
International Journal of Energy and Environmental Research 

Vol.4, No.1, pp.26-41 February 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

26 

ISSN 2055-0197(Print), ISSN 2055-0200(Online) 

PREDICTION OF ENERGY GAINS FROM JORDANIAN WIND STATIONS USING 

ARTIFICIAL NEURAL NETWORK 

Ehab Bani-Hani1 and Luqman K. Abidoye2 

1Mechanical Engineering, Australian College of Kuwait, P.O.Box 1411, Safat-13015, 

Kuwait. 
2Faculty of Engineering, Osun State University, PMB 4494, Osogbo, Osun State, Nigeria. 

 

ABSTRACT: System and environmental parameters affecting the output of the wind farm 

system at different stations in Jordan have been computationally investigated, using artificial 

neural network (ANN). For the several variables identified, statistical analysis was employed 

to indicate their relative significance to the targeted output, with the aid of the Pearson’s 

correlation coefficients. ANN shows proficiency in the prediction of the original experimental 

data for all the stations and turbines. In the simulation, the energy gain increases with the 

increase in the system and environmental parameters. However, there appears to be a 

phenomenon of threshold value in the output parameter, which limits the impacts of change in 

the input parameters on the eventual response of the output. It can be deduced that there is a 

minimum energy gain value below which increase in any of the system/environmental 

parameters will not have positive impact on the energy output. Findings show that the turbine 

characteristics, like rotor diameter and hub height, have more significant impact on the energy 

gain than the environmental factor like wind speed.  The uniqueness of this work is that it 

predicts the important output of the wind farm system based on the logical arrangement of 

detailed parameters that are found in all operational units of the system in order to elicit 

desired effects. 

KEYWORDS: Artificial Neural Network, Wind Farm, Wind Turbine, Energy Gains, Rotor 

Diameter.  

 

INTRODUCTION  

The threats to the environments caused by the global warming have led to several initiatives 

among stakeholders to proffer alternatives to the use of fossil fuels, which are believed to be 

the drivers of climate change.  Renewable energy from sources like wind, sun and others have 

been proposed (Lurque et al. 2008; McKendry 2002).  

Wind energy is being deployed worldwide, with applications in developed and developing 

countries (Ammari et al. 2014). American Wind Energy Association (AWEA) estimates that 

cumulative global wind energy generating capacity topped 147 GW in 2008, and it is said to 

have been duplicated around five times since 2002, where it was just 31.128 GW (WEC, 2014). 

Thus, it can be inferred that the ground is fertile for the future of renewable energy, worldwide.   

Technical assessments of the performances of wind farms have been reported in literature. 

Ammari et al. (2014) evaluate the electrical energy derivable from wind at different wind farms 

in Jordan. Several environmental and systemic factors were considered in their analyses.  

Environmental factors include mean monthly and annual wind speeds at different geographical 

locations while the systemic factors include the characteristics of the different wind turbines 

employed at the different locations. The findings indicate that sites with good wind energy 
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show better promise of power output per square meter. Other studies like those of Acker et al. 

(2007) as well as Rehman et al. (2007) expound the importance of the environmental factor 

like wind, on the power output. The work of Ammari et al. (2014) was carried out in the context 

of energy diversification drive of Jordan with inclusion of the eastern part of the country.  In 

the same context, other authors like Bataineh and Dalalah (2013) presents technical assessment 

of wind power potential at seven different locations in Jordan. Rayleigh distribution was used 

to model the monthly average wind data at the different locations.  Using wind turbines of 

different capacities, the work estimates energy output potential for the selected sites together 

with the analysis of energy cost.  However, their works are mainly field investigations and 

there are needs for computational descriptions of these data to explore other salient features of 

their findings.  

Quantitative description of the patterns of the energy gains, Ev, together with the influential 

factors in the wind farm system, requires a modelling platform that can interpret and assimilate 

multifarious data of diverse origins with ability to understand behavioural trends in the output 

quantities, based on the different input variables, and, therefore, predict such trends in the 

regions behind and beyond the experimental ranges. These mathematical qualities have been 

demonstrated in Artificial Neural Network (ANN) by several authors (see, e.g., Abidoye and 

Das, 2015; Abidoye and Mahdi, 2014; Hanspal et al. 2013; Zhang et al. 1998).  

