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ABSTRACT: The paper studies the reliability and availability of two dissimilar units. In order 

to calculate reliability, a state dependent system can be converted into the system of first order 

ordinary differential equations based on Laplace Transform technique. The system of ordinary 

differential equations is solved using Inverse Laplace depend on Complex Conjugate roots. 

Let failure rate and repair rate of each unit are taken as an exponential distribution. 

Availability, reliability and the mean time to failure are derived. We analysis graphically to 

observe the effect of various systems Parameters on the availability system and mean time to 

failure. 
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INTRODUCTION 

Studying the reliability of machine repair problem is very important in our life because it is 

widely used in the industrial system and manufacturing system .any system becomes unreliable 

due to many reasons. The units of our system have three states up and one down. However, in 

many cases, the units of the system can have a finite number of states. Most reliability systems 

assume that the up and down times of the components are exponential distribution. This 

assumption leads to a Monrovian model with constant transition rates. The analysis in our cases 

is relatively simple and the numerical results can obtain easily. In [1] evaluate the reliability 

and sensitivity analysis of a repairable -system with imperfect coverage under service pressure 

condition.in [2] have studied reliability based measures for a retrial system with mixed standby 

components. In [3] Reliability analysis of a warm standby repairable system with priority in 

use.in [4] Comparison of reliability and the availability between four systems with warm-

standby components and standby switching failures.in [5] reliability and availability of a warm 

standby with common cause failure and human- error.in [6] reliability and availability analysis 

of n-unit outdoor power system subject to an adjustable- repair facility. In [7] Reliability and 

availability analysis of a standby repairable system with degradation facility, in [8] studies on 

reliability and availability of a repairable system with multiple degradations. In [9] Reliability 

and sensitivity analysis of the K-out-of-N: G warm standby parallel repairable system with 

replacement at common-cause failure using Markova model, in [10] Reliability analysis of a 

two unit system with common cause shock failures. 

The main object is to study system with two dissimilar units where to develop the explicit 

expressions, for availability function, reliability function and mean time to failure by Laplace 

transform techniques then we show numerical results to analyze the effects of the various 

system parameters on the system reliability and system availability. 
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The objective of this paper is summarized as follows: In Section 1 we show the mathematical 

preliminaries and notation. Section 2 shows the cubic equations roots and their cases, 

availability, reliability and mean time to failure for every case. In section 3 presents system 

behavior through graphs. Finally, in section 4 we outline the main conclusions. 

System Description and Assumptions 

The system is analyzed under following practical assumptions: 

 The system  consists of single unit having two dissimilar components, say A and B   

 Initially, both the units are working. 

 The system fails completely if during  the repair of the failed unit, the  

another unit is also fails  

 The failure of component changes the lifetime parameter of the other  

 After repair, the unit becomes as good as new. 

Table 1. Transition sates                

 So S1 S2 S3 

So  𝜆1         𝜆2          

S1 µ1   𝜆2         

S2 µ2   𝜆1         

S3  µ2 µ1  

                                                                                                                                                                                                                                                                                      

Considering these symbols, the system may be in one of the following states 

Up state:      So = (𝐴𝑁,𝐵𝑁)    ,   S1 = (𝐴𝐹,𝐵𝑁)    ,    S2= (𝐴𝑁,𝐵𝐹), 

Down state: S3 = (𝐴𝐹,𝐵𝐹)  

A unit can be in one of the following states: 

 𝐴𝑁       First unit operative and in normal mode 

𝐵𝑁       Second unit operative and in normal mode 

𝐴𝐹       First unit failed and under repair  

𝐵𝐹       Second unit failed and under repair  

Notations and States of the System   

 𝜆1        Failure rate from 𝐴𝑁 to 𝐴𝐹 

𝜆2        Transition rate from 𝐵𝑁 to𝐵𝐹  

µ1        Repair rate from 𝐴𝐹 to 𝐴𝑁  

µ2        Repair rate from 𝐵𝐹 to 𝐵𝑁 

𝑝𝑖(t)     Probability for i=0, 1, 2, 3 

𝑝𝑖
∗ (s)   Laplace transform of 𝑝𝑖(t) 
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A (t):    availability functions of the system. 

