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ABSTRACT: Survival analysis examines and models the time it takes for events to occur. The 

prototypical such event is death, from which the name ‘survival analysis’ and much of its 

terminology derives. This  research  study  develops  a predictive model  and  considers the factors 

associated with under-five child mortality rates in Kenya in order to provide the solutions and 

interventions to organizations concerned with demographic data. As the human lifespan increases, 

more and more people are becoming interested in mortality.   The  aim  of   this  study  is  to   

estimate     the  robust  and  reliable    estimates  of level   and   trend     in  under-five  mortality   

in  Kenya .  Survival analysis techniques and frailty modeling will be used  as the statistical tools 

for analyzing the time-event data. Both the survival parametric and non –parametric models and 

the frailty models will be fit  to help us draw the required conclusions based on under-five child 

mortality rates.  The results of this study will be used to assist in formulating appropriate health 

programs and policies that will reduce under-five human mortality. 
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INTRODUCTION 

 

Under-five mortality is a major public health challenge in developing countries. It is essential to 

identify determinants of under-five mortality because this will assist in formulating appropriate 

health programs and  policies. Once we can model  human  under-five mortality , we can look for 

ways to extend our lifespan and counteract the negative aspects of mortality .That is if we find out 

that there are other factors which influence the death  rate apart from the age factor , we can now 

give the recommendations on how to improve on them. 

 

To accelerate the achievement of  SDG (Sustainable  Development Goals) number 3,there is need 

for an effort to accelerate child survival and provision for a framework to improve indicators for 

children. The strategy is guided by the national Health Sector strategic plan2,(NHSSP2) and the 

vision 2030 medium Term Plan that aim to reduce inequalities in the health care services and 

improve on the child health indicators. Existing data reveals that in the 1990’s, infant and 

childhood mortality declined rapidly in Kenya as a result of various global initiatives to improve 

child health. After many years of declining health indicators, recent data is showing an 

improvement in the mortality indicators for Kenyan children. The Kenya Demographic Health 

Survey (KDHS) 2008/09 shows that compared to the 2003 KDHS, the Infant Mortality Rate (IMR) 

improved to 52 to 77 per 1000 live births and the Under Five mortality Rate (UFMR) improving 

to 74 from 115 per 1000 live births. However the neonatal mortality rate only reduced marginally 

from  33 to 31 per 1000 live births contributing to 42% of the  under  five mortality compared to 

29% in 2003(KDHS). Child survival remains an urgent concern. It is unacceptable that about 
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16000 children still die every single day, this is equivalent to 11 deaths occurring every minute. 

(Estimates developed by the UN inter-agency group for child mortality estimation) , this has led 

to more research in this study area to assist in lowering the rate of infant and child mortality in 

Kenya.  

 

Spatial analysis 

Spatial analysis is the process of examining locations, attributes and relationships of features in 

spatial data through overlay and other analytical  techniques in order  to address a question or gain 

useful knowledge. Spatial analysis extracts or creates new information from spatial data. Spatial 

analysis is how we understand our world that is,  mapping  where things are, how they relate, what 

it all means and what actions to take. From computational analysis of geographic patterns to 

finding optimum routes, site selection and advanced predictive modeling, spatial analysis is at the 

very heart of geographic information system (GIS) technology. Spatial analysis or spatial statistics 

includes any of the formal techniques which study entities using their topological, geometric or 

geographic properties. In a more restricted sense, spatial analysis is the technique applied to 

structures at the  human scale ,most notably in the analysis of geographic data. Spatial data also 

known as geospatial data, is information about a physical object  that can be represented by values 

in a geographic coordinate system. Generally speaking, spatial data represents the location , size 

and shape of an object on planet earth such as a building, lake, mountain or township. Spatial data 

may also  include attributes that provide more information about the entity that is being 

represented. Geographic Information System (GIS) can be used to access, visualize, manipulate 

and analyze geospatial data. 

 

 Frailty models for survival data. 

A frailty model  is a random effects model for time variables, where  the  random effect (the frailty 

) has a multiplicative effect  on the hazard. It can be used for  univariate (independent ) failure  

times, that is to describe  the influence  of unobserved covariates in a proportional hazard model. 

Frailty models  are the survival  data analog to  regression models, which account  for heterogeneity 

and random effects. A frailty is a latent multiplicative effect on the hazard function and is assumed 

to have unit mean and variance  , which is estimated along with other model parameters. As usually 

understood in survival analysis, frailty models are extensions of the proportional hazards model 

that incorporate unobserved random multiplicative components into the hazard function. 

