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ABSTRACT: The bounded nature of the fractional dependent variables, for instance in 

corporate finance leverage ratio clustering with a substantial number of observations at unit 

interval raises some important issues in estimation and inference. Ordinary Least Square 

(OLS) regression with Gaussian distributional assumption has been the main choice to model 

fractional outcomes in many business problems. Nevertheless, it is conceptually flawed to 

assume Gaussian distribution for a response variable in the interval [0,1]. Tobit model which 

is a Single-component method for modelling proportional outcome also share properties with 

OLS. Two-part Fractional regression models have been shown as the most natural way of 

modelling bounded, proportional response variables. Beta regression method has been used to 

achieve the objective in this paper.  
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INTRODUCTION 

The normal distribution is one of the mainly used distributions in statistical analysis. It is 

sometimes called the Gaussian distribution and has the basis of much parametric statistical 

analysis. An assumption is often made that the sample under test is from a population with 

normal distribution. Making this assumption about the data requires the use of parametric tests 

which are more powerful than their equivalent non-parametric methods. 

Many variables by their nature naturally follow the normal distribution, for example, biological 

variables such as blood pressure, serum cholesterol, height and weight. You could choose to 

skip the normality check in these cases, though it’s always wise to check the sample 

distribution. 

The dependent variable in many economic models is often proportion, percentage or fraction. 

Cook et al (2008) indicated that many studies in corporate finance ignored the fact that 

proportion, percentage or fractional data are not normally distributed since data in these form 

are not observed and defined over the range of the normal distribution. The bounded nature of 

the fractional dependent variables raises some important issues in estimation and inference. To 

assume a linear functional form in estimating these models is conceptually flawed. 

 Until the discovery of fractional regression models (FRM), the simple OLS regression with 

Gaussian distributional assumption remained the most popular method to model fractional 

outcomes due to its simplicity. According to Kennedy (2003) some of the desirable properties 

of the OLS estimate may no longer hold in case of a continuous fractional or proportional 

dependent variable. It is therefore required to use an appropriate estimation technique to 

analyze bounded nature data. 
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Over the past years researchers who have interest in statistical models for fractional outcomes 

have developed models for data analysis in the financial, education and other sectors of the 

economy. The distinctive statistical nature of fractional outcomes is that the variance is not 

independent of the mean. For example a problem of heteroscedasticity is seen in regression 

models where the variance shrinks as the mean approaches boundary points [0,1]. It is also 

important to note that fractional outcomes in a unit interval are not defined on the whole real 

line hence they should not be considered normally distributed. It is important to note that data 

measured in a continuous scale and restricted to the unit interval, i.e 0 < y < 1 as in the case of 

percentages, proportions, fractions and rates. 

 

An empirical application of the fractional regression models is in the area of financial service 

industry. In business, there is a necessity to model fractional outcomes in a unit interval [0,1]. 

The variable of interest in many economic settings is often a fraction or a proportion, being 

defined only on the unit interval. Such variables are bounded by their nature. In some cases, 

there is a possibility of nontrivial probability mass accumulating at one or both boundaries raise 

some interesting estimation and inference issues.  

 

METHODOLOGY 

Models for response variables defined on the unit interval was first proposed by Papke and 

Wooldridge(1996). The Statistical models for fractional outcomes that are considered in this 

study are the single component model and the two part model. The Tobit model is an example 

of a single component while the Beta model is used to explain the two-parts model. In the two 

parts modeling approach, for instance a Logit model separating between boundary points and 

the open interval of (0,1) will be used initially and the other governing all values in the (0,1) 

interval by a Beta model. 

A logit transformation can be used to solve the problem for response variable values within the 

unit interval. Given that 𝑦 =
1

1+𝑒𝑥𝑝(−𝑋𝛽)
 it will yields the transformed response variable 𝑦∗ such 

that 𝑦∗ = 𝑙𝑜𝑔 (
𝑦

1−𝑦
) = 𝑋𝛽 + 𝑒 

Tobit Model 

The Tobit model which is being used to model outcomes with unit interval [0,1] can be seen in 

regression when the dependent variable is incompletely observed and the regression when the 

dependent variable is completely observed but is observed in a selected sample that is not 

representative of the population. This shares the feature of the OLS regression and leads to 

inconsistent parameter estimate because the sample is not representative of the population. 

