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ABSTRACT: This article is concerned with quasi- likelihood estimation of the unknown 

parameters of a new form for inverse Weibull distribution, we have performed a simulation 

study in order to compare the proposed quasi- likelihood estimators with the maximum 

likelihood estimators. Also, we used a real life data set to illustrate the result derived. 
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INTRODUCTION 
 

The Inverse Weibull  distribution (IW) is an important life time model in reliability and 

survival analysis which can be used to model a variety of failure characteristics such as 

infant mortality, useful life, wear out period, relays, ball bearings, electron tubes, 

capacitors, germanium transistors, photo-condue Live cells, motors, automotive radiators, 

regulators, generators, turbine blades, fatigue in textiles, corrosion resistance, leakage of 

dry batteries, return of products after shipment, marketing life, expectancy of drugs, the 

number of downtimes per shift and solids subjected to fatigue stresses. It can also be used 

to determine the coast effectiveness and maintenance periods of reliability centered 

maintenance activities. 

  

Recently, Ismail (2013). Suggested a new form for inverse Weibull distribution. EL- 

Shahat and Ismail (under publication). obtained quasi- likelihood estimators for the new 

form. The probability density function (pdf) and cumulative distribution function (cdf) of 

the new form of the inverse Weibull distribution (  are given by 

  
                                                                                                                                            

                                                           (2)    
 
 Where    m is the shape parameter and c,  are the scale parameters  

 If                 c = 1    , we have the form given by Sultan (2008), 

                     c = -1  , we have forms given by Aleem (2005) and Khan et al. (2008), 

                     c = m  , we have forms given by Pawalas & Szynal (2000), Mahmoud et al. 

                                  (2003 a) and De Gusmao et al. (2011),                                       

                     c = -m , we have forms given by Mahmoud et al. (2003 b) and AL-Hidairah  

                                  and AL- Adayian (2008).  
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In recent years, the IW distribution has gained widely attention in various fields. Sultan 

(2008) used the lower record values to drive and discuss Bayesian estimation method. 

Kundo and Howlader (2010) described the Bayesian inference and predication for type II 

censored data. Yao et al. (2011) discussed the Expected Bayes estimation and Emprical 

Bayes Estimation. 

From (1) and (2) , it is easy to write the reliability and hazard functions R(t) and 

H(t), respectively, as  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

                                                                        (3) 
 

     .                                                                (4)                      
 

The rth moments of the NIWD is denoted by  and it is given by     

                                                                           (5) 

 The mean and variance of IWD are  

        ,                                                                             (6) 

And the variance  

                                                                             (7) 

 

The quasi-likelihood function was introduced by Wedderburn (1974), for estimating the 

unknown parameters in generalized linear model when only the variance of each 

observations is specified to be or either equal, or proportional to some function of its 

expectation. He defined the quasi-likelihood, strictly the quasi-log –likelihood, Q for an 

observation X with  and variance V( ) by the equation: 

                                                                                                   (8) 

 

Or equivalent by  

                                                                    (9) 

Where,  = E(x), V( ) = var (x). 

The variance assumption is generalized to var(X) =  V( ),where the variance function 

V(.) is assumed to be known and the parameter  may be unknown. Wedderburn (1974) 

found that the quasi-likelihood function is the ln-likelihood function of the distribution if  x 

comes from a one-parameter exponential family and the quasi-likelihood function has 

properties similar to those of the ln-likelihood function. 

http://www.ea-journals.org/


International Journal of Mathematics and Statistics Studies  

Vol.2, No.2, pp. 64-75, June 2014 

 Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

66 
 

In this article, the Bayesian and quasi – Bayesian procedures will be used to estimate the 

unknown parameters of IWD. The quasi- Bayesian procedures can be applied without 

specifying the likelihood function of the sample observations, if the relationship between 

the mean and variance is known. To derive the posterior distribution of the unknown 

parameters based on quasi- likelihood, the likelihood function could be replaced with the 

natural exponential of the quasi- likelihood Ashour and Elsherpieny [5 ]. The quasi- 

Bayesian estimation reduces to the usual Bayesian procedures, if the quasi-likelihood and 

the log likelihood are identical. 

 

In section 2, the Bayesian estimates of unknown parameters of IW distribution are derived. 

Section 3 deals with the quasi- Bayesian estimations. A numerical illustration is presented 

in section 4.    

 

THE BAYESIAN ESTIMATION     

In this section, Bayesian method is used to obtain the estimators for the unknown 

parameters of the NIWD given in (1) using symmetric squared error loss function 

and asymmetric LINEX loss function. 
We design an experiment in which n units are placed on the test. All units are independent 

and have identical IW distribution. So the likelihood function is 

 .                                        (8) 

Where . 

Lemma 1 

Bayes estimates of  and m under symmetric square error loss function are 

    .      

                                                                                                                                     (9) 

  .           

