 2 0 2

2

0 1 1

1 1

( ) ( )

1 1 1 2 1 2 1 1

( )

2

Hence

, using   (21)
A s h s A s

s h

A t h s

t h t h

A e A e ds ds s h s t he





  



 

 

      

 

0 1 0 1 1 0 1

1

0 1 2 0 2

2

0 1 1

1 1

( ) ( ) ( )

1 1 1

( ) ( )

1 1 1 2

( )

2

( , )

(22)

A t A t h s A s

t h

A s h s A s

s h
A t h s

t h t h

X t e e A e ds

A e A e ds dse


 






   



  


 

 



  

 

1 1 1 1

0

1

0 1 0 1 1

1

2 ( 2 ) ( )

1 1

2

(( 2 ) , ) (( 2 ) , )By (11) and (21),

(23)
A h

t h

A s h t A t h s

t h

X t h t X t h t

e e A e ds

 



   



  

  

1 1 1 1 1 1 1 1
Hence  ( 2 , ) 0, where ( 2 , ) (( 2 ) , ) (( 2 ) , )X t h t X t h t X t h t X t h t

 
          

 
If  t1 –4h  <  0,  STOP. Else proceed to the next stage.

 

 

Stage 

1 1 1 1 1 1 1
Consider the interval [ 4 , 3 ]. Then [ 3 , 2 ], ( , ) and ( 3 , )t h t h h t h t h X h t X t h t         are 

applicable on 1 1[ 3 , 2 ].t h t h   We invoke (14) with 3j   to deduce that
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0 1 0 3

1

( 3 ) ( )

1 1 1 3 1 1 3

3

( , ) ( 3 , ) ( , ) (24)
A t h A s

t h

X t X t h t e X s h t Ae ds


    



   
 

0 1 0 1 1 0 1

1

( ) ( ) ( )

1 1 1( , )
A t A t h s A s

t h

X t e e Ae ds


 


   



  
     

1

0 1 2 0 1 1 0 2

1 2

( ) ( ) ( )

1 1 1 2

2

1 1, on [ 3 , 2 ] (25)

t h

A s h s A t h s A s

t h s h

e A e A e ds ds t h t h






    

 

     

0 1 0 1 1 0 1

1

( ) ( ) ( )

1 1 1( , )
A t A t h s A s

t h

X t e e Ae ds


 


   



   
       

 

2

0 1 1 0 1 2 0 2

1 1

1 1

( ) ( ) ( )

1 1 1 2

2

on [ 3 , 2 ] (26),
s h

A t h s A s h s A s

t h t h

t h t he Ae Ae ds ds






    

 

     

 

Expression (26)  has the desired structure, in the sense of alternating signs and recognizable 

exponential ordering.               

                                

 

0 1 0 1 1 0 1

1

( ) ( ) ( )

1 1 1(20) ( , )

h
A t h A t h s A s h

t h

X h t e e Ae ds


 




     



      

                     

1

0 1 2 0 1 1 0 2

1 2

( ) ( ) ( )

1 1 1 2

2

(27)

t hh
A s h s A t h s A s

t h s h

h
e A e A e ds ds





    

 


    

1

0 1 1 0 1 10

1

3

( ) ( 3 )3

1 1 1 1( 3 , )

t h

A t h s A s h tA h

t h

X t h t e e Ae ds



   



   
 

                                 

       

1

0 1 2 0 1 1 0 2

1 2

1

1( ) ( ) ( )

1 1 1 2

2

3

3
(28)

t t h

A s h s A t h s A s

t h s h

h

h t
e A e A e ds ds



   

 



 
  

 

       

  

0 1 0 3

1

( 3 ) ( )

1 1 1 3 1 1 3

3

( , ) ( 3 , ) ( , ) (29)
A t h A s

t h

X t X t h t e X s h t Ae ds


    



    
 

                    

1

0 1 0 1 1 0 1

1

3

( ) ( ) ( )

1 1 1( , ) (30)

t h

A t A t h s A s

t h

X t e e Ae ds
 





   



   
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1

0 1 2 0 1 1 0 2

1 2

1

( ) ( ) ( )

1 1 1 2

2

3

(31)

t t h

A s h s A t h s A s

t h s h

h

e A e A e ds ds




   

 




  

    
3

0 1 3 0 1 1 0 1 30 3 0 3

1 1 1

( ) ( ) ( )( ) ( )

