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ABSTRACT :  Considering the Lagrange interpolating polynomial Ln-1(f, x) of a given function 

defined on a uniform partition with a given mesh, we shall show in the present paper that  Ln-

1(f, x) does not converge to the function which has nice mathematical properties of 

approximation.  
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INTRODUCTION 

Let ∆ (n) be a partition of the interval [-1, 1] with partition points xk=xk, n =-1+2(k-1)/(n-1), k = 1, 

2, …., n, n = 2, 3, ……. The Lagrange’s interpolating polynomial Ln-1(f, x) of a function f (x) at 

the knots xk is defined as  

Ln-1 (f, x) = ∑ 𝑓(𝑥𝑘)𝑙𝑘(𝑥),𝑛
𝑘=1  

where  

lk(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)…..(𝑥−𝑥𝑘−1)(𝑥−𝑥𝑘+1)…….(𝑥−𝑥𝑛)

(𝑥𝑘−𝑥1)(𝑥𝑘−𝑥2)..   (𝑥𝑘−𝑥𝑘−1)(𝑥𝑘−𝑥𝑘+1)……..   (𝑥𝑘−𝑥𝑛)
 

Bernstein [1] (see, also {6}, p. 37) has shown that the interpolating polynomial Ln-1(f, x) of f (x) = 

| x|, 0 ≤ | x | ≤ 1 diverges for 0 < | x | < 1 and converges to the function for x = 0, 1, -1. It is known 

( [8], p 92) that a given partition there exists a continuous function whose interpolant does not 

converge to that function. Thus, the points of interpolation influence the convergence of the 

interpolant. A similar behavior for another linear operator Sn(f, x), where Sn (f, x) is the n-th partial 
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sum of the Fourier series of f (x), is known, I.e. there exists a continuous function whose Fourier 

Series diverges ([10], p. 298).  

Byrne et a1 [3] has obtained a precise limit of convergence of the interpolant for the 

function f (x) = | x | in the following.  

Theorem A, If 0< | x | < 1, then for f (x) = | x |, 

 lim
𝑛→∞

sup n−1 log |  Ln−1(f, x) –  f ( x )|  =  ( ½ )[(1 +  x) log (1 + x)  +  (1 −  x) log (1 −

 x)]   

PRELIMINARIES  

It is known that if a function is sufficiently smooth function, e. g., if the function is differentiable 

in the interval, then its Fourier series converges to the function ([9], p. 406). Moreover, if the 

function has higher number of derivatives, the convergence is faster, Precisely, the following is 

known ([10], p.225) : 

Theorem B. Let f (x) be periodic and k times differentiable. If | f(k) (x) < M, then  

En (f) ≤ Ak Mn-k , (n=1, 2, …..) , 

where En(f)
  denote the error of best approximation by trigonometric polynomials of degree n and 

Ak is a positive constant depending on k only.  

The function considered in Theorem A is not differentiable at the origin. Now, we wish to 

see the role of smoothness of the function in the convergence of its interpolant.… 

MAIN RESULTS 

We shall prove the following:  

Theorem 1. If 0 < |x| < 1 and f2r (x) = {
𝑥2𝑟 , 𝑥 ≥ 0,

−𝑥2𝑟 , 𝑥 < 0,
 

then  
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 lim
𝑛→∞

sup n−1 log|  Ln−1(f2r, x)– f2r ( x )| 

 =  ( ½ )[(1 +  x) log (1 + x)  +  (1 −  x) log (1 −  x)] 

Further, though the partial sum of Fourier series, Sn (f, x), of a continuous function f(x) does not 

necessarily converge to f (x). But, if we apply a suitable transformation to Sn(f, x), e.g. the 

following is known as cesaro transformation of order 𝛼,  

Tn(f, x) = ∑
𝐴𝑛−𝑘

𝛼  𝑆𝑘(𝑓,𝑥)

𝐴𝑛
𝛼 ,   𝛼 > 0𝑛

𝑘=0  

 

where 𝐴𝑛
𝛼 = [𝑛+𝛼

𝛼
], then Tn(f, x) tends to f (x) . We also investigate the effect of such a 

transformation to the interpolant of the function, and prove the following :  

Theorem  2. The (C, k) mean of Ln-1(f2r, x) is not convergent for any k.  

for a fixed number x in [-1, 0] and a given partition there is a j = j(n) and 𝜃 = 𝜃(𝑛), 0 ≤ 𝜃 < 1,  

such that x=xj+2𝜃/(n-1). We write for a number a and integer k, (a)k = a (a+1) … (a + k - 1), (a)0 

= 1, a±0. We will denote the gamma function by Γ(. ). We shall first prove the theorem for 𝑟=1. 

