
International Journal of Mathematics and Statistics Studies  

Vol.1, No.3, pp.9-19, September 2013 

Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

9 
 

THE DETERMINATION OF PARADOXICAL PAIRS IN A LINEAR 
TRANSPORTATION PROBLEM 

 
Ekezie Dan Dan 

Department of Statistics, Imo State University 
 PMB 2000, Owerri Nigeria  

GSM: 08033605479 
 

Chukwudi  J. Ogbonna, 
Federal University of Technology Owerri Nigeria 

PMB 1526, Owerri Nigeria 
GSM:  08033814302 

 
Opara Jude 

Department of Statistics, Imo State University 
PMB 2000, Owerri Nigeria 

GSM: 08064095411 
 
 

ABSTRACT: The transportation paradox is related to the classical transportation problem. 
For particular reasons of this problem, an increase in the quantity of goods to be transported 
may lead to a decrease in the optimal total transportation cost. In this paper, an efficient 
algorithm for solving a linear programming problem was discussed, and it was concluded that 
paradox exists. The North-West Corner method was used to obtain the optimal solution using the 
TORA Statistical Software Package. The method however gives a step by step development of the 
solution procedure for finding all the paradoxical pair. 
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INTRODUCTION 
 
The term Paradox arises when a transportation problem admits of a total cost which is lower than 
the optimum and is attainable by shipping larger quantities of goods over the same routes that 
were previously designated as optimal. This unusual phenomenon however, was noted by 
Szwarc (1971). The classical transportation problem is the name of a mathematical model which 
has a special mathematical structure. The mathematical formulation of a large number of 
problems conforms to this special structure. Hitchcock (1941) originally developed the basic 
linear transportation problem. Charnes et al (1953) developed the stepping stone methods which 
provide an alternative way of determining the simplex method information. Dantzig (1963) used 
the simplex method to the transportation problem as the primal simplex transportation method. 
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Appa (1973) also developed the solution procedure for solving the transportation problem and its 
variants. Klingman and Russel (1974 and 1975) introduced a specialized method for solving a 
transportation problem with several additional linear constraints. Hadley (1987) gave the detailed 
solution procedure for solving linear transportation problem. Till date, several researchers 
studied extensively to solve cost minimizing transportation problem in various ways. 
 
In some situations, if we obtain more flow with lesser cost than the flow corresponding to the 
optimum cost then we say paradox occurs. Charnes and Klingman (1971), Szwarc (1973), 
Adlakha and Kowalski (1998) and Storoy (2007) considered the paradoxical transportation 
problem. Gupta et al (1993) considered a paradox in linear fractional transportation problem with 
mixed constraints. Joshi and Gupta (2010) studied paradox in linear plus fractional transportation 
problem. In the early day of linear programming problem some of the pioneers observed paradox 
but by whom no one knows. 
 
In this paper we present a method for solving transportation problem with linear constraints. 
Thereby, we state the sufficient condition of existence of paradox, paradoxical range of flow and 
paradoxical flow for a specified flow in such type of linear transportation problem. Having 
known that paradox does not exit regularly in so many linear transportation problems, the 
rationale behind this research work is to unveil a numerical practical example that will suit the 
algorithm discussed in this paper. We also justify the theory by illustrating a numerical example, 
and at the same time reviewing past researches. 
 
The purpose of this research paper is to obtain the best paradoxical pair from the optimal basic 
feasible solution of the transportation problem, and at the same time, to obtain the paradoxical 
range of flow. 
 
DEFINITIONS OF TERMS 
 
1. Paradox in a transportation problem: in a transportation problem if we can obtain more 

flow (F1) with lesser cost (Z1) than the optimum flow (F0) corresponding to the optimum 
cost (Z0) i.e. F1 > F0 and Z1 < Z0, then we say that a paradox occurs in a transportation 
problem. 

2. Cost-flow pair: if the value of the objective function is Z0 and the flow is F0 
corresponding to the feasible solution X0 of a transportation problem, then the pair (Z0, 
F0) is called the cost-flow pair corresponding to the feasible solution X0. 

