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ABSTRACT: The often-disturbing adverse effects of inflation in developing economies such 

as Nigeria necessitates developing dynamic inflation forecasting models for appraising 

shocks on macroeconomic variables. This work utilizes the Box-Jenkins methodology to 

develop Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict 

peak time inflation in Nigeria's inflation time series from January 2001 to December 2015 

obtained from National Bureau of Statistics, Abuja. A test of parameter estimates was 

performed on the suggested models and, using the AIC and BIC criteria, 

SARIMA(1,1,2)(2,0,1)12 model was identified as the most fitted model. The diagnostic test of 

the residuals using ACF and PACF of residual plots showed that they follow white noise 

process. The result of the monthly forecast indicated that Nigeria will experience high 

(double digit) inflation rates which will be at its peak in the months of August and September 

and its lowest rate occurs in January of the year. The information contained here can be 

useful to ensure monetary and fiscal policies that will stabilize the economy.   

KEYWORDS: Peak Time Inflation, Sarima Model, Consumer Prices, Purchasing Power of 
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INTRODUCTION 

Inflation as defined by [1] is the persistent increase in the level of consumer prices or a 

persistent decline in the purchasing power of money. Inflation can also be expressed as a 

situation where the demand for goods and services exceeds their supply in the economy [2]. 

In real term, inflation means that money cannot buy as much as it could have bought 

previously. A chief measure of inflation is the inflation rate, the annualized percentage 

change in a general price index (normally the consumer price index) over time. 

High inflation is known to have many adverse effects; it imposes welfare costs on the society; 

impedes efficient resource allocation by obscuring the signaling role of relative price 

changes; discourages savings and investment by creating uncertainty about future prices. It 

also inhibits financial development, hits the poor excessively, reduces a country’s 

international competitiveness, and perhaps more importantly, reduces long-term economic 

growth [3]. Overall, businesses and households are thought to perform poorly in periods of 

high and unpredictable inflation [4]. Even though some evidence suggests that moderate 

inflation helps in economic growth [5], the overall weight of evidence so far clearly indicates 

that inflation is inimical to growth. Inflation-targeting countries such as Nigeria need 

dynamic inflation forecasting models that are capable of stimulating the impact of shocks to 

monetary policy on macroeconomic variables.  

Empirical researches have been carried out in the area of forecasting inflation using seasonal 

autoregressive integrated moving average (SARIMA) model propounded by [6]. [7] 
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examined the most appropriate short-term forecasting method for Ghana’s inflation. They 

utilized SARIMA and Holt-Winters approaches to obtain short-term out of sample forecast. 

From the results, they concluded that an out of sample forecast from an estimated  SARIMA 

(2,1,2)(0,0,1)12  model far supersedes any of the Holt-Winters’ approach with respect to 

forecast accuracy. Several other works that echo the superiority of SARIMA modeling 

framework over other Box-Jenkins time series modeling paradigms, particularly short-term 

periods abound(see, for instance, [8];[9]; [10];[11];  [12]; and [13]. 

This work seeks to further lend credence to the suitability of engaging SARIMA model  to 

predict  the monthly inflation rates in Nigeria using monthly inflation rates data from January 

2001 to December 2015 obtained from National Bureau of Statistics Abuja so as to unravel 

the peak in the inflation series which was not considered by other works. 

 

METHODS 

A process{Xt } is said to be ARIMA (p,d,q) if ∆𝑑𝑋𝑡 = (1 − 𝐵)𝑑𝑋𝑡 is ARMA (p,q). In 

general, we will write the model as 

𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵) 𝑍𝑡 ;  { 𝑍𝑡} ~𝑊𝑁(0, 𝜎2)      (1) 

where Zt follows a white noise (WN). Here, we define the lag operator by 

 Bk Xt  = Xt-k  and the autoregressive operator and moving average operator are defined as 

follows: 

𝜙(𝐵) = 𝜙1B  𝜙2𝐵2 𝜙𝑝𝐵𝑝      

B) B 𝐵2qBq                  

𝜙B) ≠ 0 for| 𝜙 |< 1, the process { Xt } is stationary if and only if 𝑑 = 0, in which case it reduces to 

an ARMA (𝑝, 𝑞) process. 

