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ABSTRACT: We propose in this paper, a brief review of Muth-Pareto distribution. More 

precisely, we discuss the concept of record values and give a treatment of some selected 

properties of the distribution. The properties considered include the quartiles from quantile 

function, entropy, and limiting distribution of minimum order statistic. We provide some 

plots for the distribution of lower record values and studied the behavior by varying 

number of record values in the sample. It was observed that variability decreases by way 

of increasing number of record values in the sample. The quartiles related to the Muth-

Pareto distribution were tabularized for some selected parameter values. It is our hope 

that the discoveries of this paper will be beneficial for practitioners and also a source of 

reference for users so as to enhance research interests related to Muth-Pareto distribution 

and its applications. 
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INTRODUCTION 
 

Several distributions exist for modeling reliability and lifetime data. Among the prevailing 

parametric models are the Exponential, Lognormal and Pareto distributions. Pareto 

distribution, however, appears to be more popular than the exponential and lognormal in 

terms of modeling data that have heavy-tails, most commonly found in studies on finance, 

population size, as well as in extreme value theory.  

 

So many researchers have attempted to add more flexibility to Pareto distribution through 

the use of generalization techniques. Prominent among these generalizations is the 

Generalized Pareto Distribution (GPD) by Pickands (1975). Some other important 

generalizations of the Pareto distribution include Beta-Pareto by Akinsete et al. (2008), 

Kumaraswamy Pareto by Bourguignon et al. (2012), Gamma-Pareto by Alzaatreh et al. 

(2012), Exponential-Pareto by Kareema and Boshi (2013), Exponentiated Weibull-Pareto 

by Afify et al. (2016) and Muth-Pareto by Sirajo (2020). 

 

Although the Muth-Pareto distribution (MPD) received little attention in the literature if to 

compare with the great popularity of the above mentioned generalizations of Pareto 

distribution, the distribution has a closed form quantile function that can be used in 

generating random samples. According to Sirajo (2020), the MPD has proved to be 

significant in the modeling of failure times in reliability studies.  
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RECORD VALUES OF THE MUTH-PARETO RANDOM VARIABLE 

Theory on distribution of record values emanates from the work of Chandler (1952) where 

the frequency with which record weather conditions are being reported in newspapers were 

investigated. Considering independent simple random sampled time series values from a 

fixed continuous universe, we may define record values to be those elements or members 

of the series which are either less or greater than all preceding members. Therefore, an 

observation that is smaller in value than all the preceding observations in a series is called 

the lower record value, or analogously, an upper record value if it’s value is larger than all 

the preceding observations. Many authors contributed to the development of this theory, 

recent contributions are due to Ahmadi et al. (2005), Balakrishnan et al. (2009), Ahsanullah 

et al. (2010), Shakil and Ahsanullah (2011), etc. Record values are found to arise naturally 

in various area of human endeavor including economics, traffic, sports, medicine as well 

as in life testing (also called reliability) studies where Muth-Pareto distribution (MPD) is 

found very useful. 

 

Sirajo (2020) proposed to model the failure times of a system of Boeing 720 jet airplanes 

by using MPD. They found the MPD to be quite flexible and well-fitted for modeling 

extreme values, as well as heavy tailed distributed random variables. Chandler (1952) 

reported that record values are liable to be highly infrequent (which characterizes them as 

extreme values), thereby making MPD a good choice. There is no existing research on the 

analysis of record values from the MPD, and therefore the need for a special investigation.   

The cdf of MPD is defined by Sirajo (2020) as: 
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   (2) 

Where 0   is a threshold parameter determining the location of the MPD random variable, 

and , 0    are shape parameters demonstrating the different shapes of the MPD. 

Suppose that 1( )m mX   represents a sequence of iid random variables with the cdf defined in 

Eq. (1). Suppose also that max(min){ |1 }m iY X i m   , 1m  . We call 
iX  a lower (upper) 

record value of { | 1}mX m   if 
1( ) , 1i iY Y i   . Using this definition, 

1X  is always a lower as 
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well as an upper record value. It is quite easy to transform upper records into lower records 

by simply replacing { }iX  by { , 1}iX i  . In this regard, the lower records of the new 

sequence automatically correspond to the upper records of the untransformed (i.e. the 

original) sequence. In this paper, we will restrict ourselves to simply the lower records. 