3. Paradoxical pair: A cost-flow pair, (Z, F) of an objective function is called paradoxical 
pair if Z < Z0 and F > F0 where Z0 is the optimum cost and F0 is the optimum flow of the 
transportation problem. 

4. Best paradoxical pair: The paradoxical pair (Z*, F*) is called the best paradoxical pair of 
a transportation problem if for all paradoxical pair (Z, F), either Z* < Z or Z* = Z but F* 
> F. 

5. Paradoxical range of flow: if F0 be the optimum flow and F* be the flow corresponding to 
the best paradoxical pair of a transportation problem then [F0, F*] is called paradoxical 
range of flow. 
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LITERATURE REVIEW 
 
The transportation paradox is, however, hardly mentioned at all in any of the great number of 
textbooks and teaching materials where the transportation problem is treated. The simulation 
research reported by Finke (1998) indicates, however, that the paradox may occur quite 
frequently. 
Apparently, several researchers have discovered the paradox independently from each other. But 
most papers on the subject refer to the paper by Charines and Klingman (1971) and Szware 
(1973) as the initial papers. Charines and Klingman (1971) name it the more-for-less paradox 
and they write: “The paradox was first observed in the early days of linear programming history 
(by whom no one knows) and has been part of the folklore known to some (e.g. A. Charnes and 
Cooper) but unknown to the great majority of workers in the field of linear programming. 
 
According to Appa (1973), the transportation paradox is known as Doigs paradox at the London 
School of Economics, named after Alison Doig who used it in exams etc around 1959 (Doig did 
not publish any paper on it). 
 
Since the transportation paradox seems not to be known to the majority of those who are working 
with (or teaching) the transportation problem, one may be tempted to believe that this 
phenomenon is only an academic curiosity which will most probably not occur in any practical 
situation. But that seems not to be true. Experiments done by Finke (1978), with randomly 
generated instances of the transportation problem of size 100 × 100 and allowing additional 
shipments (post-optimal) show that the paradoxical properties. More precisely, the average cost 
reductions achieved are reported to be 18.6% with total additional shipments of 20.5%. 
 
In a recent paper, Deineko et al (2003) develop necessary and sufficient conditions for a cost 
matrix C to be immune against the transportation paradox.  
 
Arora and Ahuja (2010) carried out a research work in paradox on a fixed charge transportation 
problem. In their findings, a paradox arises when the fixed charge transportation problem admits 
of a total cost which is lower than the optimum cost, by transporting larger quantities of goods 
over the same routes. A sufficient condition for the existence of a paradox is established. 
Paradoxical Range of flow is obtained for any given flow in which the corresponding objective 
function value is less than the optimum value of the fixed charge transportation problem. 
 
Manjusri et al (2012) in their research paper “The Algorithm of Finding all Paradoxical Pairs in a 
Linear Transportation problem” established a sufficient condition for the presence of paradox in 
a linear programming problem, obtained the paradoxical pairs and finally obtained the 
paradoxical range of flow. 
 
Vishwas and Nilama (2010) in their research titled “On a Paradox in Linear Fractional 
Transportation Problem” discovered that a paradoxical situation arises in a linear plus linear 
fractional transportation problem (LPLFTP), when value of the objective function falls below the 
optimal value and this lower value is attainable by transporting larger amount of quantity. In 
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their research paper, a new heuristic is proposed for finding initial basic feasible solution for 
LPLFTP and a sufficient condition for the existence of a paradoxical solution is established in 
LPLFTP. 
 
PROBLEM FORMULATION 
 
In this paper, we consider the following transportation problem: 
Let the transportation problem consists of m sources and n destinations, where 
xij = the amount of product transported from the ith source to the jth destination, 
cij = the cost involved in transporting per unit product from the ith source to the jth destination, 
ai = the number of units available at the ith source, 
bj = the number of units required at the jth destination. 
 
In this paper, we consider the cost minimizing linear transportation problem as: 

 ijij
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Let F0 be the corresponding flow. 
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Now we consider the dual variables ui for i ∈ I and j ∈ I such that ui + vj = cij corresponding to 
the basis B. 
Also ∀(I, j)∉B, let 
 ijjiij c)vu(c −+=′  

If B)j,i(0cij ∉∀<′  then the solution is optimum. 