The SARIMA model is an extension of ARIMA model which comes in when the periodic 

component of the series repeats itself after s observations. The SARIMA model is sometimes 

called the multiplicative seasonal autoregressive integrated moving average model denoted 

by ARIMA (p,d,q)(P,D,Q)S, this can be written in its lag form as  

𝜙(B)(𝐵 )s(1 − 𝐵)𝑑((1 − 𝐵)𝐷 𝑋𝑡 = S                                     

𝜙(B)  𝜙1B𝜙2𝐵2 𝜙𝑝𝐵𝑝     

S=Bs B
2s pBps                                                  (3) 

B) B𝐵2 qBq                                         

 Bs)1B sB
2s qBsq                    

where, 

p, d and q are the order of non-seasonal AR, differencing and MA respectively. 

P, D and Q are the order of seasonal AR, differencing and MA respectively. 

 𝑋𝑡 represents time series data at period t (monthly inflation rates) 
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𝑍𝑡represents white noise error (random shock) at period t. 

𝐵 represents backward shift operator 𝐵𝑘  𝑋𝑡 =  𝑋𝑡−𝑘 

𝑆 represents seasonal order ( 𝑠 = 12  monthly data). 

Consider a seasonal ARIMA (0,1,1)(0,1,1)12 model. This is specified as 

(1B12)(1B )  𝑋𝑡 =(B)(B12) 𝑍𝑡                                       

 𝑋𝑡= 𝑋𝑡−1 +  𝑋𝑡−12 +  𝑋𝑡−13 + 𝜃1𝑍𝑡−1 − 𝛩1𝑍𝑡−12 + 𝜃1𝛩1𝑍𝑡−13                                          (4) 

Where 

 𝑋𝑡 = inflation rate at successive period 

𝑍𝑡= represents white noise error (random shock) at period t and is independent and identically 

distributed 

Estimation of Model Parameters 

The parameters of the model will be estimated using the conditional least squares. For the 

model estimates, we consider the model with the least Akaike Information Criterion (AIC), 

Corrected Akaike Information Criterion (AICc) and Bayelsian Information Criterion (BIC) 

with the following statistic: 

𝐴𝐼𝐶 =  𝑛 𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
) + 2k,  𝐴𝐼𝐶c= 𝐴𝐼𝐶 +

2(𝑘+1)(𝑘+2)

𝑛−𝑘−2
, 𝐵𝐼𝐶 =  {𝑙𝑛(𝜎̂𝑒

2)} + 𝑘{𝑙𝑛(𝑛)}     (5) 

where RSS is the estimated residual of fitted model, n is the residual sample size and k is the 

total number of estimated parameters in the fitted model  and 𝜎̂𝑒
2 is the error variance. 

Unit Root Test 

There are several statistical tests in testing for the presence of unit root in a series. The 

augmented Dickey Fuller and the Phillip Perron test of unit root whose statistics are 

respectively given below. 

𝑋t  =  𝛼0 + ρ1𝑋𝑡−1 + ∑ 𝛽𝑗
𝑝−1
𝑗=2 𝛻𝑋𝑡−1+ 𝑧𝑡 𝑍𝑝 = n(𝜌̂𝑛 -1) - 

1

2

𝑛2𝜎̂2

𝑠𝑛
2 (𝜆̂𝑛

2  - 𝛾0,𝑛)  (6) 

Model Identification 

The first technique to determine values for p,d,q and P,D, Q is to compute the sample ACF 

and PACF from the data and compare this to known properties of the ACF for ARIMA 

models. The theoretical PACF has nonzero partial autocorrelation at lags 1,2,..p and has zero 

partial autocorrelations at all lags for any non seasonal ARIMA (p,d,q) process. The ACF and 

PACF has spikes at lags ks and cuts off after lags ks at the seasonal level .for seasonal MA 

component the ACF shows a significant spikes at seasonal lags while for seasonal AR 

components the PACF shows a significant spike at the seasonal lags. 

Diagnostic Checking 

The goodness of fit of a statistical model to a set of data is judged by comparing the observed 

values with the corresponding predicted values obtained from the fitted model. The 
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assumption of the SARIMA model is that the residuals of the models should be white noise. 

The ACF should be approximately zero if the residuals are white noise. The ljung box 

statistic proposed by [6] can still be used to check if a given observable series is linearly 

independent. The test statistic is given as:  

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟̂𝑘

2

𝑛−2

𝑚
𝑘=1         (7) 

Where 𝑟̂𝑘
2  is the estimated autocorrelation of the series at lag k, and m is the number of lags 

being tested. 