1 3 1 1 1 3

3 3

(32)

s h

A t h s A t h s A s h sA s A s

t h t h t h

e Ae ds e Ae Ae ds ds

 
 



      

  

   
        

1

0 1 2 0 1 1 0 2 0

1 2

3

3 3

1

( ) ( ) ( ) ( )

1 1 1 1 2

2

3

3

(33)

t hs h

A s h s A t h s A s s A s

t h s h

h

t h

e Ae Ae Ae ds ds ds






    

 

 



    

 

1 2 1 1 3 1 1
Use the change of variables  s h s t h s s t           in (31) to obtain 

1 2

0 1 2 0 1 1 0 2 0 1 1 0 1 2 0 2

1 2 1 1

1 1 1 2 1 1 1 2

1 1

( ) ( ) ( ) ( ) ( ) ( )

2 2

3 3

(34)

t t h t s h

A s h s A t h s A s A t h s A s h s A s

t h s h t h t h

h h

A e A e ds ds A e A e ds dse e
 

 

       

   

 

 
    

1 2 1 1
Use the change of variables  s h s t h       to transform the triple integral (33) to get 

                          

       

2

0 1 1 0 1 2 0 2 0

1 1

3

3 3

1

( ) ( ) ( ) ( )

1 1 1 1 2

2

3

3

(35)

s h s h

A t h s A s h s A s s A s

t h t h

h

t h

e A e A e A e ds ds ds




 

    

 

 



  
 

0 1 0 1 1 0 1

1

( ) ( ) ( )

1 1 1( , )
A t A t h s A s

t h

X t e e Ae ds
 




   



   
2

0 1 1 0 1 2 0 2

1 1

( ) ( ) ( )

1 1 1 2

2

s h

A t h s A s h s A s

t h t h

e A e A e ds ds






   

 


    

  

2

0 1 1 0 1 2 0 2 0

1 1

3

3 3

1

( ) ( ) ( ) ( )

1 1 1 1 2

2

3

3

(36)

s h s h

A t h s A s h s A s s A s

t h t h

h

t h

e Ae Ae Ae ds ds ds



 

    

 

 



  
 

 

4.2   Corollary 1 

If 0 0,A  then 

0

1 1 1

2
2 1

1
1 1 1 2

2 2
2 31 1

1 1 1 1 3

, ;

( ), ;

( 2 )( , ) ( ) , ;
2!

( 2 ) ( 3 )
( ) ,

2! 3!

n

n

n

n

I t K

I A t h K

t hX t I A t h A K

t h t h
I A t h A A K

 

  

 
 




   

        

    
      


 

4.3   Corollary 2 

If 1 diag( ),A b then 
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0 1

0 1 0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1

2 2

1 12 3

1

( )

0

( ) ( )

1 1

2

( ) ( ) ( 2 )12

1 1 2

( ) ( ) ( 2 ) (( 2 ) ( 3 )
( )

2! 3!

, ;

( ) , ;

( 2 )
( , ) ( ) , ;

2!

A t

A t A t h

A t A t h A t h

A t A t h A t h A tt h t h
b t h b b

e K

e b t h e K

t h
X t e b t h e b e K

e e e e



 

  

   




 


  



  

    

       
 



   

 
     

  

0 1

3 )

2

( 3 )13

3

( 3 )
,

3!

h

A t ht h
b e K






 

 













  
 


 

Corollary 1 motivates the following theorem: 

Theorem 2 

Consider the system (1) with 0 diag( ).A a  Then the control index matrices are given by 

1

1 1

)

0

1 ( ) ( )1

1

1

(
, ;

( , ) ( )
, .

!

n

ij
a t a t ihi

n j

i

a t
I K

X t t ih
e I A e K

i

e

 




 




  



 


   
 




 

Proof 

The theorem is valid for {0,1,2,3}j , as seen from the last corollary. Assume the validity of 

the theorem for ,4 ,for some 5.pK p j j     Then 1 1, ( 1) , j jh t j h s h K        

1 1

([ 1] )

1 1 1

1

( ) 1

1 1

1

([ 1 ] )

( [ 1] )

([ 1 ] )
( ( 1) , )

!

( [ 1] )
( , ) .

!