                                                                                                          (10) 

  . 

                                                                                                                                     (11) 
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      It assumed that  and m each has independent gamma (a, b), and gamma (k, ) 

priors respectively follow Yao. et al. (2011), for 

 

 .                                                            (12) 

and 

.                                                           (13) 

It is assumed that c has a non-informative prior distribution for   

.                                                                                                                     (14) 

   
Therefore the joint prior for  and m is given by 

  .                                                       (15)  

 From Bayes theorem, by combining likelihood function (8) with joint prior function (15) 

the posterior density of  and m is given by 

    .                                   (16)  

where 

 

                                                                                                                                     (17)   

   .                                                                     

Now, marginal posterior of any parameter is obtained by integrating the joint 

posterior distribution with respect to other parameters. The posterior pdf of  can 

be written, after simplification as  

 .   

                                                                                                                                    (18) 

Similarly integrating the joint posterior with respect to  and c, the marginal 

posterior of m can be obtained as 

   . 

                                                                                                                                     (19)   

       . 
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                                                                                                                                     (20)                                                                                     

Bayes risk for the parameters  and m based on the square error loss function 

can be obtained as 

                      

                                                                                                                                    (21) 

  

                                                                                                                                    (22)  

  

                 (23)  

 

Lemma 2                                                                                                                                                                         

       Under LINEX loss function the Bayes estimators for parameters  and m of NIWD 

can be expressed as 

  ,           

   ,  

     .     

                                                                                                                                   (24) 

 ,   

     ,            

 

 .  

                                                                                                        (25)                                        

,  

 , 

 .         (26)                   
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Bayes risk for the parameters  and m based on LINEX error loss function can 

be obtained as: 

                                                                                                                                         

                                                                                                                                            (27)    

  

                                                                                                                                            (28)                                                                                                                                                   

 

  

                                                                                                                                            (29)         

3. The Quasi-Bayesian Estimation: 

 

       For a random sample of size n, the quasi- likelihood function of the IWD is 

given by 

                                                                     (30)     

Substituting for  from (6), the quasi-likelihood function (30) as a function 

of  becomes 

  .                                                   (31) 

 

In quasi-Bayesian we replace the likelihood function by the natural exponential of quasi-

likelihood function. From equation (31), the natural exponential of the quasi-likelihood 

function for a sample of size n from the IWD is given by 

          .                                                                       (32) 

 

Where   

 . 
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Lemma 3 

 

      Quasi-Bayes estimators for the three unknown parameters  and m under 

square error loss function and its variances may be obtained by solving 

numerically, the following equations.  

 

   ,  

        .                                           (33) 

 

 ,       

.                                           (34) 

 

  ,  

             .                                      (35)  

 

 

 ,  

                   .                    

                                                                                                                                       (36)   

               

,  

.   

                                                                                                            (37)   

 

 , 

                . 
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                                                                                                                                  (38) 

Numerical evaluations, using computer facilities are needed to evaluate equations (33), 

(34), (35), (36), (37) and (38).   

Using the same priors distributions for  which were defined in 

equations (12) ,(13) and (14). and the  joint prior distribution for   

defined in (15).                                       

From equation (15) and (32), the resulting posterior pdf of , c and m after 

simplification  is  

   ,               

                   .                                                           (39)                             

Where 

  ,                                          

    ,                               

      . 

  

NUMERICAL ILLUSTRATION: 

 numerical example:             

  In this section we consider a real life data set and illustrate the methods proposed in the 

previous sections. The data set is fromKundu&Howlader (2010), the data set represents the 

survival times (in days) of guinea pigs injected with different doses of tubercle bacilli. It is 

known that guinea pigs have high susceptibility of human tuberculosis and that is why they 

were used in this particular study. The regimen number is the common logarithm of the 

number of bacillary units per 0.5 ml. (log (4.0  )  6.6). Corresponding to regimen 

6.6, there were 72 observations listed below: 
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x 12 15 22 24 24 32 32 33 34 38 38 43 44 48 

x 52 53 54 54 55 56 57 58 58 59 60 60 60 60 

x 61 62 63 65 65 67 68 70 70 72 73 75 76 76 

x 81 83 84 85 87 91 95 96 98 99 109 110 121 127 

x 129 131 143 146 146 175 175 211 233 258 258 263 297 341 

 

 

Kundu&Howlader(2010) calculated The mean, standard deviation and the coefficient of 

skewness as 99.82,80.55 and 1.80, respectively. The measure of skewness indicates that 

the data are positively skewed. For computational ease, each data point has been divided 

by 1000. The empirical hazard function of the observed data examined by the scaled Total 

Time on Test (TTT) plot, see Aarset(1987). This provides a very good idea about the shape 

of the hazard function of a distribution. 