We need the following Lemmas :  

Lemma 1, For – 1 < x < 0 and n = 2m + 1 , we have  

∑ (𝑥𝑘)2𝑙𝑘(𝑥)

2𝑚+1

𝐾=𝑚+2

 

= (-1)mF(j, m, 𝜃)[
2𝑚 − 2
𝑚 − 1

] [1 − (m + 1 − j − θ) {2(2m − 1) ∑
(j+θ−1)k

(2m+k)(m+1)k

∞
k=0 −

2m(2m−1)

(m+1)
∑

(j+θ)k

(2m+k+1)(m+2)k

∞
k=0 }]  

Where F (j,m,θ)=m-2 (-1)j+1  sin(𝜋θ)Γ(j+ θ) Γ (2m+2-j- θ)/( 𝜋(2𝑚)!). 
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Proof.  For x=xj+2 θ/(n-1) and Xk  =-1+2(k-1)/(n-1),j=1,2,…,m and k= m+2, m+3,…, 2m+1=n, a 

little simplification shows that 

lk (x)=m2 F (j,m, θ)
(−1)k

k−j−θ
 -[

2𝑚
𝑘 − 1

] . 

Now  

∑ (𝑥𝑘)2𝑙𝑘(𝑥)

2𝑚+1

𝐾=𝑚+2

 

=F(j,m, θ)  ∑ (−1)𝑘 (𝑘−𝑚−1)2

𝑘−𝑗−θ

2𝑚+1
𝐾=𝑚+2 [

2𝑚
𝑘 − 1

] 

=F(j, m, θ) ∑ (−1)𝑘 (𝑘−𝑚−1)

𝑘−𝑗−θ

2𝑚+1
𝐾=𝑚+2 [(𝑘 − 1) − 𝑚)] [

2𝑚
𝑘 − 1

] 

=∑ − ∑21 , say.           (1.1) 

Writing ∑1 in the following form, we see that 

 ∑1 =2mF(j,m, θ)∑ (−1)𝑘 𝑘−𝑚−1

𝑘−𝑗−θ

2𝑚+1
𝐾=𝑚+2 [

2𝑚 − 1
𝑘 − 2

] 

Substituing 2m+1-k=p, we see that 

∑ (−1)𝜌 𝑚−𝜌

2𝑚+1−𝑝−𝑗−θ

𝑚−1
𝑝=0  [

2𝑚 − 1
𝑝

] 

=(-2m)F (j,m, θ) [∑1 = (−2m)F(j, m, θ) ∑ (−1)𝑝 [
2𝑚 − 1

𝑝
] −𝑚−1

𝑝=0

∑ (−1)𝑝 𝑚+1−𝑗−θ

2𝑚+1−𝑝−𝑗−θ

𝑚−1
𝑝=0 [

2𝑚 − 1
𝑝

]] 

=(-2m)F (j,m, θ)[  (−1)𝑚−1 [
2𝑚 − 2
𝑚 − 1

] -(m+1-j- θ) ∑ (−1)𝑝 1

2𝑚+1−𝑝−𝑗−θ

𝑚−1
𝑝=0 [

2𝑚 − 1
𝑝

] ]          

 (1.2) 
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Writing 

∑ (−1)𝑝
1

2𝑚 + 1 − 𝑝 − 𝑗 − θ

𝑚−1

𝑝=0

[
2𝑚 − 1

𝑝
] = 𝑆, 

We see that 

S=∑ (−1)𝑚−1−𝑘 1

𝑚+2+𝑘−𝑗−θ

𝑚−1
𝑘=0 [

2𝑚 − 1
𝑚 − 𝑘 − 1

] 

Using the identities 

1

m+2−k−j−θ
=

1

m+2−j−θ

(m+2−j−θ)k

(m+3−j−θ)k
, 

(m-k-1)!= (−1)𝑘 (𝑚−1)!

(1−𝑚)𝑘
  , 

(𝑚 + 1)! = (m)!(1+m)k 

And (1-m)k=0,k=m, m+1,…,we can write 

S=
(−1)𝑚+1

m+2−j−θ
[
2𝑚 − 1
𝑚 − 1

] ∑
(m+2−j−θ)k(1−m)k(1)k

(m+3−j−θ)k(1+m)k(𝑘)!