The need for modelling platform is also justified by considering the cost and time involved in 

the experimental investigations of the influences of numerous variables that affect the energy 

gains from wind turbine. Elaborate experimental investigations might also be laden with 

inconsistencies as a result of unavoidable experimental errors.  Furthermore, many 

computational techniques are currently available, but the tasks of cost and complexity are 

almost unavoidable, especially to new users. Such computational techniques often require time-

consuming and cost-intensive modelling and simulations, which generally involve complex 

procedures to set up and run (Hanspal et al. 2013; Spalding 1981; Khudaida and Das, 2014). 

Thus, there is a need for easy-to-use tools, which are cheap and can easily assist investigators 

in determining intricate relationships among several interrelated variables. To address these 

challenges, ANN is chosen in this work to investigate the complex relationships existing among 

several environmental and system variables that affect the Ev obtained from wind turbines.  

ANN is a well-known modeling tool. It possesses the ability to learn and generalize functions 

from rounds of training as well as extract essential information from data (Abidoye and Das 

2015; Khashei and Bijari 2014; Wang and Fu 2008). ANN modelling has the building blocks 

or elements called ‘neurons’. The neurons are grouped into input, hidden and output layers 

with respective biases, weights and transfer functions (Abidoye and Das 2015; Yurdakul and 

Akdas 2013; Mueller and Hemond 2013). The network manipulates the values of the biases 

and weights in a sequence of training processes and uses the transfer functions to establish the 

relationships between the inputs and the outputs. ANN modeling techniques have been widely 

applied in many fields to solve science and engineering problems as well as in medical fields 

to illustrate medical diagnosis (Amato et al. 2013). It has also been applied to model renewable 

energy systems, economics, psychology and many more (Abidoye and Das 2015; Kalogirou 

1999). 

There are complex relationships between energy generation from wind farm system and the 

influential environmental factors as well as the turbine characteristics. It is widely known that 

the dynamics of wind turbine behaviour are complex and critical to the optimization of energy 

gain in wind farm system (Mckay et al. 2014). It is also challenging to identify factors, causing 
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desired or undesired effects in the system. The quantification of the effect that these factors 

have is valuable for making improvements to both power performance and turbine health 

(Mckay et al. 2014).  For some characteristics of the turbine, Capps et al. (2014) find complex 

and substantial geographical variations in the sensitivity of energy generation. The influences 

of geographical locations are clearer from the work of Santos et al. (2015) on energy generation 

from wind across many geographical locations in Iberia. In term of wind potential, high winter 

potentials are found in high elevation coastal areas. Capps et al. (2014) find high sensitivity of 

energy generation to rotor diameter, hub height and rated power of the turbines. 

Earlier, Mckay et al. (2014) employ neural network to model select wind turbine supervisory 

control and data acquisition system parameters for an array of turbines from a commercial wind 

farm that exhibit signs of wake interaction. They also performed Fourier amplitude sensitivity 

test. They found that parameters like wind speed and rotor rotation frequency are highly 

influential in power output. 

In this work, array of parameters, believed to be instrumental to the optimal performance of 

the wind farm system, are assembled. The task of analysing these parameters was assigned to 

ANN, which possesses the capacity to capture non-linear integrating effect in complex 

relationships between the dependent and the independent variables.  This assist in revealing the 

relative effects of different factors on the energy generation from wind farm system.  

It will be shown, later in this work, that the modeling parameters involved in the quantitative 

descriptions of energy gain (Ev) from wind turbine are interrelated in a complex manner. Since 

ANN can approximate the relevant functions to the desired accuracy (Zhang et al. 1998; 

Hanspal et al. 2013), it is therefore believed that logical arrangement and tabulation of the 

variables will enhance the training, validation, testing as well as prediction of the 

interrelationships existing among such variables. Thus, according to Hanspal et al. (2013), a 

well-trained and validated ANN structure can give reliable prediction.  

