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ABSTRACT: In this paper, we consider a simple step-Stress model under the Rayleigh 

distribution when the available data are type-II hybrid censored.  The maximum likelihood 

and Bayes estimators as well as, approximate confidence intervals for the parameters are 

constructed.  Bayes estimators are obtained using the symmetric squared error loss functions 

and asymmetric LINEX and General Entropy (GE) loss functions using non informative 

priors, a numerical illustration for these new results are also given. 
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INTRODUCTION 

 

The accelerated life testing (ALT) experiments are important technical structures in reliability 

and survival analysis.  Such experiments allow the experimenter to obtain adequate life data 

for the product under accelerated stress conditions, which cause the product to fail more 

quickly than under the normal operating condition.  Some key references in the area of ALT 

include Nelson and Meeker [16], Nelson [15], Meeker and Escobar [13] and Bagdonavicius 

and Nikulin [1]. A special class is called the Step-Stress testing. Recently Nelson [14]and 

Balakrishnan and Xie [2] , suggested  a new failure model called a simple step stress model 

with type-II hybrid censored schemes; with two stress levels based on the exponential 

distribution when the available data are type–II Hybrid Censored Schemes. 

 

In this article, we considered a simple step-stress model with two stress levels based on the 

Rayleigh distribution when the available data are type–II hybrid censored schemes.  The 

model is discussed in detail in section (2).  We discuss the MLE of the parameters in section 

(3).  In section (4), the Bayes estimators are obtained using both the symmetric and 

asymmetric loss functions. Section (5) provides results of a practical example consisting of 

some numerical results using simulation study. 

 

Model Description 

 

Suppose that the data come from a cumulative exposure model, and we consider a simple step 

stress model based on type-II hybrid censored schemes with only two stress level 1V  and 2V .  

The life time distribution at 1V  and 2V  were assumed to be Rayleigh distribution with failure 
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rate 1  and 2 , respectively. The probability density function (pdf) and cumulative 

distribution function (cdf) are given by: 
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where the scale parameter is affected by the stress , 1,2jV j  , through the inverse power 

law model defined as : 
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Then, we have the cumulative exposure distribution, ( )G t as: 
2

1

2 2

1 1

2 1

1

2

1 1 1

1

2
2

1 1 1 1
1

( ) ( ) 1 , 0

( )

( ) 1 1 ,

 
 
 
 

          
        



     


 
                     

i
p

i
p p

t

C S

i i

t
p

C S C S

i i

G t F t e t

G t

S
G t F t e t

S

 



 

  ,   (4) 

and the corresponding pdf is: 

  
 

 

2

1

2 2

1 1

2 1

1

2

1 12

1

1

2
1

2 12

1

( ) , 0

( )

( ) ,

i
p

i
p p

t

C Si
i

p

t

C S C S
i

i
p

t
g t e t

C S

g t

t
g t e t

C S

 






 
 
 
 

          
        



   




  
   

   
     
         

    ,                                 (5) 

Based on the type – II hybrid censored schemes, we have n identical units under an initial 

stress  level 1V . The stress level is changed to 2V  at time 1  , and the life–testing experiment 

is  terminated at a random time, here 2 2max ( , )rt     [See, Balakrishnan and Xie (2)]. 

 

Maximum Likelihood Estimation (MLE): 

For the cumulative exposure function in (4) and the corresponding pdf in (5), we obtain the 

likelihood function of C and P based on the Type-II hybrid censored schemes as follows: 
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The natural logarithm of likelihood function is given by: 
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Upon differentiating (8) with respect to C , p and equating each result to zero, two 

equation must be simultaneously satisfied to obtain MLE Ĉ  and p̂ .  These equations are 

given by:  
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The MLE of C is expressed by the fallowing equation,  
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More ever, it is seen that equation (10) can not be put in explicit form, thus it will be 

solved simultaneously to obtain P̂ .  Substituting in (9), the MLE of C, Ĉ  is obtained. 