Lower Record Values 

We shall define the record time ( )L m  to be the indices where the lower records arise, which 

are given by the sequence { ( ), 1}L m m  , where ( 1)( ) min{ | ( 1), , 1}i L mL m i i L m X X m      and 

(1) 1L  . Consequently, the mth  lower record value will be denoted by ( )L mX  or ( )X m  for 

the sake of brevity. We shall define ( )mf x  to be the pdf of ( )X m , 1m . Then following 

Arnold et al. (1998) we have  

 
11

( ) ln ( ) ( ), 0
( )

m

mf x F x f x x
m


  


      (3) 

With a corresponding cdf  

 
1

( ) , ln( ( ))
( )

mF x m F x
m

  


       (4) 

where 1( , ) a u

y

a y u e du



     is the incomplete gamma function. 
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Figure 1: Density plot of MPD assuming one record value. 

 
Figure 2: Density plot of MPD assuming three record values. 
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Figure 3: Density plot of MPD assuming five record values. 

Figures 1-3 above shows that pdf of the mth lower record value of MPD is unimodal with 

longer right tails. The curves also shrink (i.e. variability reduces) by way of increasing m, 

the number of record values. This by implication means that, as the number gets large, the 

lower record values of the MPD won’t be quite dispersed and would assume values very 

close to one another. This also means that the first few record values would be enough to 

make an appropriate guess of what values higher records will assume.  

2.2 Non-Central Moment of Lower Record Values of MPD 

The rth moment of ( )X m  may be obtained by means of equations (1), (2) and (3) as shown 

below: 
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Using the Binomial series expansion  
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By putting ( 1)ln{ }yu ye    , we see that  
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Where 
1W
 symbolizes the negative branch of Lambert-W function. 

We briefly remind that the Lambert-W function is defined as the solution of the equation 

( )exp( ( ))W x W x x .        

Here, ( )W x  is a real function such that x  is a real number and 1x e  . In this regard, the 

W-function has two branches: the real branch taking on values in (−∞, −1] which is called 

the negative branch and denoted by 
1W
, as well as the real branch taking on values in [−1, 

∞) which is called the principal branch and denoted by 
0W . The negative branch has the 

main property that W ≤ −1. It decreases from W−1(−1/e) = −1 to W−1(0
−) = −∞. 
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The integral in Eq. (6) above shows that the analytical derivation of the moments of record 

values from MPD seems to be complicated. Evaluating this integral is therefore left for 

further investigations. However, using mixture representations of cdf and pdf of the MPD 

(see Sirajo, 2020), we alternatively derive these moments as follows: 

1
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For 1m   in the expression above, we obtain the following: 
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which corresponds to the rth moment of the MPD random variable. Thus, we say that the 

rth moment of a single lower record value (1)X  from the MPD is the rth non-central 

moment of the original series from which the record value was generated.  

Note: 
1

1 1

0

( , ) (1 )m nB m n u u du    is the beta function, while 
k  and 

l  are as defined in Sirajo 

(2020). 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.3, pp.20-33, October 2020 

        Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                      Online ISSN: 2053-2210 (Online) 

27 
 

RENYI ENTROPY OF MPD 

Entropies offer some exceptional means of measuring the amount of information contained 

in a random sample with regards to the distribution or population the sample comes from. 

In various fields of science and probability, the application of entropy has proved useful in 

measuring the amount of uncertainty associated with random variables, where a large 

entropy value suggests a greater uncertainty in the data. Two most important and well-

known entropy measures are the Renyi and Shanon entropies. The most general among 

these measures is the Renyi entropy defined by: 

1
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The Shannon entropy, which is defined by   ln ( )XE f x , happens to be a special case of 

the Renyi entropy derived from taking 
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To derive the Renyi entropy of MPD, we proceed using Eq. (2) and the definition above as 

follows: 
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Applying this expansion again and using the one defined in Eq. (5) we get 
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Using the definition of incomplete gamma function, and following Bensid and Zeghdoudi 
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The Renyi entropy of MPD is finally obtained using Eq. (7) as: 
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ASYMPTOTIC DISTRIBUTION OF SAMPLE MINIMUM 

Let 
1,..., nX X  be a random sample of size n, and let X  be the sample mean. Then by the 

well-known central limit theorem, the distribution of X  approaches standard normal as 

n . If 
1: 2: :...n n n nX X X    is the order statistics obtained by arranging , 1,...,iX i n  in 

order of increasing magnitude. We call 
1:nX  the minimum order statistic and 

:n nX  the 

maximum order statistic. In this section, we study the distribution of the minimum order 

statistic of MPD as the sample size increases indefinitely. Intuitively, 
1:nX  may be 

represented by the location parameter   since the MPD random variable is bounded below 

by this parameter. Thus, we derive the asymptotic distribution of the sample minimum 

from MPD using the theorems in Arnold et al. (1998) adopted by Bensid and Zeghdoudi 

(2017). 