 

The concept of frailty offers a convenient way to introduce unobserved heterogeneity and  

associations into models for survival data. In its simplest  form, frailty is an unobserved random 

proportionality factor that modifies the hazard  function of an individual or a group of related 

individuals. Frailty models in survival analysis presents a comprehensive overview  of the 

fundamental approaches in the area of frailty models. The notion of frailty provides a convenient 

way to introduce random effects, association and unobserved heterogeneity into models for 

survival data. In statistical terms a frailty model is a random effects model for time to event data 

where the frailty has a multiplicative effect on the baseline hazard function. 

 

In essence, the frailty concept goes back to work of Greenwood and Yule(1920) on ‘accident 

proneness’.The term frailty itself was introduced by Vaupelet al.(1979) in univariate survival 

models and the model was substantially promoted by its application to multivariate survival data 
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in a seminal paper by Clayton(1978)(without using the notion frailty)on chronic disease incidences 

in families. Frailty models are extensions of the proportional hazards model which is best known 

as the cox model(cox 1972),the most popular model in survival analysis. 

 

Mortality rate-under 5 (per 1000) in Kenya. 

Mortality is the state of being  mortal, or susceptible to death. Mortality rate is a measure   of   the   

number of   deaths   (in general   or due   to    a specific   cause) in a population. Scaled to the size 

of that population per unit of time. Mortality  rate  is  typically   expressed  in units   of  deaths  per   

1000 individuals per  year; thus   a  mortality rate   of  9.5 (out of  1000) in a population of 1000   

would  mean  9.5   deaths  per  year  in that entire  population ,or  0.95%  out  of  the total. Under-

five mortality rate is the probability per 1000 that a newborn baby will die before reaching age  

five , if subjected  to current age-specific mortality rates. Mortality rate; under-5(per 1000) in 

Kenya was last measured at 70 in 2013 according to World Bank. 

Broad categories that help to explain child mortality trends according to this study include: 

 Fertility behavior like spacing births. 

 Mother’s age. 

 Mother’s education. 

 Sex of the child. 

 Birth order. 

 Household wealth. 

 Region(county/locality). 

 Place of delivery. 

 Place of residence (urban/ rural) 

 Mother’s occupation. 

 Maternal (Marital status) 

 Birth weight of the child. 

 Household(family size, wealth index, sanitation) 

 Religion . 

 The use of health services by mothers and for her 

children. 

 Environmental health conditions like outbreak of 

diseases, hygiene. 

 Nutritional status ,breast  feeding and infant 

feeding. 

 Social economic status. 

REVIEW OF THE MODELS 

 

Modelling Binomial Data 

Suppose   𝑌𝑖  ∼  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖)  and we wish to model the proportions   𝑌𝑖/𝑛𝑖 .  

 Then 𝐸(𝑌𝑖/𝑛𝑖) =  𝑝𝑖       while    𝑣𝑎𝑟(𝑌𝑖/𝑛𝑖)  =
1

𝑛𝑖
𝑝𝑖(1 − 𝑝𝑖)      So our variance function is 

𝑉 (𝜇𝑖)  = 𝜇𝑖 (1 − 𝜇𝑖 ) 

Our link function must map from  (0,1)  →  (−∞, ∞). A common choice is  
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𝑔(𝜇𝑖)  =  𝑙𝑜𝑔𝑖𝑡(𝜇𝑖)  =  log (
𝜇𝑖

1 − 𝜇𝑖
)                                                                                                     (1)  

 

Exponential Family 

Most of the commonly used statistical distributions, e.g. Normal, Binomial and Poisson, are 

members of the exponential family of distributions whose densities can be written in the form 

𝑓(𝑦; 𝜃, ∅) =  𝑒𝑥𝑝 {
𝑦𝜃 −  𝑏(𝜃)

∅ +  𝑐(𝑦, ∅)
}                                                                                                           (2) 

where    ∅  is the dispersion parameter and θ is the canonical parameter. 
It can be shown  that   𝐸(𝑌 ) =  𝑏′(𝜃) =  µ     𝑎𝑛𝑑    𝑣𝑎𝑟(𝑌 )  =  ∅𝑏′′(𝜃)  = ∅ 𝑉 (µ) 

For  a  generalized linear model (glm)  where the response follows an exponential distribution we 

have     𝑔(𝜇𝑖)  =  𝑔(𝑏′(𝜃𝑖))  =  𝛽𝑜 + 𝛽1𝑥1𝑖  + . . . +𝛽𝑝𝑥𝑝𝑖  

The canonical link is defined as     𝑔 =  (𝑏′)−1  
⇒ 𝑔(𝜇𝑖)  = 𝜃𝑖  =  𝛽𝑜 + 𝛽1𝑥1𝑖  + . . . +𝛽𝑝𝑥𝑝𝑖  

 Canonical links lead to desirable statistical properties of the glm hence tend to be used by default. 

However there is no a priori reason why the systematic effects in the model should be additive on 

the scale given by this link. 

