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ABSTRACT: The transportation paradox is related to the classical transportation problem.
For particular reasons of this problem, an increase in the quantity of goods to be transported
may lead to a decrease in the optimal total transportation cost. In this paper, an efficient
algorithm for solving a linear programming problem was discussed, and it was concluded that
paradox exists. The North-West Corner method was used to obtain the optimal solution using the
TORA Satistical Software Package. The method however gives a step by step development of the
solution procedure for finding all the paradoxical pair.

KEYWORDS: Transportation Paradox; Transportation Problemadatical Range of Flow;
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INTRODUCTION

The term Paradox arises when a transportation @mobldmits of a total cost which is lower than
the optimum and is attainable by shipping largeargiies of goods over the same routes that
were previously designated as optimal. This unugr@nomenon however, was noted by
Szwarc (1971). The classical transportation prolikethe name of a mathematical model which
has a special mathematical structure. The matheahaformulation of a large number of
problems conforms to this special structure. Hitahkc(1941) originally developed the basic
linear transportation problem. Charnes et al (12&R)eloped the stepping stone methods which
provide an alternative way of determining the siempinethod information. Dantzig (1963) used
the simplex method to the transportation problenthasprimal simplex transportation method.
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Appa (1973) also developed the solution procedaradlving the transportation problem and its
variants. Klingman and Russel (1974 and 1975) dhtced a specialized method for solving a
transportation problem with several additional #ineonstraints. Hadley (1987) gave the detailed
solution procedure for solving linear transportatiproblem. Till date, several researchers
studied extensively to solve cost minimizing traovégtion problem in various ways.

In some situations, if we obtain more flow withdes cost than the flow corresponding to the
optimum cost then we say paradox occurs. Charndskdimgman (1971), Szwarc (1973),
Adlakha and Kowalski (1998) and Storoy (2007) cdestd the paradoxical transportation
problem. Gupta et al (1993) considered a paraddiréar fractional transportation problem with
mixed constraints. Joshi and Gupta (2010) studégddox in linear plus fractional transportation
problem. In the early day of linear programminglpeon some of the pioneers observed paradox
but by whom no one knows.

In this paper we present a method for solving partstion problem with linear constraints.

Thereby, we state the sufficient condition of exigte of paradox, paradoxical range of flow and
paradoxical flow for a specified flow in such typé linear transportation problem. Having

known that paradox does not exit regularly in sonynéinear transportation problems, the

rationale behind this research work is to unvaiuanerical practical example that will suit the

algorithm discussed in this paper. We also justi/theory by illustrating a numerical example,
and at the same time reviewing past researches.

The purpose of this research paper is to obtairbés¢ paradoxical pair from the optimal basic
feasible solution of the transportation problemd am the same time, to obtain the paradoxical
range of flow.

DEFINITIONSOF TERMS

1. Paradox in a transportation problem: in a trartspion problem if we can obtain more
flow (F*) with lesser cost (3 than the optimum flow { corresponding to the optimum
cost (Z) i.e. F > P and Z < Z°, then we say that a paradox occurs in a trangjmrta
problem.

2. Cost-flow pair: if the value of the objectiventiion is 2 and the flow is E
corresponding to the feasible solutiofi & a transportation problem, then the paif, (Z
F) is called the cost-flow pair corresponding to fiaasible solution X

3. Paradoxical pair: A cost-flow pair, (Z, F) of abjective function is called paradoxical
pair if Z < 22 and F > Bwhere Z is the optimum cost and’ & the optimum flow of the
transportation problem.

4. Best paradoxical pair: The paradoxical pair (Z*) is called the best paradoxical pair of
a transportation problem if for all paradoxicalrp@, F), either Z* < Z or Z* = Z but F*
> F.

5. Paradoxical range of flow: i’ e the optimum flow and F* be the flow corresporgio

the best paradoxical pair of a transportation mwbthen [B, F*] is called paradoxical
range of flow.
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LITERATURE REVIEW

The transportation paradox is, however, hardly maet at all in any of the great number of
textbooks and teaching materials where the tratesfpam problem is treated. The simulation
research reported by Finke (1998) indicates, howetleat the paradox may occur quite
frequently.