The Tobit model which is being used to model outcomes with unit interval [0,1] is assumed 

that there is a latent variable 𝑌∗ such that  

𝑌 = {

0 𝑓𝑜𝑟 𝑌∗ ≤ 0

�̀�𝛽 + 𝜀 𝑓𝑜𝑟 1 > 𝑌∗ > 0, 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 𝜀~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2)

1 𝑓𝑜𝑟 𝑌∗ ≥ 1
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The response Y is bounded by [0,1] and it might be considered the observable part of a normally 

distributed variable 𝑌∗~𝑁𝑜𝑟𝑚𝑎𝑙(�̀�𝛽, 𝜎2) being defined on the real line. 

The model assumes that the observed dependent variables 𝑌𝑗 for observation 𝑗 = 1, … , 𝑛 

𝑌𝑗 = 𝑚𝑎𝑥(𝑌𝑗
∗, 0) where 𝑌𝑗

∗′𝑠 are latent variables generated by the classical linear regression 

model 𝑌𝑗
∗ = �́�𝑋𝑗 + 𝜀𝑗 with 𝑋𝑗 a vector of regressors, possibly including 1 for the intercept, and 

𝛽 the corresponding vector of parameters. 

The conditional c.d.f. of 𝑌𝑗 given 𝑌𝑗 > 0 and 𝑋𝑗 is  

𝐻(𝑦|𝑌𝑗 > 0, 𝑋𝑗, 𝛽, 𝜎) = 𝑃(𝑦𝑗 ≤ 𝑦|𝑌𝑗 > 0, 𝑋𝑗) 

=
𝑃(0 < 𝑌𝑗

∗ ≤ 𝑦|𝑥𝑗)

𝑃(𝑌𝑗
∗ > 0|𝑋𝑗)

=
𝑃(−�́�𝑋𝑗 < 𝜀𝑗 ≤ 𝑦 − �́�𝑋𝑗|𝑋𝑗)

𝑃(𝜀𝑗 > −�́�𝑋𝑗|𝑋𝑗)
 

=
𝐹 ((𝑦 − �́�𝑋𝑗)/𝜎) − 𝐹(−�́�𝑋𝑗/𝜎)

𝐹(�́�𝑋𝑗/𝜎)
 

The maximum likelihood estimator for Tobit model assumes that errors are normal and 

homoscedastic and would be otherwise inconsistent. As a result the simultaneous estimation of 

a variance model might be needed to account for the heteroscedasticity as follows  

𝐸(𝜀2) = 𝜎2 × (1 + 𝐸𝑋𝑃(�̀�𝐺)) 

Beta Model 

The beta model is based upon the two-parameter Beta distribution and can be employed to 

model any continuous variable bounded by two known endpoints, for example zero (0) and one 

(1). With the assumption that Y follows a standard beta distribution defined in the interval (0,1) 

with two shape parameters  𝜔 and 𝜏. While 𝜔 is pulling the density toward 0,  𝜏  is pushing 

density toward 1. The density function can be specified as; 

𝐹(𝑌) =
Γ(𝜔 + 𝜏)

Γ(𝜔)Γ(𝜏)
× 𝑌𝜔−1 × (1 − 𝑌)𝜏−1 

Ferrari  and Cribari-Neto (2004) proposed the reparametrization of the beta distribution. With 

their proposal, a random variable Y follows a Beta distribution if its probability function (pdf) 

is given by  

𝑏(𝑦|𝜇, 𝜙) =
Γ(𝜙)

Γ(𝜇𝜙)Γ(1−𝜇)𝜙
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝑢)𝜙−1, 0 < 𝑦 < 1      

Where  0 < 𝜇 < 1 and 𝜙 > 0. Without the loss of generality, 𝜔 and 𝜏 can be translated into 

two other parameters, location parameter 𝜇 and dispersion parameter 𝜙 with 𝜔 = 𝜇𝜙 and 

 𝜏 = 𝜙(1 − 𝜇). 
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The notation 𝑌~𝐵𝑒𝑡𝑎(𝜇, 𝜙) with the mean and the variance expressed as 𝐸(𝑦|𝜇, 𝜙) = 𝜇 and 

𝑉𝑎𝑟(𝑦|𝜇, 𝜙) =
𝑉(𝜇)

1+𝜙
 where 𝑉(𝜇) = 𝜇(1 − 𝜇), 𝜇 is the mean and 𝜙 can be interpreted as a 

precision parameter. 