Therefore, this work explores the capabilities of ANN to investigate factors that can promote 

the energy gains from wind farm system. 

 

METHODOLOGY  

After identifying various environmental and system parameters that influence the output of the 

wind farm system, this work employs statistical modeling tools to describe quantitatively, the 

effects of these parameters on the amount of energy gains (Ev) from wind turbines of various 

capacities.  Precisely, Multivariate Regression (MVR) in XLSTAT (Microsoft EXCEL) was 

used for this purpose. Following this, Artificial Neural Network (ANN) in MATLAB 

(Mathworks Inc., 2011) was employed as the modeling tool. The parameters are logically 

arranged to elicit desired effects on the targeted outputs.  Details of these activities are 

explained in the following subsections.  

Data Sources and Pre-Processing 

Data were obtained from the experimental investigations conducted at different stations in 

Jordan by Ammari et al. (2014). The stations are: Ras Moneef, Azraq south, Safawi, Queen 

Alia Airport and Aqaba Airport. The aforementioned sites are labelled as A, B, C, D and E in 
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the order listed. Geographical coordinates of the stations can be found in Ammari et al. (2014). 

Their work describes the latitude, longitude and elevation associated with each station. 

The variables measured to characterize the above stations include the mean monthly and annual 

wind speeds at the stations. The investigations were carried out at the height of 10m, at each 

station.  The data were collected for the 12-month period.  Data for mean monthly and annual 

wind speeds at the stations can be found in the work of Ammari et al. (2014). 

Wind data for any particular location often come in ranges. As a result, it is generally desirable 

to present wind data in term of frequency distribution.  Ammari et al. (2014) present a 

probability distribution of the wind data for the above sites, using Weibull probability 

distribution function with parameters- k (shape parameter) and c (scale parameter). The data 

are presented in line with seasonal variations- winter, spring, summer and autumn. 

Characteristics of different turbines together with their capacities in kilowatt (kW) are 

important parameters that can offer insight into the energy gain from the wind farm system. 

This work shows particular interest in these characteristics for the purpose of modelling. The 

different turbines utilised by Ammari et al. (2014) are named: Fuhrlander (100kW), EWT (500 

kW), EWT (900 kW), Fuhrlander (1500 kW), Vestas (3000 kW). Characteristics of these 

turbines are:  Hub height, Swept area, Rotor diameter, Cut-in wind speed, Cut-off wind speed, 

Rated wind speed, Rated power, and Number of blades. Numeric values for these 

characteristics can be found in Ammari et al. (2014).  

 Furthermore, the important output for the purpose of this modelling is the seasonal energy gain 

(Ev) from the five different wind turbines. Experimental values of Ev at different locations are 

presented in Ammari et al. (2014). 

Non-Linear Regression  

The multivariate regression (MVR) analysis is one of the most widely used of all statistical 

methods. Regression techniques such as principal component regression (PCR) and partial 

least-squares regression (PLSR), are based on the inverse method (Gosasang et al. 2011; Fox 

et al. 2011) and they have been widely applied in many fields of study, e.g., anatomy, two-

phase flow, energy, etc., (Schumann et al. 2013; Abidoye and Mahdi 2014). In this work, 

nonlinear regression analysis was performed, using XLSTAT (Microsoft Excel), in order to 

analyse the principal components of the data and obtain correlation.  To enhance the analysis, 

all categories of data are arranged in a way to relate explicitly the independent variables to the 

dependent one.  From the data of Ammari et al. (2014), the independent variables and the 

symbols used are:  Station parameters: height above sea level (H), Latitude (L), Longitude (N);  

mean monthly wind speed: January (J), February (F), March (M), April (A), May (May), June 

(Ju), July (Jul), August  (Au), September (Sep), October (Oct), November (Nov), December 

(Dec), Annual mean wind speed (Am); Seasonal variations of Weibull parameters ( k and c) in 

winter:   Kw, Cw; in spring;  Ks,  Cs; in summer;  Km, Cm; in autumn; Ka, Ca. Others are the 

main characteristic of five different commercial turbines: Hub height (Hh), swept area (Sa), 

rotor diameter (Rd), cut-in wind speed (VC), cut-off wind speed (VCO), rated wind speed (Vr), 

rated power (Rp), number of blades (Nb). The dependent or target variable is the energy gain 

(Ev). 