Another diagnostic test to be considered is the Durbin-Watson test whose statistic is as given: 

𝑑 =
∑ (𝑧𝑖−𝑧𝑖−1)2𝑛

𝑖=2

∑ 𝑒𝑖
2𝑛

𝑖=1

          (8) 

Peak Time Forecast 

Consider the same model of the form (p,d,q)(P,D,Q)s then 

𝜙(B)(𝐵 )s(1 − 𝐵)𝑑((1 − 𝐵)𝐷 𝑋𝑡 = S )Zt                                                   (9) 

And the peak time is the point for which the k-step ahead forecast is maximum. Thus, this is given as 

𝑋̂𝑡+𝑘,𝑠 = [ 𝜙(B)(𝐵 )s(1 − 𝐵)𝑑((1 − 𝐵)𝐷]-1S )Zt+k                                     (10) 

Where peak is as defined below 

Max 𝑋̂𝑡+𝑘,𝑠 = [ 𝜙(B)(𝐵 )s(1 − 𝐵)𝑑((1 − 𝐵)𝐷]-1S )Zt+k                   (11) 
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Figure 1: Monthly Inflation Rates of Nigeria. 2001:1 to 2015:12 
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Table 1: Augmented Dickey-Fuller Test for Unit Root of the Inflation Rates 

Null Hypothesis: NIGERIA_S_INFLATION_DATA has a unit root 

Exogenous: None   

Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 

     

     
     Augmented Dickey-Fuller test statistic -1.384774  0.1541 

Test critical values: 1% level  -2.577945  

 5% level  -1.942614  

 10% level  -1.615522  

     
     *MacKinnon (1996) one-sided p-values.  

 

Table 2: Phillip-Perron Test for Unit Root of the Inflation Rates 

Null Hypothesis: NIGERIA_S_INFLATION_DATA has a unit root 

Exogenous: None   

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel 

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic -1.381403  0.1550 

Test critical values: 1% level  -2.577945  

 5% level  -1.942614  

 10% level  -1.615522  

     
     *MacKinnon (1996) one-sided p-values.  

     

     
      

For the Augmented Dickey-Fuller (ADF) and the Phillips-Perron unit root tests 

in Tables 1 and 2 respectively, the null hypothesis that the series contains a unit 

root will not be rejected. 
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Figure 2: First Order Difference of the Inflation Rates 
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Table 3: ADF Test for Unit Root of the First Difference Inflation Rates 

 

Null Hypothesis: D(NIGERIA_S_INFLATION_DATA) has a unit root 

Exogenous: None   

Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -12.43027  0.0000 

Test critical values: 1% level  -2.578018  

 5% level  -1.942624  

 10% level  -1.615515  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

Table 4: Phillip-Perron Test for Unit Root of the Inflation Rates:  

Null Hypothesis: D(NIGERIA_S_INFLATION_DATA) has a unit root 

 

Exogenous: None   

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel 

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic -12.40268  0.0000 

Test critical values: 1% level  -2.578018  

 5% level  -1.942624  

 10% level  -1.615515  

     
     *MacKinnon (1996) one-sided p-values.  

 

Having satisfied that the series is stationary at level in the seasonal part, Figure 2 shows the 

first non-seasonal differencing. But For the Augmented Dickey-Fuller (ADF) and the 

Phillips-Perron unit root tests of the first differenced series in Tables 3 and 4 respectively, 

since the absolute value of the computed test statistics are more than the critical values at 1%, 

5% and 10%, we would reject the null hypothesis that the series contains a unit root.  
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Figure 3: ACF of First Order Difference 
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Figure 4: PACF of First Order Difference 

Identifying the model using figure 3 and 4, both ACF and PACF tail off at lag 1, suggesting 

that 𝑞 = 1 and 𝑝 = 1 would be needed to describe these data as coming from a non-seasonal 

moving average and autoregressive process respectively. Also looking at the seasonal lag, the 

ACF spike at seasonal lag 12 while the PACF spike at seasonal lag 12 and 24 and then drops 

to zero for other seasonal lags suggesting that 𝑄 = 1 and 𝑃 = 2 would be needed to describe 

these data as coming from a seasonal moving average and  autoregressive process. Hence 

ARIMA (1,1,1)(2,0,1)12  could be possible model for the series. However other significant 

models entertained in this study include ARIMA (1,1,2)(2,0,1)12 ,ARIMA (1,1,1)(2,0,1)12  and 

ARIMA(0,1,0)(0,0,2)12 

Table 5:  Estimates of Parameters of SARIMA (0,1,0)(0,0,2)12 

Dependent Variable: D(INFLATION_RATES)  

Method: Least Squares   

Date: 06/23/16   Time: 09:59   

Sample (adjusted): 2001M02 2015M12  

Included observations: 179 after adjustments  

Convergence achieved after 12 iterations  

MA Backcast: 1999M02 2001M01   

     
     

Variable Coefficient 

      Std. 