 

Estimation of the Model Parameters 

A single algorithm can be used to estimate the parameters of an exponential family  using 

maximum likelihood method . 

The log-likelihood for the sample    𝑦1, . . . , 𝑦𝑛 is 

𝑙 = ∑
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

∅𝑖

𝑛

𝑖=1

+ c(𝑦𝑖, ∅𝑖) 

The maximum likelihood estimates are obtained by solving the score equations 

𝑠(𝛽𝑗) =
𝜕𝑙

𝜕𝛽𝑗
= ∑

𝑦𝑖 − 𝜇𝑖

∅𝑖𝑉(𝜇𝑖)

𝑛

𝑖=1

∗
𝑥𝑖𝑗

𝑔′(𝜇𝑖)
= 0                                                                                               (3) 

for  parameters  𝛽𝑗.  We assume that   ∅𝑖 =
∅

𝑎𝑖
   where    ∅   is a single dispersion parameter and  𝑎𝑖   

are known prior weights; for example binomial proportions with known index   𝑛𝑖   have  ∅  = 1  

and  𝑎𝑖 = 𝑛𝑖   .  

The estimating equations are then     

𝜕𝑙

𝜕𝛽𝑗
= ∑

𝑎𝑖(𝑦𝑖 − 𝜇𝑖)

𝑉(𝜇𝑖)

𝑛

𝑖=1

∗
𝑥𝑖𝑗

𝑔′(𝜇𝑖)
= 0 

 

A general method of solving score equations is the iterative algorithm Fisher’s Method of Scoring 

(derived from a Taylor’s expansion of   𝑠(𝛽) )   

In  the  𝑟 − 𝑡ℎ  iteration , the new estimate   𝛽(𝑟+1)  is obtained from the previous estimate   𝛽(𝑟)  

by   

    𝛽(𝑟+1)  = 𝛽(𝑟) + 𝑠(𝛽(𝑟)  )𝐸 (𝐻(𝛽(𝑟)  ))
−1

                                                                                        (4)  

where  H is the Hessian matrix: the matrix of second derivatives of the log-likelihood. 
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It turns out that the updates can be written as  

𝛽(𝑟+1) = (𝑋𝑇𝑊(𝑟)𝑋)
−1

  𝑋𝑇𝑊(𝑟)𝑧(𝑟) 

i.e. the score equations for a weighted least squares regression of    𝑧(𝑟)    on   𝑋   with weights 

𝑊(𝑟) = 𝑑𝑖𝑎𝑔(𝑤𝑖), where       𝑧𝑖
(𝑟) = 𝜂𝑖

(𝑟) + (𝑦𝑖 − µ𝑖
(𝑟))𝑔′(µ𝑖

(𝑟)) 

𝑎𝑛𝑑    𝑤𝑖
(𝑟) =

𝑎𝑖

𝑉(µ𝑖
(𝑟))(𝑔′(µ𝑖

(𝑡)))
2 

 

The Cox model 

Let  𝑌𝑖   denote the observed time (either censoring time or event time) for subject   𝑖 .  Let  𝐶𝑖   be 

the indicator that the time corresponds to an event (i.e. if 𝐶𝑖 =  1 the event occurred and if 

𝐶𝑖 =  0   the time is a censoring time). Let   𝑋𝑖  =  { 𝑋𝑖1, … 𝑋𝑖𝑝 }  be the realized values of the 

covariates for subject i. The hazard function for the Cox proportional hazard model has the form 

𝜆(𝑡 𝑋𝑖) = 𝜆0(𝑡)𝑒𝑥𝑝⁄ (𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝) = 𝜆0(𝑡) exp(𝑋𝑖. 𝛽)                                                       (5) 

This expression gives the hazard rate at time 𝑡  for subject  𝑖  with covariate vector (explanatory 

variables)   𝑋𝑖  

Ignoring ties for the moment, conditioned upon the existence of a unique event at some particular 

time 𝑡  the probability that the event occurs in the subject  𝑖 for which 𝐶𝑖  =  1 and  𝑌𝑖 = 𝑡  is 

𝐿𝑖(𝛽) =
𝜃𝑖

∑ 𝜃𝑗:𝑌𝑗≥𝑌𝑖 𝑗

 

Where  𝜃𝑗 =  𝑒𝑥𝑝(𝑋𝑗. 𝛽).    Observe that the factors of  𝜆0(𝑡)    that would be present in both the 

numerator and denominator have canceled out. 