 
Theorem: the sufficient condition for the existence of paradoxical solution of (P1) is that if ∃ at 
least one cell (r, s) ∉ B in the optimum table of (P1) where ar and bs are replaced by ar + l and bs 
+ l respectively (l > 0) then      (ur + vs) < 0. 
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Proof: Let Z0 be the value of the objective function and F0 be the optimum flow corresponding 
to the optimum solution (X0) of problem (P1). The dual variables ui and vj are given by 
 ui + vj = cij,  ∀(i, j) ∈B 
Then  
 0
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Now, let ∃ at least one cell (r, s)∉B, where ar are replaced by ar + l and bs + l, respectively (l > 0) 
in such a way that the optimum basis remains same, then the value of the objective function Ẑ  is 
given by 

 [ ])()()(ˆ 0
srssrrjj

sj
ii

ri

vulZlbvlauvbuaZ ++=







+++++= ∑∑

≠≠

 

The new flow F̂ is given by 
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Therefore for the existence of paradox we must have 0ZẐ 0 <− . Hence the sufficient condition 
for the existence of paradox is that ∃ at least one cell (r, s)∉B in the optimum table of such that if 
ar and bs are replaced by ar + l and bs + l (l > 0) then l(ur + us) < 0, i.e. (ur + vs) < 0. 
 
Now we state the following algorithm to find all the paradoxical pair of the problem (P1). 
 
Algorithm: 
Step 1: Find the cost-flow pair (Z0, F0) for the optimum solution X0. 
Step 2: i = 1 
Step 3: Find all cells (r, s)∉B such that (ur + vs) < 0 if it exists otherwise go to step 8. 
Step 4: Among all cells (r, s) ∉B satisfying step 3 find min flow for l = 1 which enter into the 
existing basis whose corresponding cost is minimum. Let (Zi, Fi) be the new cost flow pair 
corresponding to the optimum solution Xi. 
Step 5: Write (Zi, Fi). 
Step 6: i = i + 1. 
Step 7: go to step 3 
Step 8: We write the best paradoxical pair (Z*, F*) = (Zi, Fi) for the optimum solution X* = Xi. 
Step 9: End. 
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This algorithm gives all the paradoxical pairs. From these pairs we can find the paradoxical pair 
for a specified flow (F ) also. 
 
DATA ANALYSIS 
 
The data used for this research was extracted from Opara J. (2009), Introduction to Operation 
Research, Exercises 3 page 28. The estimated supply capacities of the five warehouses, the 
demand requirements at the five markets and the transportation cost of each product are given in 
Table I below: 
 
Table I 
(i, j)   M1  M2  M3  M4  M5 Si 

W1 7 3 6 9 5 55 
 

W2 4 3 1 4 4 34 
 

W3 6 2 4 5 3 22 
 

W4 3 7 3 8 4 14 
 

W5 2 5 3 4 9 11 
 

dj 44 35 25 20 12 136 
 
Solving the above problem using the Least-Cost method through TORA Statistical Software 
Package, the optimal transportation table is presented in Table II. 
 
Table II 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
10 

3 
35 

6 9 5 
10 

55 
 

0 

W2 4 
9 

3 1 
25 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
14 

7 3 8 4 14 
 

-4 

W5 2 
11 

5 3 4 9 12 
 

-5 

dj 44 35 25 20 12 136  
V j  7 3 4 7 5   
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The total cost is 456. We then check the sign of (Ur + Vs), where (r, s) ∉ B in Table II, we 
observe that U4 + V2 = -1 < 0, U5 + V2 = - 2 < 0, and U5 + V3 = - 1 < 0. So Paradoxical pair of 
the problem (P1) applying the algorithm discussed in this paper. 
 