The general linear model of MVR is shown in equation (1), 

𝑘 = 𝑏𝑋 + 𝑒            (1) 

http://www.eajournals.org/


International Journal of Energy and Environmental Research 

Vol.4, No.1, pp.26-41 February 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

30 

ISSN 2055-0197(Print), ISSN 2055-0200(Online) 

where k is the predicted output (e.g., energy gain), 𝑋 is an 𝑛 × 𝑚 matrix of multiple variables 

such that each row corresponds to the spectra recorded at m wavelengths. The intercept term 

is accounted for by a column of ones, with 𝑋 now having 𝑛 × (𝑚 + 1)  dimensions. The 

regression coefficients are contained in the vector 𝑏(𝑏 = [𝑏𝑜, 𝑏1, … … … . , 𝑏𝑛]), with each 

corresponding to specific variable in the 𝑋 matrix.  𝑒 is the independent error. Similar model 

is used for PCR and PLSR as shown in equation (2), 

𝑘 = 𝑡𝑏 + 𝑒            (2) 

where 𝑡 is the principal score vector, calculated as,  

𝑡 = �̃�𝑃            (3) 

where 𝑃 is the principal component vector. In PLSR, determining the regression coefficients 

involves calculations, using equation (4), 

𝑏 = 𝑊(𝑃𝑇𝑊)−1𝑔𝑇           (4) 

where 𝑇 is the latent matrix and 𝑃 is calculated using equation (5), 

𝑃𝑇 = 𝑊𝑇�̃�𝑇𝑋            (5) 

Where �̃� is the responses and 𝑊 is the corresponding eigen vector.  

 The XLSTAT analysis shows that the dependent variable has various levels of correlations 

with different independent variables. Based on these correlation values, some independent 

variables are tested to know the sensitivity of the dependent variable to the change in their 

values.  

ANN Modelling  

Different ANN configurations and modelling have been investigated by many authors.  Often, 

these configurations or structures are chosen and trained by users till the models outputs are 

satisfactory. ANN modelling techniques popularly follow the configuration procedure 

proposed by Jain and Indurthy (2003).   For example, Hanspal et al. (2013) simulated two-

phase flow systems with ANN. In their work, single-hidden layer and double-hidden layer 

ANN configurations were tested with different number of neurons. Their results show that both 

configurations perform efficiently, at different regions of saturation. Also, Abidoye and Das 

(2015) utilised different ANN configurations with various number of neurons, to predict the 

influence of dynamic effects on the two-phase flow properties. They found that double-hidden 

layers perform better than the single-hidden layer. However, these authors noticed that the 

differences in the predicted values by the different configurations were small. Thus, it was said 

that a well-trained and validated single-layer  ANN structure should suffice (Hanspal et al. 

2013).  

As a result, in this work, ANN network was created using two-hidden layers with two neurons 

in each of the layers. This configuration was chosen for simplicity and also to readily obtain 

satisfactory performance. In line with the conclusion of Hanspal et al. (2013), the ANN 

structure was trained in several rounds till satisfactory output was obtained with at least R2 of 

0.9. To implement the simulation procedure in MATLAB, program files were prepared with 

lines of code to create, train, validate and test the network as well as to generate the goodness 

of fit parameters of the data points using correlation coefficients (R2) and mean square error 
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(MSE). The program divides the dataset randomly into 60, 20 and 20% corresponding to the 

data for training, validation and testing, respectively.  

Curve-fitting function called Levenberg-Marquardt function was used in training the network. 