;
ij

a j h i

n

i

ij
a t h i

n

i

a j i h

a t i h

j i h
X t j h t e I A

i

t i h
X h t e I A

i

e

e
 







 



 

  

 
   

  
  





 

On 1 ,jK   

1 1

1

11

1

1 1

1

( ( 1) ) ( )

1 1 1 1 1 1 1

( 1)

1

1

( ) 1 11

1 1 1

1

( ) ( )

( [ 1] )

( , ) ( ( 1) , ) ( , )

([ 1 ] )

!

( [ 1] )

!

j

j

a t j h a s

j j

t j h

ij
i

i

ij
a t h ji

n j

it

a t a t ih

a t s i h

X t X t j h t e X s h t A e ds

j i h
A

i

t s i h
A e I A ds

i

e e

e


 



 

 



   

 

 



  





  

  

    

 
 

   
  

  






( 1)j h






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 1

1 1

1

1

1

1

1

( ) 11

1 1 1

1

1
1

1

1

( ) ( )

( [ 1] )

( [ 1] )

([ 1 ] )

!

( [ 1] )
( 1)

( 1)!

([ ] )

( 1)!

ij
i

n

i

ij
a t h i

i

ij
i

i

a t a t ih

a t i h

a t i h

j i h
I A

i

t i h
A e t j h A

i

j i h
A

i

e e

e

e



 












  








  

  

  

 
 

  
    














 

       

 1

1 1

1

1

1

1

1
( ) 1

1 1 1

2

1

1

2

( ) ( )

( )

( )

([ 1 ] )

!

( )
( 1)

!

([ 1 ] )

!

ij
i

n

i

ij
a t h i

i

ij
i

i

a t a t ih

a t ih

a t ih

j i h
I A

i

t ih
A e t j h A

i

j i h
A

i

e e

e

e



 











 







  

 

 

 
 

 
    

 








 

      

 

 

1

1

1 1 1

1 1

1 1

1
( ) 1

1 1 1 1

2

1
( ) 1

1 1 1

2

1
1

1

1

( ) ( ) ( )

( ) ( )

( ) ( )
comp

( )
( 1) ( )

!

( )

!

( )
,

!

ij
a t h i

n

i

ij
a t h i

n

i

ij
i

n

i

a t a t h a t ih

a t a t ih

a t a t ih

t ih
I A e t j h A jh A

i

t ih
I A e t h A

i

t ih
I A

i

e e e

e e

e e





  

 

 










 




 







    

  

  

 
     

 
   

 
 









 leting the proof of the theorem.

 

Remark 1: The special case 0 0.A 

 

0

0 1 1

1

1

, ;

0 ( , ) ( )
, , 1.

!

n

ij
i

n j

i

I K

A X t t ih
I A K j

i



 







    
  




 

Remark 2: For the special case 0 10 and A A  nilpotent of index p j ,  

0

1
1 1

1

1

, ;

( , ) ( )
, , 1.

!

n

ip
i

n j

i

I K

X t t ih
I A K j

i



 









  
  




 

Corollary 2 motivates the following theorem: 

 

 

Theorem 3 

If 1 diag( ),A b then 
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0 1

0 1 0 1

( )

0

1 ( ) ( )1

1

, ;

( , ) ( )
, , 1

!

A t

ij
A t A t ihi

j

i

e t K

X t t ih
e b e K j

i



 
 





  



 


   
  




 

 

Proof 

The theorem is valid for {0,1,2,3}j , as seen from corollary 2. Simply replace 

0 1 by  and  by na A A bI in theorem 2 and its proof to complete the proof of theorem 3. 

 

IMPLICATION TO RESEARCH AND PRACTICE 

 

Three major tools are used in the investigation of the controllability of autonomous linear 

hereditary systems: (i) appropriate rank condition on the determining matrices (ii) the 

construction of the optimal control for transfer of points (iii) the disposition of the indices of 

control systems. These require that the structures of these mathematical tools be correctly 

determined. The structures of the determining matrices have been obtained in Ukwu [2014g 

and 2014h] for the relevant systems; the construction of the optimal control for transfer of 

points can be easily achieved using the solution matrices developed in Ukwu and Garba 

[2014e]. This paper has made a positive contribution by filling in the gap in (iii) through the 

determination of the structure of the computable indices of the control system (1). This can be 

effectively deployed for controllability investigation, as reflected in the ensuing examples. 

 

Example 1 

Use the control index matrices to determine the Euclidean controllability of the system 

0 1 0 1

2, 0 0, 1 1
( ) ( ) ( ) , where , , .