R (t):    reliability functions of the system. 

MTTF:  mean time to system failure. 

Laplace transform of 𝑝𝑖(t)    is defined as: 

𝑝𝑖
∗ (s) = ∫ 𝑒−𝑆𝑡∞

0
𝑝𝑖(t) It, i=0, 1, 2, 3   

Mathematical formulation of the model 

According to system configuration diagram in table.1, the difference – differential equations 

for this stochastic process which is continuous in time and discrete in space are given as 

follows. 
𝑑𝑃0(𝑡)

𝑑𝑡
 = - [𝜆1   +𝜆2] 𝑃0(t) + µ1  𝑃1(𝑡) + µ2𝑃2(𝑡)                        (1) 

 
𝑑𝑃1(𝑡)

𝑑𝑡
 = - [µ1 +𝜆2] 𝑃1(t) +   𝜆1 𝑃0(𝑡) + µ2𝑃3(𝑡)                        (2) 

𝑑𝑃2(𝑡)

𝑑𝑡
 = - [µ2 +𝜆1] 𝑃2(t) +   𝜆2 𝑃0(𝑡) + µ1𝑃3(𝑡)                         (3) 

𝑑𝑃3(𝑡)

𝑑𝑡
 = - [µ1 +µ2] 𝑃3(t) +   𝜆1 𝑃2(𝑡) + 𝜆2𝑃1(𝑡)                         (4) 

Initial conditions: 

𝑃𝑖 (0)  = {
1                   𝑤ℎ𝑒𝑟𝑒 𝑖 = 0  

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
  

Taking Laplace transform of equations (1) – (4), we get 

[𝜆1   + 𝜆2 + s] 𝑃0
∗(s) - µ1  𝑃1

∗(𝑠) - µ2𝑃2
∗(𝑠)   = 𝑃0 (0)                    (5) 

[µ1  + 𝜆2 + s] 𝑃1
∗(s) - 𝜆1 𝑃0

∗(𝑠) - µ2𝑃3
∗(𝑠)   = 𝑃1 (0)                       (6) 

[𝜆1   + µ2 + s] 𝑃2
∗(s) - 𝜆2  𝑃0

∗(𝑠) - µ1𝑃3
∗(𝑠)   = 𝑃2 (0)                     (7) 

[µ1  + µ2 + s] 𝑃3
∗(s) - 𝜆1  𝑃2

∗(𝑠) - 𝜆2𝑃1
∗(𝑠)   = 𝑃3 (0)                      (8) 

Solving equations (5-8) by crammer rule, we obtain: 

𝑃0
∗(s) = 

𝑠3+𝐴𝑠2+𝐵𝑆+𝑚

𝑠[𝑠3+𝑎1𝑠2+𝑎2𝑆+𝑎3]
 

Cubic equations roots have are 3 cases 

First case (D > 0)     [1 root is real and 2 complex] 

P0
∗(s) = 

𝑠3+𝐴𝑠2+𝐵𝑆+𝑚

𝑠(𝑠+ 𝐴1− 𝑊)(𝑆+ 𝐴1+ 𝑤1 − 𝑖√3𝑣1)(𝑆+ 𝐴1+  𝑤1 + 𝑖√3 𝑣1)
 

Where 

q =  
3a2− a1

2 

9
                            ,     r =  

9a1a2− 2a1
3−27a3 

54
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D = q3 + r2 

u = √r + √q3 + r2
3

                   ,           t = √r − √q3 + r2
3

    

   w1=
(u + t) 

2
       ,   w= (u + t)             , v1=

(u − t)

2
       ,    A1=

a1

3
 

By taking inverse Laplace transform of equations, we get  

 

P0(t) = 
𝐦

 ( 𝐀𝟏− 𝐰)(𝐀𝟏
𝟐+𝐀𝟏𝐰+ 𝐰𝟏

𝟐+𝟑𝐯𝟏
𝟐)

 