Error t-Statistic Prob.   

     
     MA(12) -0.803003    0.071519 -11.22776 0.0000 

MA(24) -0.159743   0.071291 -2.240731 0.0263 

     
     R-squared 0.444866     Mean dependent var -0.044693 

Adjusted R-squared 0.441730     S.D. dependent var 2.079989 

S.E. of regression 1.554115     Akaike info criterion 3.730800 

Sum squared resid 427.5034     Schwarz criterion 3.766413 

Log likelihood -331.9066     Hannan-Quinn criter. 3.745241 

Durbin-Watson stat 1.816004    
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Table 6:Estimates of Parameters of SARIMA (1,1,1)(2,0,1)12 

Dependent Variable: D(INFLATION_RATES)  

Method: Least Squares   

Date: 06/23/16   Time: 10:07   

Sample (adjusted): 2003M03 2015M12  

Included observations: 154 after adjustments  

Convergence achieved after 13 iterations  

MA Backcast: 2002M02 2003M02   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) -0.557068 0.110837 -5.026000 0.0000 

SAR(12) 0.170377 0.070991 2.399970 0.0176 

SAR(24) -0.104741 0.063656 -1.96543 0.0120 

MA(1) 0.818633 0.066318 12.34414 0.0000 

SMA(12) -0.973712 0.013519 -72.02566 0.0000 

     
     R-squared 0.521150     Mean dependent var 0.015119 

Adjusted R-squared 0.508295     S.D. dependent var 1.874642 

S.E. of regression 1.314530     Akaike info criterion 3.416765 

Sum squared resid 257.4705     Schwarz criterion 3.515367 

Log likelihood -258.0909     Hannan-Quinn criter. 3.456817 

Durbin-Watson stat 1.904166    

     
      

Table 7:Estimates of Parameters of SARIMA (1,1,2)(2,0,1)12 

Dependent Variable: D(INFLATION_RATES)  

Method: Least Squares   

Date: 06/23/16   Time: 10:44   

Sample (adjusted): 2003M03 2015M12  

Included observations: 154 after adjustments  

Convergence achieved after 45 iterations  

MA Backcast: 2002M01 2003M02   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.858601 0.043143 19.90110 0.0000 

SAR(12) 0.155963 0.071919 2.168588 0.0317 

SAR(24) -0.143752 0.064650 -2.223543 0.0277 

MA(1) -0.714808 0.087271 -8.190652 0.0000 

MA(2) -0.279912 0.081253 -3.444967 0.0007 

SMA(12) -0.971366 0.014480 -67.08464 0.0000 

     
     R-squared 0.629446     Mean dependent var 0.015119 

Adjusted R-squared 0.613549     S.D. dependent var 1.874642 

S.E. of regression 1.307489     Akaike info criterion 3.412275 

Sum squared resid 253.0099     Schwarz criterion 3.530598 

Log likelihood -256.7452     Hannan-Quinn criter. 3.460338 

Durbin-Watson stat 1.981621    
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     Model Representation 

TABLE 8: AIC and BIC for the entertained SARIMA models 

MODEL AIC AICc BIC DW R2 S.E 

ARIMA(1,1,1)(2,0,1)12 3.417 3.902 527.458 1.816 0.445 1.554 

ARIMA(0,1,0)(0,0,2)12 3.731 3.960 668.323 1.907 0.521 1.315 

ARIMA(1,1,2)(2,0,1)12 3.412 3.793 527.022 1.982 0.629 1.307 

Among  models whose parameter estimates were significant as presented in table 5, 6 and 7, 

their AIC, AICc, and BIC (as shown in Table 8) were compared and ARIMA (1,1,2)(2,0,1)12 

was chosen. 