0, 2 0, 0 2
x t A x t A x t h Bu A A B

     
           

       

Solution 

From theorem 2 and remark 2,

  

 

1

1 1

)

0

1 ( ) ( )1

1

1

(
, ;

( , ) ( )
, .

!

n

ij
a t a t ihi

n j

i

a t
I K

X t t ih
e I A e K

i

e

 




 




  



 


   
 




 

      

1

1

)

0

1 1

2(

2
2( )

, ;

2, 2 ( , ) 1 ( )
, , 1

0 0

n

j

t

h
t

I K

a p X t t h
K j

e

e
e







 







 


       
  

   

 *

0 1 1 2 1 2

1 2
, ( , ) 0 , 0 2 ,  arbitrary

2 1
K c X t B c c c c c   

   
           

   
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0
the given system is not Euclidean controllable on [0, ], for any positive delay .J h h

 
 

 

1* 1

1 1 2

1

1 2 1 1 2

2
2( )

2
2

11, ( )
1, , ( , ) 0 , 0

20, 0

2( )
, 0  ( 2( ) ) 0, arbitrary.

0

1
1

j

h
t

h
h

t h
j K c X t B c c

t h
c c t h c c

e
e

e
e


 










    
       

  

  
       

 




 

We conclude that the system is not Euclidean controllable on [kh, (k + 1)h] for any 

1
positive integral  such that ( 1) .k k h t 

 

Example 2 

Use the control index matrices to determine control disposition of the system 

0 1 0 1

1, 0 0, 0 1
( ) ( ) ( ) , where , ,

0, 1 1, 0 0
x t A x t A x t h Bu A A B

     
           

       
1

1

)

0

1

1

1(

1( )

, ;

1, 2 ( , ) 1 0
, , 1

( ) 0

n

j

t

t

h

I K

a p X t
K j

t h

e

e
e














 

 


      
     

 

 
11( )

*

0 1 1 2 1

0
, ( , ) 0 , 0 0 ,  arbitrary

10

t
e

K c X t B c c c c



   
    

            
    

0
the given system is not Euclidean controllable on , for any 0.J h 

 

 

 

1*

1 1 2

1

1 2 1 2 1 1 2 1 2

1

1( )1 0 1
1, , ( , ) 0 , 0

( ) 0 0

, 0 ( ) 0 ( ) 0.
( )

1

j

t

h

h h

h

j K c X t B c c
t h

c c c c t h c c t h c
t h

e
e

e e
e


 



 


    
           

 
               

 
2 1

We invoke the linear independence of 1 and  to deduce that 0, 0 0c c c     

 
1 1

the given system is Euclidean controllable on [ , ), . Hence the given system is Euclideanh t t h  

1
controllable on [0, ].t However we cannot assert that it is controllable since it is not controllable 

on the sub-interval

 
1 1

[0, ] with 0.t t h 
 

 

CONCLUSION 

 

This article obtained the expressions for the control index matrices of (1) on the finite interval 

1 1[ 4 , ]t h t ,with explicit determination of their analytic dispositions; in the sequel it obtained 

global results on  those matrices for various diagonal and nilpotency contingencies of the 

coefficient matrices in (1), effectively obviating the need to start from the interval 1 1[ , ]t h t  

in order to compute the control index matrices and solutions for problem instances and then 

use successively the method of steps to extend these to the intervals 
1 1

[ ( 1) , ],t j h t jh   for 

positive integral
1

: ( 1) 0.j t j h    The implications are wide-ranging. By applying the 
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generalized results on the intervals 
1 1

[ ( 1) , ],t j h t jh   the solutions of the corresponding 

terminal function problems can be more readily obtained. Furthermore appropriate indices of 

control systems can be constructed and consequently the interrogation of the controllability 

disposition can be undertaken and the twin issue of the feasibility of admissible controls for 

transfers of points associated with controllability problems can be settled, based on the non-

singularity or otherwise of the Controllability Grammian; needless to say that the appropriate 

optimal controls can be constructed for a problem instance if the Grammian is invertible.  

Finally, the article demonstrated an aspect of its utility by using the indices of control systems 

to investigate the Euclidean controllability of system (1) for two problem instances.  
 

FUTURE RESEARCH  

 

The results in this article will be extended to single-delay autonomous linear neutral systems 

as well as double-delay autonomous linear control systems. The latter will exploit skillful 

combinations of summation notations, the greatest integer function and multiple integrals 

along with the method of steps and backward continuation recursive procedure. 
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