         + 
(−𝐀𝟏+ 𝐰)𝟑+𝐀(−𝐀𝟏+ 𝐰)𝟐+𝐁(−𝐀𝟏+ 𝐰)+𝐦

(−𝐀𝟏+ 𝐰)(𝟗𝐰𝟏
𝟐+𝟑𝐯𝟏

𝟐)
𝐞(−𝐀𝟏+ 𝐖)𝐭 

        + {
𝟐[𝐏𝐗+𝟑𝐇𝐓][𝐜𝐨𝐬√𝟑( 𝐯𝟏)𝐭]−𝟐√𝟑 [( 𝐇 𝐗)− (𝐓𝐏)]( 𝐬𝐢𝐧 √𝟑( 𝐯𝟏)𝐭 )

𝐗𝟐+𝟑𝐓𝟐
} 𝐞(−𝐀𝟏− 𝐰𝟏) 𝐭 

Where 

P = (- A1
3
 - 3A1

2w1 + 9 A1 v1
2 - w1

3+ 9 w1v1
2- A1 w1

2)  

        + A (A1
2
 + A1w - 3v1

2+ w1
2 )+ B ( −A1 −   w1) +m 

H = ( 6A1v1w1 - 3v1
3+ 3w1

2v1 + 3A1
2v1 - AA1v - A v1w +  Bv1  ) 

X = 3v2w +  6v1
2A1 

T =  3wv1A1 + 3w1
2v −  6v1

3
 

a3=µ1
2(µ2 +𝜆2) + λ1

2(µ2 +𝜆2) + 2µ1µ2(𝜆1 + 𝜆2) + 𝜆1𝜆2(2µ1 + 2µ2) + λ2
2(µ1 + 𝜆1)  

       + µ2
2 (µ1 +𝜆1) 

a2= µ1 (µ1 + 3µ2+ 3𝜆2+ 2𝜆1) + µ2 (µ2 +3𝜆1 + 2𝜆2) + λ1
2+ 3𝜆1𝜆2+ λ2

2 

a1=2𝜆1 + 2𝜆2+ 2µ1  + 2µ2  

m= µ1 µ2
2 + µ1

2µ2+ µ1µ2𝜆1 + µ1µ2𝜆2 

B=3µ1µ2 + µ1𝜆1 + µ1𝜆2 + µ2𝜆1 + µ2𝜆2+ 𝜆1𝜆2+ µ1
2+ µ2

2 

A=2µ1+ 2µ2 + 𝜆1 + 𝜆2 

System availability and reliability  

Availability analysis of the System 

We find that  

𝑨(t)=  
m

 ( A1− w)(A1
2+A1w+ w1

2+3v1
2)
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         + 
(−A1+ w)3+A(−A1+ w)2+B(−A1+ w)+m

(−A1+ w)(9w1
2+3v1

2)
e(−A1+ W)t 

        + {
2[PX+3HT][cos√3( v1)t]−2√3 [( H X)− (TP)]( sin √3( v1)t )

X2+3T2 } e(−A1− w1) t 

The steady – state availability can be obtained from the following relation  

A=𝐥𝐢𝐦
𝒕→∞

𝑨(𝐭) 

A=
m

 ( A1− w)(A1
2+A1w+ w1

2+3v1
2)

 

Reliability analysis of the System  

To obtain the reliability function for this model, we assume that at least one of failed 

states is absorbing state and the transition rate from this state equal to zero 

𝑹(t) =
m

 ( A1− w)(A1
2+A1w+ w1

2+3v1
2)

 

         + 
(−A1+ w)3+A(−A1+ w)2+B(−A1+ w)+m

(−A1+ w)(9w1
2+3v1

2)
e(−A1+ W)t 

        + {
2[PX+3HT][cos√3( v1)t]−2√3 [( H X)− (TP)]( sin √3( v1)t )

X2+3T2 } e(−A1− w1) t 

As we know, we have two failed states this lead to three cases of reliability function.  