Treating the subjects' events as if they were statistically independent, the joint probability of all 

realized events conditioned upon the existence of events at those times is the partial likelihood: 

 

𝐿(𝛽) = ∏
𝜃𝑖

∑ 𝜃𝑗:𝑌𝑗≥𝑌𝑖 𝑗𝑖:𝐶𝑖=1

 

The corresponding log partial likelihood is 

𝑙(𝛽) = ∑ (𝑋𝑖. 𝛽 − 𝑙𝑜𝑔 ∑ 𝜃𝑗

𝑗:𝑌𝑗≥𝑌𝑖

)

𝑖:𝐶𝑖=1

                                                                                                      (6) 

This function can be maximized over β to produce maximum partial likelihood estimates of the 

model parameters. 

The partial score function is 

𝑙′(𝛽) = ∑ (𝑋𝑖 −
∑ 𝜃𝑗𝑋𝑗𝑗:𝑌𝑗≥𝑌𝑖

∑ 𝜃𝑗𝑗:𝑌𝑗≥𝑌𝑖

)

𝑖:𝐶𝑖=1

                                                                                                          (7) 

and the Hessian matrix of the partial log likelihood is 

𝑙′′(𝛽) = − ∑ (
∑ 𝜃𝑗𝑋𝑗𝑋′

𝑗𝑗:𝑌𝑗≥𝑌𝑖

∑ 𝜃𝑗𝑗:𝑌𝑗≥𝑌𝑖

−
[∑ 𝜃𝑗𝑋𝑗𝑗:𝑌𝑗≥𝑌𝑖

] [∑ 𝜃𝑗𝑋′
𝑗𝑗:𝑌𝑗≥𝑌𝑖
]

[∑ 𝜃𝑗𝑗:𝑌𝑗≥𝑌𝑖
]

2 )                                           (8)

𝑖:𝐶𝑖=1
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METHODOLOGY 

 

Model developed  

The survival time data is normally presented together with the other factors that aid in describing 

the survival time. These factors are such as; sex, health status , age, education , area of residence, 

religion, wealth index, mother’s occupation, duration of breastfeeding, birth order ,birth weight of 

the child  , among other factors. With this additional information one may decide to model the 

survival time including such information in the model , the resulting model after considering the 

available information (factors / covariates ) is referred  to as a regression model. A regression 

model can be parametric or semi-parametric.  

 Consider a vector of covariates 𝑿, in this case the regression model linking the covariates to the 

hazard is given by: 

 

ℎ(𝑡 𝑿⁄ ) = ℎ0(𝑡) ȵ(𝑿𝑇𝛽)+𝑢𝑖 + 𝑣𝑗 + 𝑒𝑖𝑗                                                                                                  (9) 

 

where    ℎ0(𝑡)  is the baseline hazard,  𝛽   is the vector of the regression parameters and  ȵ(𝑿𝑇𝛽) 

 

is  the  link function,   𝑢𝑖 represents county  𝑖    and   𝑣𝑗     represents   randomly  selected county  

that  has  more  number  of   under  five  child  mortality ,  𝑒𝑖𝑗 is the error term . 

 

The link function has to be a positive function since the hazard function is always positive.   

 

The best choice for the link function is the  exponential 

 

ȵ(𝑋) = exp (X) >  0,     ∀ X 

 

from the above link  exponential  function , the model becomes  

ℎ(𝑡 𝑿⁄ ) = ℎ0(𝑡) exp (𝑿𝑇𝛽)+ 𝑢𝑖 + 𝑣𝑗 + 𝑒𝑖𝑗                                                                                         (10) 

 

Cross-sectional data 

in this research, we perform analysis of cross-sectional data  which consists of comparing the 

differences among the subjects.  Cross-sectional data, or a cross-section of a study population, in 

statistics, is a type of data collected by   observing many subjects ( such as individuals ,counties 

or regions ) at the same point of time or without regard to difference in time. 

 

Geographically Weighted Regression 

Geographically weighted regression (GWR) is a local form of spatial analysis introduced in 1996 

in the geographical literature drawing from statistical approaches for curve-fitting and smoothing 

applications. The method works based on the simple yet powerful idea of estimating local models 

using subsets of observations centered on a focal point. Since its introduction, GWR rapidly 

captured the attention of many in geography and other fields for its potential to investigate non 

stationary relations in regression analysis. The basic concepts have also been used to obtain local 

descriptive statistics and other models such as Poisson regression  and  probit. The method has 

been instrumental in highlighting the existence of potentially complex spatial relationships. 
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 The evidence available suggests that GWR is a useful, if imperfect, tool for inferring spatial 

processes, and a relatively simple and effective tool for spatial interpolation. Related technical 

developments enhance GWR (e.g., autocorrelation tests and multiple comparison adjustments) 

and/or complement it (e.g., the expansion method). Other approaches provide alternatives to the 

use of GWR (e.g., kriging and Bayesian models). 

 

Research   Study  Area 

The study sites being    considered in this research  are  the   counties  that  are in  Kenya. 

The sites   have  resources which    can increase the   likelihood   of the   success   of the study. 
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