 

Bayes Estimation  

Most of the Bayesian inference procedures have been developed under the usual squared 

error loss function, which is symmetrical, and associates equal importance to the losses due to 
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over estimation and under estimation or equal magnitude.  However, such a restriction may 

be impractical.  For example, in the estimation of reliability and failure rate function, an over 

estimate is usually much more serious than an under estimate; in this case the use of a 

symmetrical loss function might be in appropriate, as has been recognized by Cacciari and 

Montanari [4], Basu and Ebrahimi [3] and Soliman [10].  An example of an asymmetrical 

loss function stated by Faynman [9] that in the disaster of a space shuttle, the management 

over estimated the average life or reliability of the solid fuel rocket booster.  A useful 

asymmetrical loss known linear exponential (LINEX) loss function was introduced in Zellner 

[17] and was widely used in several papers as Elshahat [8].  Another useful asymmetric loss 

function is the General Entropy (GE) loss.  This loss function was used in several papers, as 

an example see Dey et. al. [5], Dey and Liu [6] , Soliman [10, 11, 12] and Elshahat [8]. In the 

following sub sections, the Bayes estimators are obtained using squared error loss function 

(SEL), LINEX loss function and GE loss function. 

 

Consider independent non–informative type of priors for the parameters C and p, then the 

joint prior functions will be  

1
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C
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Combining (12) with equation (7) via Bayes theorem, the joint bivariate posterior distribution 

is derived as follows: 
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Now, marginal posterior of any parameter is obtained by integrating the joint 

posterior distribution with respect to other parameters. The posterior pdf of C can be written, 

after simplification as: 
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Similarly integrating ( , )C p t  with respect to C  , the marginal posterior of p  can be 

obtained as:  
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Bayes Estimator under Square Error Loss (SEL) Function: 

 

Under square error loss (Symmetric), the usual estimator of a parameter is posterior mean.  

Thus, Bayes estimators of the parameters are obtained by using the posterior densities (14) 

and (15).  

The Bayes estimators C  and p  of parameter C  and p  are: 
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Bayes Estimator under LINEX Loss Function: 

Under assumption that the minimal loss occurs at u u , the LINEX loss function for 

( , )u u C p  can be expressed as: 

( ) 1 ;L e          ,                                                                            (17) 

where, sign and magnitude of  represent the direction and degree of symmetry, 

respectively, (   means over estimation is more serious than under estimation, and    

means the opposite). For  closed to Zero, the LINEX loss function is approximately the 

squared error loss, and there fore almost symmetric.  Following zellner [15], the Bayes 

estimator u  of u under LINEX loss function is: 
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where, uE  is equivalent to the posterior S-expectation with respect to the posterior pdf (u), 

provided that   exp( )uE u  exists, and is finite.  

Now, if in (18) u c , then the Bayes estimates ,C p  of parameter ,C p  relative to the 

LINEX loss function in (17) are : 
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where,  
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Bayes Estimator under GE Loss Function: 

Another useful asymmetric loss function is GE loss 
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Whose minimum occurs at û u . This loss function is generalization of the Entropy–

loss used in several papers where 1v  . When 0v  , a positive error ˆ( )u u  causes more 

serious consequences than a negative error.  The Bayes estimate û  under GE loss (21) is,  
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Simulation Study and Illustrative Example 

 

Simulation Study: 

In this sub–section, we present the results of a Mote Carlo simulation study carried out in 

order to compare the performance of all the methods of estimations described in sections (3) 

and (4).  We choose the values of the parameter is C and p to be (C = 1 and p = 1); for ( , )n r  

, we chose (25; (19, 23)) and ( 35; (25; 30)).  For different choices of 1  and 2  in this case, 

we determined the values of the estimate and their mean square error (MSE) by all the 

methods presented in section (3).  In addition we also present the corresponding 95% 

approximate confidence intervals (CIs) for the parameters using the asymptotic S–normality 

of the MLE’s. These results, based on 1000 Monte Carlo simulation, are presented in table 

(1). 
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Table (1): MLE's and 95% CI.S for C and p with 1=1& 2=1.5 and 