The function optimizes the parameter of the model curve in the nonlinear least squares 

problems. It uses back-propagation algorithm that consists of iterative adjustment of the 

weights and biases, which were used by the transfer function to relate the input layer to the 

hidden layer. The training process is terminated when the error between the input and the output 

reduces below the previously defined minimum. Feed forward type of network was used as it 

is the commonest network in engineering application. ‘Tansig’ transfer function was at the two 

hidden layers. The transfer function calculates a layer’s output from its net input. Mean square 

error (MSE) was used  as the network default performance criterion relating the calculated 

output from the model to the actual target.  

In the training process, the epochs and goals serve as the stopping criteria of the number of 

iterations and the error tolerance, respectively. Epoch is the maximum number of times all of 

the training sets are presented to the network while goal refers to the maximum error tolerance 

between the predicted and the actual output. Thus, the training stops if the error goal is 

satisfactory or the maximum number of epochs is attained. In this work, an epoch of 200 and 

a goal of zero were used. The network trainings thus stopped when the number of iteration 

exceeded the stated epochs or if the error tolerance is achieved. At the end of the training, 

network object is generated with indication of the best validation performance. The result from 

the training giving the best performance was then selected. Criteria for the analyses of the 

performances of the network include the coefficient of correlation (R2) and the mean square 

error (MSE) while the network with the best performance criteria is saved for use in the 

prediction of the parameter sensitivity. Mean squared error measures the average of the squares 

of the errors between the observed value and the predicted or estimated value. The 

mathematical expressions for the correlation coefficients and mean square error (MSE) are 

shown in equations (6) and (7), respectively, 

𝑅2 = 1 −
Σ(𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

Σ (𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−
Σ𝑌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑁
)

2        (6) 

  


N

1i

2

predictedmeasured YY
N

1
MSE                 (7)  N 

= Total number of data points predicted, Ymeasured= observed or target values of energy gain,  

Ev, and Ypredicted  = predicted or calculated value of energy gain.  

The sensitivity analysis was performed with the best performing network as described above.   

To do this, the Pearson’s correlation coefficient derived from the XLSTAT analysis serves as 

a good guide. The independent parameters that are well correlated to the output variable are 

increased by 10 and/or 20%. The network with satisfactory performance saved from ANN was 

then used to predict the impact of the change in each of these parameters on the output. 
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RESULTS AND DISCUSSION 

After the preliminary arrangements and sorting of the data, the statistical analysis of the results 

and the ANN modelling of the targeted output (Ev) were performed. The results from these 

efforts are presented in this section.  

Figure 1 shows the regression analysis of the ANN prediction from the list of independent 

variables discussed earlier. It can be seen that the round of training adopted in this work yields 

a very good model network. This is evident in the cluster of the data around the perfect fit line 

in Figure 1. This is further testified by the high R2 value of ~1. Thus, the training procedure in 

this work is very good and reliable. Furthermore, Figure 2 shows the training, validation and 

testing processes in the ANN modelling. It can be seen from the figure that the network learns 

gradually. This results in the gradual decrease in the mean square error (MSE) in the figure. 

This behaviour is similar for the training, validation and testing processes. In fact, the very low 

MSE value (8.5 x 10-5) is a further attestation of the network reliable performance.     

Figure 3 shows that the ANN predictions match the experimental data well. The experimental 

data consist of data from all stations for all turbines.  The figure proves that ANN can perform 

efficiently  in the prediction of experimental results, if proper training of the network is 

performed (Hanspal et al. 2013).  

 

Figure 1: Regression analysis of the ANN prediction of energy gain (target) 
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Figure 2: Performances of the ANN prediction of the energy gain during training, 

validation and testing processes. 
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Figure 3: ANN predcition of experimental data for energy gains from wind turbines at 

all stations 

Following succesful prediction of experimental data, as shown in Figure 3, it is desired to know 

the sensitivity of the energy gain to the environmental and system parameters, related to the 

investigations. To do this, the Pearson correlation coefficients  were determined. These 

coefficients  for different parameters are shown in Figure 4  for the energy gain. It can  be seen 

in Figure 4 that many parameters are positively and highly correlated with energy gain. Among 

the highly correlated parameters are the rotor diameter (Rd), Hub height (Hh), Annual mean 

wind speed (Am), etc. In this work, sensitivity of the energy gain to the few of these selected 

parameters are examined with the aid of the ANN. It will be recalled that a well-trained network 

with high R2 and very low mean square error (MSE) from ANN was saved in MATLAB for 

reuse in the sensitivity analysis. The sensistivity of the energy gain was examined for 10 and 

20% increases in some of these parameters for different turbines. 