Table 9: Modified Box-Pierce (Ljung-Box) Chi-Square Statistic 

Modified Box-Pierce (Ljung-Box) Chi-Square for SARIMA(1,1,2)(2,0,1)12 

Lag                       12             24          36         48 

Chi-Square         15.2           22.9       28.9      30.1 

DF                       10               22          34         46 

P-Value              0.124          0.408      0.716    0.966 
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Figure 5: ACF of Residual 
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Figure 6: Histogram of Residual 
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Figure 7:  Residual Normal probability Plot 

The residuals were checked to find out if they follow a white noise process. The ACF of the 

residuals as shown in Figure 5 shows that for all the first 45 lags, all sample autocorrelation 

fall inside 95% confidence bounds indicating that the residuals appear random. In addition, 

the histogram plot in Figure 6 shows a bell shaped distribution which is an indicator for 

normality. The Ljung Box test in Table 9 and the plot of residual normality test in Figure 7 

further confirms the fit of the model at 95% confidence level. 

Forecasting with the Identified Models {ARIMA(1,1,2)(2,0,1)12} 

The selected model is ARIMA(1,1,2)(2,01)12. This model will be used in predicting seasonal 

(monthly) values of inflation from where the peak value will be identified. 

(1 − 𝐵)(1 − ϕB)(1 − Φ1𝐵2 − Φ2𝐵24)𝑋𝑡 = (1 − 𝜃1𝐵 − 𝜃1𝐵2)(1 −  𝛩𝐵12)𝑍𝑡      (12) 

which is represented as: 

𝑋𝑡 =       𝑋𝑡−1 + 0.1560𝑋𝑡−12 –  0.1438𝑋𝑡−24 + 0.8588𝑋𝑡−1 –  0.1339𝑋𝑡−13    

+ 0.1235𝑋𝑡−25   − 0.1560𝑋𝑡−13 +  0.1438𝑋𝑡−25 − 0.8588𝑋𝑡−2  
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                 + 0.1339𝑋𝑡−14  − 0.1235𝑋𝑡−26   +  𝑍𝑡 + 0.9713𝑍𝑡−12 –  0.7148𝑍𝑡−1 

               + 0.6943𝑍𝑡−13 + 0.2799𝑍𝑡−2 +  0.2719𝑍𝑡−14                 (13) 

The one step ahead prediction is given as 

𝑋𝑡+1 =       𝑋𝑡 + 0.1560𝑋𝑡−11 –  0.1438𝑋𝑡−23 + 0.8588𝑋𝑡 –  0.1339𝑋𝑡−12    

+ 0.1235𝑋𝑡−24   − 0.1560𝑋𝑡−12 +  0.1438𝑋𝑡−24 − 0.8588𝑋𝑡−1  

                 + 0.1339𝑋𝑡−13  − 0.1235𝑋𝑡−25   +  𝑍𝑡+1 + 0.9713𝑍𝑡−11 –  0.7148𝑍𝑡 

               + 0.6943𝑍𝑡−12 + 0.2799𝑍𝑡−1 +  0.2719𝑍𝑡−13                   (14) 
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Figure 8: Time Series Plot for Inflation Rates with Twelve Month Forecast and their 95% 

Confidence  Limits 

Table 10: ARIMA(1,1,2)(2,0,1)12 Forecasting Results for Monthly Inflation Rates 

MONTH FORECAST% LOWER 

BOUND(%) 

UPPER 

BOUND(%) 

    

January  10.17                                7.15 13.20 

February 10.32 5.85 14.79 

March 10.59 4.67 15.57 

April 10.65 4.43 16.86 

May 10.87 4.02 17.72 

June 11.65 4.25 19.04 

July 12.45 4.57 20.34 

August 13.12 4.80 21.44 

September 13.52 4.80 22.24 

October 12.95 3.86 22.04 

November 12.54 3.09 21.98 

December 12.15 2.37 21.92 
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CONCLUSION 

The results of the forecasts for 2016 show that Nigeria will experience high inflation rates 

above one digit in the year which will be at its peak in the third quarter of the year and 

precisely in the month of September. Similarly, the forecast also revealed that the lowest 

inflation rates will be recorded in the month of January for the year 2016. 

Furthermore, comparing the predicted rates of inflation for the first three months with the 

observed rates, it can be deduced that the predicted values are close to the observed values 

published by the National Bureau of Statistics. Moreover, all the observed values fall inside 

the 95% confidence interval which means that ARIMA (1,1,2)(2,0,1)12 is adequate for 

predicting monthly inflation rates of Nigeria. The peak time corresponds with the months of 

august and September of each year. 

In line with these findings vigorous monetary policies and appropriate economic measures be 

implemented by government and other stakeholders to ensure that single digit inflation value 

in general and stabilize inflation for the identified peak periods. 
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