Although the Beta distribution is initially considered as flexible since the pdf can have different 

shapes by considering different values of 𝜇 and 𝜙. Hahn (2008) and Garcia et al. (2011) noted 

that it does not take into consideration, the greater flexibility in the variance specification  and  

the tail-area events. Bayes et al. (2012) considered that this fact could limit its application for 

modeling proportions. In solving the problem by getting some additional flexibility, they 

provided a regression model which permits varying amounts of dispersion and greater 

likelihood of more extreme tail-area events by considering Beta rectangular distribution 

proposed by Hahn(2008). 

𝑃(𝑦; 𝜇, 𝜎2) = [2𝜋𝜎2{𝑦(1 − 𝑦)}3]−1/2𝑒𝑥𝑝 {−
1

2𝜎2
𝑑(𝑦; 𝜇)} 

𝑦 ∈ (0,1),   𝜇 ∈ (0,1)     

𝑑(𝑦, 𝜇) =
(𝑦 − 𝜇)2

𝑦(1 − 𝑦)𝜇2(1 − 𝜇)2
 

𝑆−(𝜇; 𝜎2) 

𝜇 = 𝐸(𝑌) 

                                                           𝑉(𝜇) = 𝜇3(1 − 𝜇)3  

This model avoids the problems associated with using linear models in the Data Envelopment 

Analysis (DEA) framework. The first problem was that when a DEA analyses use a linear 

conditional mean model given by 𝐸(𝑦|𝑥) = 𝑥𝜃, to explain efficiency scores, the linearity 

assumption is unlikely to hold because the conceptual requirement that the predicted values of 

𝑦 lie in the unit interval will not be satisfied. The second problem is that the marginal effect on 

the DEA score of a unitary change in covariate 𝑥𝑗 , is constant over the entire range of 𝑦. This 

is not compatible with either the bounded nature of DEA scores or the existence of a mass point 

at unity in their distribution. 

The Papke and Wooldridge(1996) approach is to solve the problem where the dependent 

variable is defined on a unit interval whether or not the boundary values are observed. Ramalho 

et al. (2010) indicated that the fractional regression models only requires the assumption of a 

functional form of 𝑦 that imposes the desired constraints on the conditional mean of the 

dependent variable such that 𝐸(𝑦|𝑥) = 𝐺(𝑥𝜃), where 𝐺(∙) is some nonlinear function 

satisfying 0 ≤ 𝐺(∙) ≤ 1. While Papke and Wooldridge(1996) suggested that the model defined 

by 𝐸(𝑦|𝑥) = 𝐺(𝑥𝜃) may be consistently estimated by QML, Ramalho et al. (2010) suggested 

the use of nonlinear least square or maximum likelihood estimation.  

The estimation of fractional regression models by QLM is based on the Bernoulli log-

likelihood function given by 𝐿𝑖(𝜃) = 𝑦𝑖𝑙𝑜𝑔[𝐺(𝑥𝑖𝜃)] + (1 − 𝑦𝑖)𝑙𝑜𝑔[1 − 𝐺(𝑥𝑖𝜃)]. According 

to Gourieroux et al (1984), given that the Bernoulli distribution is a member of the linear 

exponential family, the QLM estimator of 𝜃 defined by   
∧
𝜃

≡ 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

∑ 𝐿𝐿𝑖(𝜃)𝑁
𝑖=1  is consistent 

and asymptotically normal. Regardless of the distribution of 𝑦 conditional on 𝑥, provided that  
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𝐸(𝑦|𝑥) in 𝐸(𝑦|𝑥) = 𝐺(𝑥𝜃) is indeed correctly specified. Given the bounded nature of a 

response variable that appears as a proportion fraction, both Hoff (2007) and McDonald (2009) 

considered the use of Papke and Wooldridge’s (1996) logit fractional regression model. Using 

a proportion in a linear regression model will generally yield nonsensical predictions for 

extreme values of the regressors. 