Apparently, several researchers have discoverefatadox independently from each other. But
most papers on the subject refer to the paper ri@ds and Klingman (1971) and Szware
(1973) as the initial papers. Charines and Klingr(E8v1) name it the more-for-less paradox
and they write: The paradox was first observed in the early days of linear programming history

(by whom no one knows) and has been part of the folklore known to somg ¢&. Charnes and
Cooper) but unknown to the great majority of wosker the field of linear programming.

According to Appa (1973), the transportation paragoknown as Doigs paradox at the London
School of Economics, named after Alison Doig whedug in exams etc around 1959 (Doig did
not publish any paper on it).

Since the transportation paradox seems not to bekio the majority of those who are working
with (or teaching) the transportation problem, omay be tempted to believe that this
phenomenon is only an academic curiosity which mitist probably not occur in any practical
situation. But that seems not to be true. Expertme@wone by Finke (1978), with randomly
generated instances of the transportation problemsize 100x 100 and allowing additional
shipments (post-optimal) show that the paradoxicaperties. More precisely, the average cost
reductions achieved are reported to be 18.6% witi &dditional shipments of 20.5%.

In a recent paper, Deineko et al (2003) develossary and sufficient conditions for a cost
matrix C to be immune against the transportatiaaghax.

Arora and Ahuja (2010) carried out a research wongaradox on a fixed charge transportation
problem. In their findings, a paradox arises whenftxed charge transportation problem admits
of a total cost which is lower than the optimumtcty transporting larger quantities of goods
over the same routes. A sufficient condition foe tbxistence of a paradox is established.
Paradoxical Range of flow is obtained for any giflev in which the corresponding objective
function value is less than the optimum value effiked charge transportation problem.

Manjusri et al (2012) in their research paper “Phgorithm of Finding all Paradoxical Pairs in a
Linear Transportation problem” established a sigfit condition for the presence of paradox in
a linear programming problem, obtained the parazbxipairs and finally obtained the

paradoxical range of flow.

Vishwas and Nilama (2010) in their research titf€&n a Paradox in Linear Fractional
Transportation Problem” discovered that a paraddxsituation arises in a linear plus linear
fractional transportation problem (LPLFTP), whetueaof the objective function falls below the
optimal value and this lower value is attainablettansporting larger amount of quantity. In
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their research paper, a new heuristic is proposediriding initial basic feasible solution for
LPLFTP and a sufficient condition for the existerafea paradoxical solution is established in
LPLFTP.

PROBLEM FORMULATION

In this paper, we consider the following transpiotaproblem:

Let the transportation problem consists of m sa@iesed n destinations, where

X;j = the amount of product transported from the drse to the jth destination,

cj = the cost involved in transporting per unit proditom the ith source to the jth destination,
a = the number of units available at the ith source,

by = the number of units required at the jth deskomat

In this paper, we consider the cost minimizingdingansportation problem as:

:MinZ = Z Z G X;

i=1  j=1
subject to the constraints

> x;=a;0i0I=(1,2,...,m)
=1
> x;=b;;0j0J=(1, 2, ..., n) and
i=1
x; 2 00(, j) O x J.
Let X° = {x;.’|(i,j)DI><J} be a basic feasible solution corresponding to lihsis B of the
prooblem R and the value of the objective functiohébrresponding to the basic feasible solution
X~is
2°=2, 2 X6y
izl =l
Let P be the corresponding flow.
Then F°=> a=> b
i0l joi
Now we consider the dual variablesfor i O | and jOI | such that u+ v = g; corresponding to
the basis B.
Also (1, j) OB, let
C;j =(u, +Vj) Y
If ¢, <OL(i, ) OB then the solution is optimum.