Table (1): the average values of posterior risk and MSE for Bayesian estimates and quasi-

Bayesian estimates. 

parameters SEL                                LINEX Quasi-

Bayesian 

Risk  MSE  = 5  = - 0.5 Risk  MSE 

Risk  MSE Risk  MSE Risk  MSE 

 

 

 

.023 

.019 

.03 

.039 

.942 

.4144 

.02087 

.0026 

.011 

.02247 

.0346 

.0202 

.028 

.018 

.0298 

.0416 

.946 

.4019 

.023 

.314 

.00992 

.038 

5.264 

.0131 

.027 

.0021 

.0098 

.0286 

.0040 

.0128 

 

Simulation study: 

in order to evaluate the performance of all the different methods of posterior estimator`s 

and posterior risks discussed in the preceding sections, a Monte Carlo simulation study was 

conducted and the results are presented in this section. We investigate the performance of 

the proposed estimators using quasi-Bayesian estimation method through a simulation 

study. The simulation study is carried out using (18), (19) and (20) for small, medium and 

large sample sizes, in particular we take sample sizes n= 10, 25 and 50. 

 

x 341 376 
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    For comparison purpose we compute Bayesian estimation method in order to illustrate 

the symmetric (SEL) and asymmetric (LINEX) loss function. Using (5.24), (5.25) and 

(5.26) for parameters values ( . we report average estimates 

obtained by all the methods along with mean squared error 

[MSE ] in parentheses 

Table (2): the average values of posterior risk and MSE for Bayesian estimates.  

parameters n SEL                           LINEX 

Risk  MSE                                                                            

Risk  MSE Risk  MSE Risk  MSE 

 

 

 

10 .334 

.213 

.291 

.889 

.248 

.397 

.513 

.189 

.311 

2.143 

.245 

.4212 

.259 

.431 

.287 

.429 

.7215 

.3868 

.418 

1.491 

.289 

1.1085 

4.652 

.392 

 

 

 

25 .308 

.184 

.284 

.657 

.1936 

.3788 

.421 

.186 

.2871 

1.1165 

.1978 

.3863 

 

.246 

.387 

.2816 

.4044 

.6088 

.3734 

.2617 

1.352 

.2857 

.5127 

4.474 

.3824 

 

 

 

50 .293 

.165 

.239 

.601 

.1694 

.3254 

.225 

.173 

.2813 

.302 

.1807 

.3719 

.218 

.315 

.243 

.28 

.4616 

.3306 

.26 

1.278 

.2436 

.432 

3.799 

.3318 

 

Table (3): the average values of posterior risk and MSE for Quasi-Bayesian estimates. 

Parameters  n            Risk            MSE 

 

 

 

10 .313 

.184 

.218 

.389 

.2256 

.2835 

 

 

 

25 .1853 

.1759 

.176 

.233 

.1838 

.2038 

 

 

 

50 .154 

.1538 

.149 

.186 

.1543 

.1492 
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CONCLUDING REMARKS 

From the results in table 1 it indicates that the performance of Quasi-Bayesian estimator 

for  is close to the performance of Bayesian estimators. And the performance of quasi-

Bayesian estimator for c is close to the Bayesian (LINEX ) estimator, and it 

performs better than the performance of other Bayesian estimators. Here also it is observed 

that the performance for m estimator is very close to the performance of Bayesian (LINEX 

) and close to the performance of Bayesian (LINEX )   estimator and 

perform better than other Bayesian estimators. 

 

From table  (2) and(3) we conclude that: 

 The quasi-Bayesian estimator of  perform better than the Bayesian (SEL) and 

Bayesian (LINEX) estimators at all sample sizes , as sample size increases MSE of 

the estimated parameter decrease . 

  And the quasi- Bayesian estimator of c perform better than the Bayesian (SEL) and 

Bayesian (LINEX) estimators at all sample sizes. 

  From the results in the above tables it is observed that the performance of  

Bayesian (SEL) estimator for  is very close to the performance of Bayesian 

(LINEX) estimators at all sample size , and the quasi-Bayesian estimator for m 

perform better than the Bayesian (SEL) and Bayesian (LINEX) estimator at all 

sample sizes. 

 It is also noticed that the  value affect the Bayesian (LINEX) estimators results. 

The Bayesian (LINEX) estimator of  at  is perform better than Bayesian 

(LINEX) estimator at different values of  at all sample sizes and it is also perform 

better than the Bayesian (SEL) at sample size 10 and 25 but its performance is very 

close to Bayesian (SEL) at sample size 50. 

 The performance of Bayesian  (LINEX) estimator of  at  is better than 

Bayesian (LINEX) estimator at different values of  at all sample sizes and its 

performance is very close to the performance of Bayesian (SEL) estimator at all 

sample sizes.    

 As the sample size increase MSE of the estimated parameters (  

decreases.  
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  It is observed that the quasi-Bayesian estimate is the closest method to the real 

parameters values. 
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