         Different n and r under type–II hybrid censored schemes 

N R Parameter MLE MSE 95 % CIs 
Average 

widths of CIs  

25 

19 
Ĉ  1.04 0.043 (0.786,  1.3) 0.514 

p̂  0.895 0.39 (0.61,  1.11) 0.50 

23 
Ĉ  1.04 0.043 (0.837,  1.24) 0.403 

p̂  0.91 0.252 (0.707,  1.11) 0.403 

35 

25 
Ĉ  1.03 0.02 (0.869,  1.187) 0.318 

p̂  0.872 0.25 (0.713,  1.031) 0.318 

30 
Ĉ  1.03 0.02 (0.892,  1.17) 0.278 

p̂  0.92 0.18 (0.77,  1.05) 0.28 

 

The Bayes estimators (SEL, LINEX, GE) for the parameters C and P are computed using the 

equations (13) to (22) and are given in table (2).  All of the results obtained in this article 

specialized to Type –II hybrid censored schemes.  From the results, we observe the 

following: 

i. All of the results obtained in table (1) specialized to type–II hybrid censored schemes. 

The MSE for the MLE of P and C and the average widths of there CIs are decreasing 

with increasing sample size n. 

ii. Table (2) shows that Bayes estimators relative to asymmetric loss function (LINEX 

and GE) are sensitive to value of parameters  and v . These parameters give one the 

opportunity to estimate the unknown parameters with more flexibility. But the 

problem of choosing values of parameters  and v  on the selected loss function. 

  Table (2): Bayes estimates of the parameters C and p under type–II hybrid censored 

schemes 

N R Parameter SEL 

LINEX GE 
 V 

0.5 1 2 0.5 1 2 

25 

19 
C 1.12 1.11 1.10 1.092 0.93 0.93 0.94 

P 0.57 0.56 0.556 0.51 3.3 7.7 218.9 

23 
C 1.14 1.13 1.12 1.08 0.91 0.91 0.94 

P 0.62 0.6 0.59 0.52 2.7 5.9 209.9 

35 

25 
C 1.1 1.1 1.1 1.09 0.93 0.93 0.933 

P 0.60 0.59 0.57 5.42 2.8 6.4 183.2 

30 
C 1.12 1.1 1.1 1.1 0.913 0.92 0.923 

P 0.64 0.63 0.612 0.58 2.9 4.9 142.97 

iii. All Bayes estimators (SEL, LINEX, GE) for the parameters C and P are nearly equal 

for all values of  and v were used.  

iv. All of the estimators obtained in tables (1) and (2) are the best good statistical on 

0.75r n . 
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v. The estimated Values of Bayes estimators are not very far from the estimated values 

of MLE,s . 

vi. As anticipated all Bayes estimates relative to both LINEX loss and GE loss (for  

closed to zero and 1v   ) are the same as the symmetric Bayes squared error loss. 

 

Illustrative Example: 

In this sub–section, we consider one example, use small sample in order to illustrate the 

method of maximum likelihood estimation which was described in section four. 

 

Example:  

We now consider the following data when 20n   with 1 1  ,  1C   and 1p  . 

Stress level Time–to–failure 

1 1S   0.0

3 
0.4 

0.5

4 

0.6

9 
0.65 0.8 

0.9

8 
      

2 2S   1.1 
1.1

7 

1.4

4 

1.4

6 

1.46

3 

1.46

8 

1.6

3 

2.1

1 
2.2 2.3 2.6 3.14 3.3 

 

In this case, had we fixed  2 1.5   and 15,18r  , we would be obtained the MLE’s of 1θ̂  

and 2θ̂  by using equation (3) to be,  

r  Ĉ  p̂  
1̂  2̂  

15 0.76 1.3 0.76 1.52 

18 0.76 1.2 0.76 1.51 

 

Note that, where r = 15, we have *
2 15 2max( , ) max(2.1,1.5) 2.1t    ; similarly, 

where 18r  , we find *
2 2.6  .   The CIs for the parameters obtained.  Note that approximate 

CI and student–t interval are both unsatisfactory. 
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