Theorem: the sufficient condition for the existence of paraidal solution of (B is that if Jat
least one cell (r, 9)] B in the optimum table of (Pwhere aand R are replaced by, & | and Rk
+ | respectivelyl(> 0) then  (ut+ v) <O.
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Proof: Let Z° be the value of the objective function arfdbé the optimum flow corresponding
to the optimum solution (X of problem (B). The dual variables; and y are given by
u +Vv = G, D(i,j) B

=2 2. 9%
:Z Z (ui+Vij)X;')

T3z (2
=3 awZ b, and
F°=Z a :Zi: b,

Now, letat least one cell (r, SB, where aare replaced by, & | and R + 1, respectivelyl(> 0)

in such a way that the optimum basis remains s#rea,the value of the objective functi@nis
given by

22| au+ X by, +u (a, +) 4w, 1) = [z 41, +v,)
[Eds i%s
The new flowF is given by
F=Y a+1=Y b +I=F°+
i J

F-F°=1>0
Therefore for the existence of paradox we must havez® < 0. Hence the sufficient condition

for the existence of paradox is thaat least one cell (r, SB in the optimum table of such that if
& and R are replaced by;al and R +1 (I > 0) then(u, + W) <0, i.e. (U+ vs) <O.

Then

Now we state the following algorithm to find alktiparadoxical pair of the problem )P

Algorithm:

Step 1: Find the cost-flow pair {Z7°) for the optimum solution X

Step2:i=1

Step 3: Find all cells (r, §PB such that (u+ vs) < O if it exists otherwise go to step 8.

Step 4: Among all cells (r, $)B satisfying step 3 find min flow fdr= 1 which enter into the
existing basis whose corresponding cost is minimuet. (Z, F) be the new cost flow pair
corresponding to the optimum solutioh X

Step 5: Write (Z F).

Step6:i=i+1.

Step 7: go to step 3 o ,
Step 8: We write the best paradoxical pair (Z*, E{Z, F) for the optimum solution X* = X
Step 9: End.
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This algorithm gives all the paradoxical pairs. Rrthese pairs we can find the paradoxical pair
for a specified flow F) also.

DATA ANALYSIS

The data used for this research was extracted @para J. (2009), Introduction to Operation
Research, Exercises 3 page 28. The estimated soppBbcities of the five warehouses, the
demand requirements at the five markets and tinspgatation cost of each product are given in
Table | below:

Tablel

@, ) M1 M, M3 M4 Ms S
W, 7 3 6 9 5155
W, 4 3 1 4 4134
W3 6 2 4 5 3|22
W, 3 7 3 8 414
W5 2 5 3 4 9111
dj 44 35 25 20 12| 136

Solving the above problem using the Least-Cost atktthrough TORA Statistical Software
Package, the optimal transportation table is ptesein Table II.

Tablell

(,)) | Mg M2 M3 My Ms S Vi

W, 7 3 6 9 5|55 0
10 35 10

W, 4 3 1 4 4134 -3
9 25

W3 6 2 4 5 3|22 -2

20 2

Wy 3 7 3 8 4114 -4
14

Ws 2 5 3 4 9112 -5
11

dj 44 35 25 20 12| 136

Vi 7 3 4 7 5
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The total cost is 456. We then check the sign of{W), where (r, s)J B in Table I, we
observe that Y+ Vo, =-1 <0, Y+ V,=-2<0,and ¥+ V3 = -1 < 0. So Paradoxical pair of
the problem (P applying the algorithm discussed in this paper.

Applying Step 1: The cost-flow pair is {ZF°) = (456, 136) corresponding to the optimum
solution X = {x1 =10, %2=35, %5= 10, %1 =9, %3 =25, %4 = 20, %5 = 2, %1 = 14, %; = 11}.
Applying step 2: set i=1

Applying step 3: Now we check the sign of, ®&JV,) and we obtain for the non-basic cells (4,2),
(5,2) and (5,3), the sign that is negative.