Applying Step 1: The cost-flow pair is (Zo, Fo) = (456, 136) corresponding to the optimum 
solution X = { x11 = 10, x12 = 35, x15 = 10, x21 = 9, x23 = 25, x34 = 20, x35 = 2, x41 = 14, x51 = 11}. 
Applying step 2: set i=1 
Applying step 3: Now we check the sign of (Ur + Vs) and we obtain for the non-basic cells (4,2), 
(5,2) and (5,3), the sign that is negative. 
Applying step 4: For l = 1 
For the cell (4, 2) 
 
Table III 
 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
9 

3 
36 

6 9 5 
10 

55 
 

0 

W2 4 
9 

3 1 
25 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
15 

7 3 8 4 15 
 

-4 

W5 2 
11 

5 3 4 9 11 
 

-5 

dj 44 36 25 20 12 137  
V j  7 3 4 7 5   
 
The total cost of this transportation problem is 455. 
 

For cell (5, 2), the transportation table is presented in Table IV 
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Table IV 
 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
9 

3 
36 

6 9 5 
10 

55 
 

0 

W2 4 
9 

3 1 
25 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
14 

7 3 8 4 14 
 

-4 

W5 2 
12 

5 3 4 9 12 
 

-5 

dj 44 36 25 20 12 137  
V j  7 3 4 7 5   
 
The total cost of this transportation problem is 454. 
 

For the cell (5, 3), the transportation table is presented in Table V. 
 
Table V 
 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
10 

3 
35 

6 9 5 
10 

55 
 

0 

W2 4 
8 

3 1 
26 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
14 

7 3 8 4 14 
 

-4 

W5 2 
12 

5 3 4 9 12 
 

-5 

dj 44 35 26 20 12 137  
V j  7 3 4 7 5   

 
The total cost is 455. 
 
The min cost = min{456, 454, 455} = 454. 
 
Hence l = 1 enters in the optimum basis from the cell (5, 2) and corresponding table is Table IV, 
the corresponding paradoxical pair (Z′, F′) = (454, 137). 
 
Employing steps 6 and 7. Then repeating this process, the next table is 
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Table VI 
 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
8 

3 
37 

6 9 5 
10 

55 
 

0 

W2 4 
9 

3 1 
25 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
14 

7 3 8 4 14 
 

-4 

W5 2 
13 

5 3 4 9 13 
 

-5 

dj 44 37 25 20 12 138  
V j  7 3 4 7 5   
 
Now repeating this process, the final table is presented in Table VII 
 
Table VII 
(i, j) M1 M2 M3 M4 M5 Si V i  

W1 7 
0 

3 
45 

6 9 5 
10 

55 
 

0 

W2 4 
9 

3 1 
25 

4 4 34 
 

-3 

W3 6 2 4 5 
20 

3 
2 

22 
 

-2 

W4 3 
14 

7 3 8 4 14 
 

-4 

W5 2 
21 

5 3 4 9 21 
 

-5 

dj 44 45 25 20 12 146  
V j  7 3 4 7 5   
 
Hence, from the above table, the corresponding paradoxical pair (Z′, F′) = (436, 146).  
 
Applying step 8: The best paradoxical pair is (Z*, F*) = (436, 146) corresponding to the 
optimum solution is X* = {x11 = 0; x12 = 45, x15 = 10, x21 = 9, x23 = 25, x34 = 20, x35 = 2, x41 = 
14, x51 = 21} and the paradoxical range of flow is [F0, F*] = [136, 146]. Thus, all the paradoxical 
pair are {(454, 137), (452, 138), (450, 139), (448, 140), (446, 141), (444, 142), (442, 143), (440, 
144), (438, 145) and (436, 146). 
 
This research paper has really unveiled the application of the algorithms of paradoxical pairs in a 
linear transportation problem. This paper will however go a long way to assist researchers who 
may wish to embark on a similar research topic. 
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CONCLUSION 
 
In this paper, we have been able to discuss an efficient statistical algorithm for computing 
paradox in a linear transportation problem if paradox does exist. The algorithm gives step by step 
development of the solution procedure for finding all the paradoxical pair, well understanding. 
The TORA statistical software package was used to obtain the optimal solution before 
implementing the algorithm of paradoxical pairs. 
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