1- Failed state [components A] is absorbing when. µ1=0   

2- Failed state [components B] is absorbing when. µ2=0   

3- Failed states [components A& B] are absorbing when. µ1= µ2 = 0   

The mean time to failure  

The mean time to system failure MTTF can be obtained from the following relation 

MTTF = ∫ 𝑹(𝐭)𝐝𝐭
∞

𝟎
=𝐥𝐢𝐦

𝒕→∞
∫ 𝑹(𝐭)𝐝𝐭

𝒕

𝟎
 

MTTF =𝐥𝐢𝐦
𝒕→∞

∫ 𝑹(𝐭)𝐝𝐭
𝒕

𝟎
 = 𝐥𝐢𝐦

𝒔→𝟎
𝑺𝑳 {∫ 𝑹(𝐭)𝐝𝐭

𝒕

𝟎
}= 𝐥𝐢𝐦

𝒔→𝟎
𝑺

𝑹∗(𝑺)

𝑺
 

MTTF=𝐥𝐢𝐦
𝒔→𝟎

𝑹∗(𝑺)         ,       𝑹∗(𝑺)= L (𝑹(t)) 

As mention above, reliability function has three cases so we find MTTF has following 

cases: 

When µ1=0 we find  

MTTF=  − (
(−𝐀𝟏+𝐰)2+𝐴(−𝐀𝟏+ 𝐰)+𝐵

(−𝐀𝟏+ 𝐰)(9𝒘𝟏
2+3𝒗𝟏

2)
) −

(𝟐[𝑷𝑿+𝟑𝑯𝑻])(−𝐀𝟏−  𝒘𝟏)+ 𝟔𝒗𝟏 [𝑯 𝑿−𝑻𝑷 ]

(𝑿𝟐+𝟑𝑻𝟐)[(−𝐀𝟏−  𝒘𝟏)𝟐+𝟑𝒗𝟏
𝟐]

 

Where 
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𝐚𝟑=𝛌𝟏
𝟐(µ2 +𝜆2) + 2𝜆1𝜆2µ2 + 𝛌𝟐

𝟐𝜆1 + µ2
2 𝜆1 

𝐚𝟐= µ2 (µ2 +3𝜆1 + 2𝜆2) + 𝛌𝟏
𝟐+ 3𝜆1𝜆2+ 𝛌𝟐

𝟐 

𝐚𝟏=2𝜆1 + 2𝜆2+ 2µ2  

m= 0             ,    B=µ2𝜆1 + µ2𝜆2+ 𝜆1𝜆2+ µ2
2             ,    A=2µ2 + 𝜆1 + 𝜆2 

When µ2=0 we find  

MTTF=  − (
(−𝐀𝟏+ 𝐖)2+𝐴(−𝐀𝟏+ 𝐖)+𝐵

(−𝐀𝟏+ 𝐰)(9𝒘𝟏
2+3𝒗𝟏

2)
) −

(𝟐[𝑷𝑿+𝟑𝑯𝑻])(−𝐀𝟏−  𝒘𝟏)+ 𝟔𝒗𝟏 [𝑯 𝑿−𝑻𝑷 ]

(𝑿𝟐+𝟑𝑻𝟐)[(−𝐀𝟏−  𝒘𝟏)𝟐+𝟑𝒗𝟏
𝟐]

 

Where 

𝐚𝟑=µ1
2𝜆2 + 𝛌𝟏

𝟐𝜆2+ 𝟐 𝜆1𝜆2µ1+ 𝛌𝟐
𝟐(µ1 +𝜆1)  

𝐚𝟐= µ1 (µ1+ 3𝜆2+ 2𝜆1) + 𝛌𝟏
𝟐+ 3𝜆1𝜆2+ 𝛌𝟐

𝟐 

𝐚𝟏=2𝜆1 + 2𝜆2+ 2µ1  

m=0                  ,       B=µ1𝜆1 + µ1𝜆2 + 𝜆1𝜆2+ µ1
2        ,      A=2 µ1+ 𝜆1 + 𝜆2 

 

When µ1= µ2 =0 we find  

MTTF=  − (
(−𝐀𝟏+ 𝐖)2+𝐴(−𝐀𝟏+ 𝐖)+𝐵

(−𝐀𝟏+ 𝐰)(9𝒘𝟏
2+3𝒗𝟏

2)
) −

(𝟐[𝑷𝑿+𝟑𝑯𝑻])(−𝐀𝟏−  𝒘𝟏)+ 𝟔𝒗𝟏 [𝑯 𝑿−𝑻𝑷 ]