Applying step 4: FolF=1

For the cell (4, 2)

Tablelll

(,])) | Mg M2 M3 My Ms S Vi

W1 7 3 6 9 5155 0
9 36 10

W> 4 3 1 4 4134 -3
9 25

W3 6 2 4 5 3|22 -2

20 2

W, 3 7 3 8 4|15 -4
15

W5 2 5 3 4 9111 -5
11

dj 44 36 25 20 12| 137

Vi 7 3 4 7 5

The total cost of this transportation problem i5.45

For cell (5, 2), the transportation table is présénn Table IV
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TablelV

G,) | M; M, M3 M. Ms S Vi

W, 7 3 6 9 555 0
9 36 10

Wa 4 3 1 4 4|34 -3
9 25

Ws 6 2 4 5 3|22 2

20 2

W, 3 7 3 8 414 4
14

Ws 2 5 3 4 912 5
12

dj 44 36 25 20 12137

V 7 3 4 7 5

The total cost of this transportation problem i4.45

For the cell (5, 3), the transportation table issgnted in Table V.

TableV

@, J) M1 M> M3 My Ms S Vi

W, 7 3 6 9 5|55 0
10 35 10

W, 4 3 1 4 4134 -3
8 26

W3 6 2 4 5 3|22 -2

20 2

W, 3 7 3 8 414 -4
14

Wsg 2 5 3 4 9112 -5
12

dj 44 35 26 20 12| 137

Vi 7 3 4 7 5

The total cost is 455.
The min cost = min{456, 454, 455} = 454.

Hencel = 1 enters in the optimum basis from the cell2)j5and corresponding table is Table 1V,
the corresponding paradoxical paif,(E) = (454, 137).

Employing steps 6 and 7. Then repeating this psydhs next table is

16



International Journal of Mathematics and Statistitglies
Vol.1, No.3, pp.9-19, September 2013

Published by European Centre for Research TramsmigDevelopment UK (www.ea-journals.org)

Table VI

G,) | M; M, M3 M. Ms S Vi

W, 7 3 6 9 555 0
8 37 10

Wa 4 3 1 4 4|34 -3
9 25

Ws 6 2 4 5 3|22 2

20 2

W, 3 7 3 8 414 4
14

Ws 2 5 3 4 913 5
13

dj 44 37 25 20 12138

V 7 3 4 7 5

Now repeating this process, the final table is @né=d in Table VII

TableVI|

G,) | M M, M3 M. Ms S Vi

W, 7 3 6 9 5|55 0
0 45 10

W- 4 3 1 4 434 -3
9 25

W5 6 2 4 5 3|22 2

20 2

W, 3 7 3 8 414 4
14

Ws 2 5 3 4 9] 21 5
21

dj 44 45 25 20 12| 146

V 7 3 4 7 5

Hence, from the above table, the correspondingdoareal pair (Z, F) = (436, 146).

Applying step 8: The best paradoxical pair is (%) = (436, 146) corresponding to the

optimum solution is X* = {; = 0; x2 = 45, %5 =10, %1 = 9, %3 = 25, %4 = 20, %5 = 2, X1 =

14, %, = 21} and the paradoxical range of flow i€,[F*] = [136, 146]. Thus, all the paradoxical

pair are {(454, 137), (452, 138), (450, 139), (4480), (446, 141), (444, 142), (442, 143), (440,
144), (438, 145) and (436, 146).

This research paper has really unveiled the agmitaf the algorithms of paradoxical pairs in a
linear transportation problem. This paper will heeego a long way to assist researchers who
may wish to embark on a similar research topic.

17



International Journal of Mathematics and Statistitglies
Vol.1, No.3, pp.9-19, September 2013

Published by European Centre for Research TramsmigDevelopment UK (www.ea-journals.org)

CONCLUSION

In this paper, we have been able to discuss agiesffi statistical algorithm for computing
paradox in a linear transportation problem if pasadoes exist. The algorithm gives step by step
development of the solution procedure for findifigtlae paradoxical pair, well understanding.
The TORA statistical software package was used litaio the optimal solution before
implementing the algorithm of paradoxical pairs.
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