In Figure 5, ANN shows proficiency in predicting the sensitivity of the energy gain to the 10% 

increase in the rotor diameter (Rd) for 100 kW turbine at all stations. It can be seen that the 

energy gain rises above the original value for 10% increase in the Rd. The only exception 

occurs at the Queen Alia Airport (C), where the energy gain remains unchanged. Reasons for 

this might include the low value of the original  energy gain at the station. There might be a 

threshold value of energy gain below which a change in the system parameters will exhibit no 

change or sensitivity in energy output.Reason for this can also inferred from low wind speed 

of the station.  Low wind speed is often instrumental to poor energy gain (Bataineh and Dalalah 

2013; Ammari et al. 2014).  

 

 

 

Figure 4: Pearson correlation coefficients for the variables related  to energy gains 
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Figure 5: ANN predictions of energy gains based on 10% increase in rotor diameter for 

100 kW turbine 

This prediction throws more light on the work of Ammari et al. (2014). In their work, the 

performances of the wind farms at the different geographical locations, are mainly attributed 

to the environmental factors like wind speeds. Going by the results displayed in Figure 5, it can 

be said that the system characteristics like turbine’s rotor diameter plays a significant role in 

the energy gains from wind farm. The results imply that the turbine characteristics and 

environmental factor are jointly influential. For example, the low energy gain at the Queen Alia 

Airport (C) is partly attributed to the low wind energy potential of this site (Ammari et al. 

2014). In fact, the site has the least value of annual mean wind speed of all the sites considered. 

Similar behaviour is shown in Figure 6, where the increase in rotor diameter by 10% (for 900 

kW turbine) increases the energy gains at all stations. However, unlike the100 kW turbine 

shown in Figure 5, at Queen Alia Airport, there is also an increase in energy gain as shown in 

Figure 6, when 900 kW turbine was used. This seems to point out another dimension of the 

phenomenon of threshold value, discussed earlier. Critical look into the two scenarios (Figures 

5 and 6) show that they are different operations with different turbine capacities. Figure 6 

involves higher turbine capacity-900kW, while Figure 5 is for 100 kW turbine.  Further 

analysis shows that the earlier hypothesis of threshold energy gain still subsists.  For example, 

in the experimental investigations, the energy gain at the Queen Alia Airport with 100 kW 

turbine is around 6x104 kW.hr/year, while the energy gain with 900 kW (shown in Figure 6) is 

5.8 x105 kW.hr/year, for the same airport. At least, difference of one order of magnitude exists 

between these values. The above results imply that with higher turbine capacity, a low-potential 

site will have higher energy gain and that the site can escape threshold-value effect if the 

original energy gain exceeds the threshold. As a result, increase in system characteristics like 

turbine’s rotor diameter can increase the energy gain value for such site.  
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Figure 6: ANN predictions of energy gains based on 10% increase in rotor diameter for 900 

kW turbine. 

Further prediction of the energy gain is presented in Figure 7 for 3000 kW turbine. Here, the 

results show direct proportionality of the energy gain to the change in the rotor diameter of the 

turbine. At 10 and 20% increases in rotor diameter, the energy gain is increased at all stations. 

It should be noted that at Queen Alia Airport, the energy gain from the experimental results 

using 3000 kW turbine has clearly exceeded the threshold value that is suggested in the earlier 

discussion. 

Looking further into Figure 4, hub height (Hh) is another parameter that has high correlation 

value with the energy gain. Figure 8 presents the impacts of the hub height on the energy gain 

for 3000 kW turbine at all stations. At 10 and 20% increases in hub height, there are 

considerable increases in the energy gain at all stations.   