(𝑿𝟐+𝟑𝑻𝟐)[(−𝐀𝟏−  𝒘𝟏)𝟐+𝟑𝒗𝟏
𝟐]

 

Where  

𝐚𝟑=𝛌𝟏
𝟐𝜆2  + 𝛌𝟐

𝟐 𝜆1         ,     𝐚𝟐= 𝛌𝟏
𝟐+ 3 𝜆1𝜆2 + 𝛌𝟐

𝟐      ,   𝐚𝟏=2 𝜆1 + 2𝜆2   

m= 0                               ,     B= 𝜆1 𝜆2                              ,       A= 𝜆1+𝜆2 

Second case   D < 0      [All roots are real and unequal] 

P0
∗(s)  = 

s3+As2+BS+m

s(s+ A1− w0)(S+ A1− w2 )(S+ A1− v2)
 

Where 

s1= 2√−q cos( 
θ

3
 ) - 

a1

3
  ,   s2= 2√−q cos( 

θ

3
+ 120) - 

a1

3
 

s3= 2√−q cos( 
θ

3
+ 240) - 

a1

3
                    ,      θ = cos−1 r

√−q3
 

w0=2√−q cos( 
θ

3
 )                      ,      w2=2√−q cos( 

θ

3
+ 120)  

v2=2√−q cos( 
θ

3
+ 240)            ,             A1=

a1

3
  

By taking inverse Laplace transform 
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P0(t) = 
m

 ( A1− w0)(A1
2−A1w2−A1v2+w2v2)

 

            + 
(−A1+ w0)3+A(−A1+ w0)2+B(−A1+ w0)+m

(−A1+ w0)(w0
2−w0w2−w0v2+w2v2)

 e(−A1+ w0)t 

           + 
(−A1+ w2)3+A(−A1+ w2)2+B(−A1+ w2)+m

(−A1+ w2)(w2
2−w0w2−w2v2+w0v2)

  e(−A1+ w2)t 

           + 
(−A1+ v2)3+A(−A1+ v2)2+B(−A1+ v2)+m

(−A1+ v2)(v2
2−w0v2−w2v2+w0w2)

  e(−A1+ v2)t 

System availability and reliability  

Availability analysis of the System 

We find that  

A(t) = 
m

 ( A1− w0)(A1
2−A1w2−A1v2+w2v2)

 

            + 
(−A1+ w0)3+A(−A1+ w0)2+B(−A1+ w0)+m

(−A1+ w0)(w0
2−w0w2−w0v2+w2v2)

 e(−A1+ w0)t 

           + 
(−A1+ w2)3+A(−A1+ w2)2+B(−A1+ w2)+m

(−A1+ w2)(w2
2−w0w2−w2v2+w0v2)

  e(−A1+ w2)t 

           + 
(−A1+ v2)3+A(−A1+ v2)2+B(−A1+ v2)+m

(−A1+ v2)(v2
2−w0v2−w2v2+w0w2)

  e(−A1+ v2)t 

The steady – state availability can be obtained from the following relation  

A=lim
t→∞

A(t) 

A=
m

 ( A1− w0)(A1
2−A1w2−A1v2+w2v2)

 

2.2.3. The mean time to failure  

When µ1=0 we find  

MTTF=      − (
(−𝐀𝟏+ 𝐰𝟎)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟎)+𝐁

(−𝐀𝟏+ 𝐰𝟎)(𝐰𝟎
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟎𝐯𝟐+𝐰𝟐𝐯𝟐)

  ) − (
(−𝐀𝟏+ 𝐰𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟐)+𝐁

(−𝐀𝟏+ 𝐰𝟐)(𝐰𝟐
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐯𝟐)

)   

 − (
(−𝐀𝟏+ 𝐯𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐯𝟐)+𝐁

(−𝐀𝟏+ 𝐯𝟐)(𝐯𝟐
𝟐−𝐰𝟎𝐯𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐰𝟐)

)     