The asymptotic distribution of the sample minimum 
1:nX  of MPD may be defined as: 

   1:
0

( )
1 exp lim

( )

D

n n n
t

F tx
P c X d x

F t

 
     

 
 

Where the norming constants , 0n nc d   are as defined in Leadbetter et al. (1983). 

We proceed by evaluating 
0

( )
lim

( )t

F tx

F t
, which by applying l’Hospital’s rule becomes 

0 0

( ) ( )
lim lim

( ) ( )t t

F tx f tx
x

F t f t 
 ,      0x   
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1
1 1 1 exp 1 1
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1 1 1 exp 1 1
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t t t t
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
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

 



                                   
                       

         
           

           

         
       

 

     x   

    1: 1 expD

n n nP c X d x x        or equivalently,  1 expD x     . 

Thus, we say that as the sample size gets large, the location parameter of the MPD 

converges in distribution to  1 exp x   .  

QUARTILES 

This section computes the quartiles of MPD. The well-known quartiles of an observed 

variable divide the distribution into four equal parts using three quartile measures, namely, 

the first or lower quartile, which is the value that cuts off the first 25% of the data when it 

is sorted in ascending order. The second quartile or median, is the value that cuts off the 

first 50%. The third quartile or upper quartile, is the value that cuts off the first 75%. These 

quartiles for the MPD can be derived using its quantile function. The uth quantile of the 

MPD random variable is that value x  such that ( )P X x u  . We call this value the median 

if 0.5u  , the upper quartile if 0.75u  , or the lower quartile if 0.25u  . We remind that the 

quantile function of the MPD is obtained in terms of Lambert-W function as:  

1
1

1

( )

1
exp(1 )

Q u

u
W






 






    
     
     

,  0 1u   
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where 
1W
 denotes the negative branch of the Lambert-W function. 

Thus, by numerically evaluating the above equation using R program, quartiles associated 

with the MPD random variable are computed for some selected values of the parameters. 

These are provided in Tables 1-3. 

Table 1. Quartiles of the MPD for 0.9  , 2   and 1,2,3,4   

  1Q  
2Q median  

3Q  

1 1.164593 1.264696 1.456109 

2 2.329186 2.529392 2.912219 

3 3.493778 3.794088 4.368328 

4 4.658371 5.058785 5.824437 

 

Table 2. Quartiles of the MPD for 1  , 1   and 0.1, 0.5, 0.8, 1.0   

  1Q  
2Q median  

3Q  

0.1 1.317756 1.91411 3.709755 

0.5 1.311166 1.678135 2.709166 

0.8 1.342334 1.608244 2.224393 

1.0 1.371383 1.595824 2.040281 

 

Table 3. Quartiles of the MPD for 0.5  , 3   and 1,2,3,4   

  1Q  
2Q median  

3Q  

1 3.933499 5.034405 8.127498 

2 3.435185 3.886285 4.937863 

3 3.283527 3.565033 4.182152 

4 3.210227 3.414507 3.848843 

 

CONCLUDING REMARKS 

We have discussed in this paper, the distribution of record values (simply referred to as the 

records), for the case when MPD is the parent distribution. To describe the possible shapes 

of the associated pdf, the respective plots are provided. It is observed from the plotted 

figures of pdfs, for selected values of the parameters, that the distributions of the random 

variable X (m) are unimodal and right skewed with longer and heavier right tails. Other 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.3, pp.20-33, October 2020 

        Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                      Online ISSN: 2053-2210 (Online) 

32 
 

related inferences concerning the quantile function of the MPD were considered and the 

quartiles tabulated. Renyi entropy has also been derived. We hope that the discoveries of 

this paper will be a useful reference for the specialists in various fields of studies and further 

enhancement of research concerning the applications of Muth-Pareto distribution in 

general, and record value theory in particular. 
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