The above discussions show the importance of system characteristics on the energy gains from 

wind farm system. In this work, the system characteristics are mainly attributed to the turbines. 

They have been shown to determine significant performance of a wind farm system. It is 

reported that the energy output depends on the season’s weather, turbine characteristics, 

location and wind speed (Santos et al. 2015; Capps et al. (2014); Chang et al. 2003; Ammari et 

al. 2014). This work is elucidating the significant role of the turbine characteristics in the 

performance of wind farm system, using a cheap and simple computational technique.  Interests 

in these turbine characteristics have been expressed earlier by Capps et al. (2014). They pointed 

out the significances of turbine characteristics like rotor diameter, hub height and rated power. 

For each characteristic, they find complex and substantial geographical variations in the 

sensitivity of energy generation. This further justifies the use of ANN in this work to capture 

these complex relationships among energy gain, environmental factors and turbine 
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characteristics. Specifically, they find that an increase in rotor diameter typically results in 

wind energy boost.  Thus, there is a net increase in energy gain for increase in rotor diameter.   

Owing to its cubic relation with power, the wind speed is often considered to be the most 

important parameter needed to appraise energy output potential of a wind farm. Ammari et al. 

(2014) shows the range of wind speed data collected on monthly basis for a year period at all 

stations. It is clear from Figure 4 that for all the wind speed parameters, the annual mean wind 

speed (Am) has the highest correlation with the energy gain. Therefore, the impact of annual 

mean wind speed (Am) on the energy gain is investigated. Figure 9 shows the changes in energy 

gain for the 10 and 20% increases in annual mean wind speed. The figure shows that there is 

increase in energy gain with the increase in annual mean wind speed. But the change in energy 

gain is less significant in comparison to the earlier figures. There are only slight changes in 

energy gain with increases in annual mean speed, as shown in Figure 9. It can be inferred that 

the characteristics of the turbine affect the energy output more than the environmental factors 

like wind speed. 

The discussions above reveal the relationships between energy generation from wind farm 

system and the influential environmental factors as well as the turbine characteristics. It is 

widely known that the dynamics of wind turbine behaviour are complex and critical to the 

optimization of energy gain in wind farm system (Mckay et al. 2014). It is also challenging to 

identify factors, causing desired or undesired effects in the system. As a result, this work 

assembles array of parameters, believed to be instrumental to the optimal performance of the 

wind farm system. The task of analysing these parameters was assigned to ANN, which 

possesses the capacity to capture non-linear integrating effect in complex relationships between 

the dependent and the independent variables.  The quantification of the effect that these factors 

have is valuable for making improvements to both power performance and turbine health 

(Mckay et al. 2014). The results of the modeling show the relative effects of different factors 

on the energy generation from wind farm system.  
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Figure 7: ANN predictions of energy gains based on 10 and 20% increases in rotor 

diameter for 3000 kW turbine 

 

 

Figure 8: ANN predictions of energy gains based on 10 and 20% increases in hub height 

for 3000 kW turbine 
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Figure 9: ANN predictions of energy gains based on 10 and 20% increases in annual 

mean wind speed for 3000 kW turbine 

 

CONCLUSIONS  

System and environmental parameters affecting the output parameter of the wind farm system 

at different stations in Jordan have been computationally investigated, using artificial neural 

network (ANN). Among the several variables identified, statistical analysis showed the 

relevance of selected parameters to the different outputs, with the aid of the Pearson’s 

correlation coefficients. 

ANN shows proficiency in the prediction of the original experimental data for all the stations 

and turbines. The energy gain increases with the increase in the system and environmental 

parameters, with more significant increase recorded in the turbine parameters like rotor 

diameter and hub height. Findings show that the turbine characteristics have more significant 

impact on the energy gain than the environmental factor like wind speed.  

However, there appears to be phenomena of threshold values in the output parameter, which 

determine the impact of change in the input parameters on the eventual responses of the output. 

It can be deduced that there is a minimum energy gain value below which increase in the 

system/environmental parameters will not have positive impact on the energy output. 
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