Where 

𝐚𝟑=𝛌𝟏
𝟐(µ2 +𝜆2) + 2𝜆1𝜆2µ2 + 𝛌𝟐

𝟐𝜆1 + µ2
2 𝜆1 

𝐚𝟐= µ2 (µ2 +3𝜆1 + 2𝜆2) + 𝛌𝟏
𝟐+ 3𝜆1𝜆2+ 𝛌𝟐

𝟐 

𝐚𝟏=2𝜆1 + 2𝜆2+ 2µ2  

m= 0                      ,      A=2 µ2 + 𝜆1 + 𝜆2         ,     B=µ2𝜆1+ µ2𝜆2+ 𝜆1𝜆2+ µ2
2 

When µ2=0 we find  
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MTTF =      − (
(−𝐀𝟏+ 𝐰𝟎)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟎)+𝐁

(−𝐀𝟏+ 𝐰𝟎)(𝐰𝟎
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟎𝐯𝟐+𝐰𝟐𝐯𝟐)

  ) − (
(−𝐀𝟏+ 𝐰𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟐)+𝐁

(−𝐀𝟏+ 𝐰𝟐)(𝐰𝟐
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐯𝟐)

)   

 − (
(−𝐀𝟏+ 𝐯𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐯𝟐)+𝐁

(−𝐀𝟏+ 𝐯𝟐)(𝐯𝟐
𝟐−𝐰𝟎𝐯𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐰𝟐)

)     

Where 

𝐚𝟑=µ1
2𝜆2 + 𝛌𝟏

𝟐𝜆2+ 𝟐 𝜆1𝜆2µ1+ 𝛌𝟐
𝟐(µ1 +𝜆1)  

𝐚𝟐= µ1 (µ1+ 3𝜆2+ 2𝜆1) + 𝛌𝟏
𝟐+ 3𝜆1𝜆2+ 𝛌𝟐

𝟐 

𝐚𝟏=2𝜆1 + 2𝜆2+ 2µ1  

m=0                  ,       B=µ1𝜆1 + µ1𝜆2 + 𝜆1𝜆2+ µ1
2        ,      A=2 µ1+ 𝜆1 + 𝜆2 

When µ1= µ2 =0 we find  

MTTF=      − (
(−𝐀𝟏+ 𝐰𝟎)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟎)+𝐁

(−𝐀𝟏+ 𝐰𝟎)(𝐰𝟎
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟎𝐯𝟐+𝐰𝟐𝐯𝟐)

  ) − (
(−𝐀𝟏+ 𝐰𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐰𝟐)+𝐁

(−𝐀𝟏+ 𝐰𝟐)(𝐰𝟐
𝟐−𝐰𝟎𝐰𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐯𝟐)

)   

 − (
(−𝐀𝟏+ 𝐯𝟐)𝟐+𝐀(−𝐀𝟏+ 𝐯𝟐)+𝐁

(−𝐀𝟏+ 𝐯𝟐)(𝐯𝟐
𝟐−𝐰𝟎𝐯𝟐−𝐰𝟐𝐯𝟐+𝐰𝟎𝐰𝟐)

)     

Where  

𝐚𝟑=𝛌𝟏
𝟐𝜆2  + 𝛌𝟐

𝟐 𝜆1         ,     𝐚𝟐= 𝛌𝟏
𝟐+ 3 𝜆1𝜆2 + 𝛌𝟐

𝟐      ,   𝐚𝟏=2 𝜆1 + 2𝜆2   

m= 0                               ,     B= 𝜆1 𝜆2                              ,       A= 𝜆1+𝜆2 

The system behavior through graphs 

For more the concrete study of mean time to system failure and availability. we  

plot the steady -state availability and  MTTF for the models, against λ1  

keeping other parameters 

𝜆2 = 0.3,    µ2=0.7,  µ1=0.5    𝜆1= 0.1, 0.2, 0.3, 0.4, 0.5  
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Fig 1 

The Steady state Availability w.r.t. Failure Rate λ1 

 

 

Fig 2 

The mean time failure w.r.t. Failure Rate λ1 
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CONCLUSIONS  

We use computer software, to plot system availability and MTTF in fig. 1 and 2 respectively. 

It is noted that A decrease as λ increases and also MTTF decrease as λ increases.  
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