 

RESULTS AND DISCUSSIONS 

The limitation of the OLS regression necessitated the need for an alternative method in 

modeling fractions. Tobit encompasses single-component modeling approach to analyze 

fractional outcome in the close interval [0,1]. Beta covers two part modeling with one model. 

For instance a Logit model, separating between boundary points and the open interval of (0,1) 

and the other governing all values in the (0,1) interval by a Beta. 

Bayes et al.(2012) did a simulation studies on the influence of outliers and confirm that the 

Beta rectangular regression model is seems to be a new robust alternative for modeling 

proportional data. They also revealed that Beta regression model offers sensitivity in the 

estimation of regression coefficients, sensitivity on the posterior distribution of all parameters. 

Vuong(1989) proposed a test which is a likelihood-based measures to compare multiple models 

with different distributional assumptions called Vuong statistics. Statisticians often prefer to 

use this test because it is considered as a better model with the individual log likelihoods  which 

is significantly higher than the ones of its rival and is calculated as 

𝑉𝑢𝑜𝑛𝑔 Statistics=
𝐿𝑅(𝑀𝑜𝑑𝑒𝑙1,𝑀𝑜𝑑𝑒𝑙2)−𝐶

√𝑁×𝑉
~𝑁𝑜𝑟𝑚𝑎𝑙(0,1)  

where 

𝐿𝑅(𝑀𝑜𝑑𝑒𝑙1, 𝑀𝑜𝑑𝑒𝑙2) is the summation of individual log likelihood ratios between  the two 

models.  

C is a correction term for the difference in parameter numbers between the two models. 

 N is the number of records.  

V is the variance of individual log likelihood ratio between two models. 

Vuong statistics is distributed as a standard Normal (0,1). The model 1 is better with Vuong 

statistics >1.96 and the model 2 is better with Vuong statistics <-1.96. Liu(2014) analysis 

compared Tobit (model 1) and Zero inflated Beta (model 2) regressions. The result from Vuong 

statistics in modeling the financial leverage ratios of business was -5.84 which implied that the 

the zero-inflated Beta is significantly better than the Tobit.  

 

CONCLUSION 

Generally the OLS on the whole sample or just the uncensored sample will provide inconsistent 

estimate of 𝛽. If we consider OLS on the uncensored sample, the expected value of the latent 
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variable of 𝑦|𝑦 > 0 therefore 𝐸[𝑦|𝑦 > 0] = 𝑋𝑖𝛽 + 𝜎𝜆(𝛼) where 𝜆(𝛼) =
𝜙(

𝑋𝑖𝛽

𝜎
)

Φ(
𝑋𝑖𝛽

𝜎
)
 is the inverse 

Mills ratio. We have 𝑦𝑖 = 𝑋𝑖𝛽 + 𝜎𝜆 (
𝑋𝑖𝛽

𝜎
) + 𝑒𝑖 therefore 𝐸(𝑒𝑖|𝑋𝑖, 𝑦𝑖 > 0) = 0. We mistakenly 

omit 𝜎𝜆 (
𝑋𝑖𝛽

𝜎
) in our OLS regression. The effect of this omitted term will appear in the 

disturbance term, which means that the Xs will be correlated with the disturbance term, leading 

to inconsistent estimates. 

In the Tobit model, the response Y bounded by [0,1] could be considered  the observable part 

of a normally distributed variable defined on a real line. The unobservable values in the interval 

is not as a result of the censorship but any value out of the interval is not theoretically defined. 

As a result the censored normal distribution assumption will not be the best for fractional 

outcome. Tobit is based on the normal distribution and the probability function of any value in 

the (0,1) is identical to OLS regression. This share the feature of the OLS regression and leads 

to inconsistent parameter estimate because the sample is not representative of the population.

  

 

It has been shown that the linear or Tobit regression model are not appropriate in modeling 

fractional data. Beta fractional regression model have flexibility for working with data where 

there are outlying observations. 
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