∞
k=0  

=(−1)𝑚+1 [
2𝑚 − 1
𝑚 − 1

] ∑
(j+θ−1)k

(m+1)k(2𝑚+𝑘)
∞
k=0    ,         (1.3) 

By the application of the result of Luke ([5],p.104).Also, using the result of Byrne et al [3] 

(Lemma 1,p.85) we see that 

∑ =2 mF((j, m, θ)(−1)𝑚 [[
2𝑚 − 1
𝑚 − 1

] − (𝑚 + 1 − 𝑗 − 𝜃) [
2𝑚

𝑚 − 1
] ∑

(j+θ)k

(2m+1+k)(𝑚+2)𝑘

∞
k=0 ]                                  

(1.4) 

Using (1.3) in (1.2) and combining (1.4) and (1.2) we complete the proof of Lemma 1. 

Lemma 2. If the series ∑ ak∞
k=0  with partial sums sn  is summable (C,k), then 
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an=o(nk) and sn=o(nk). 

The result is contained in knoop [4](Th.,p.484). 

Proof of Theroem 1. We first prove the theorem for r=1. Suppose n is odd i.e. n=2m+1 for some 

integer m. We assume that x∈ (−1, 0). Since x2 is a polynomial of degree less than n, we have 

(cf.[3], p.86) 

 x2= ∑ (𝑥𝑘)2𝑙𝑘(𝑥)2𝑚+1
𝐾=1   and                             (1.5) 

Ln-1 (f2, x)= ∑ f(𝑥𝑘)2l𝑘(𝑥)2𝑚+1
𝐾=1   

= -  ∑ (𝑥𝑘)2𝑙𝑘(𝑥)𝑚
𝐾+1 + ∑ (𝑥𝑘)2𝑙𝑘(𝑥)2𝑚+1

𝐾=𝑚+2 .              (1.6) 

For -1<x<0, in view of (1.5) and (1.6), we get 

Ln-1 (f2,x)-f2(x)=2∑ (𝑥𝑘)2𝑙𝑘(𝑥)2𝑚+1
𝐾=𝑚+2 ,               (1.7) 

and therefore we need to estimate the R.H.S. of (1.7). 

 We shall start by obtaining the bounds for the infinite series evolved on the R.H.S. of the 

expression of Lemma 1. Using the summing formula for hyper geometric series, we have ([7], 

p.49) 

1-((m + 1 − j − θ){2(2m-1) ∑
(j+θ−1)k

(m+1)k(2m+k)
∞
k=0 +

2m(2m−1)

m+1
∑

(j+θ)k

(m+2)k(2m+k+1)
∞
k=0  

≤1+(m+1-j- θ){
2(2m−1)

2m
∑

(j+θ−1)k

(m+1)k

∞
k=0 +

2m(2m−1)

m+1 (2m+1)
∑

(j+θ)k

(m+2)k

∞
k=0 }<4m.                     (1.8) 

  

Also, 

|1 − 2(2m − 1)(m + 1 − j −  θ) {∑
(j + θ − 1)k

(m + 1)k(2m + k)

∞

k=0

−
m

m + 1
∑

(j + θ)k

(m + 2)k(2m + k + 1)

∞

k=0

}| 
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≥ ||1 +
2(2m − 1)(m + 1 − j − θ)2

m + 1
∑

(j + θ)k

(2m + k + 1)(m + 2)k

∞

k=0

|

− |
(2m − 1)(m + 1 − j − θ)

m
|| 

=|1 +
2(2m−1)(m+1−j−θ)2

m+1
 ∑

(j+θ)k

(2m+k+1)k(m+2)k

∞
k=0 −

(2m−1)(m+1−j−θ)

m
| 

Now, as the function G()m defined by G(m)=1-km+g(m),where km is a constant and g(m) is a 

function of m such that for some constant k’m<km 

g(m) ≤ k’m < km 

(g(m) → ∞ as m → ∞, km→ ∞ as→ ∞), gives minimum absolute value if we take k’m in place of g 

(m)in the definition of G(m), that is |1 − km + g(m)| ≥ |1 − km + k’m, | 

and observing that 

2(m+1−j−θ)2(2m−1)

m+1
∑

(j+θ)k

(2m+k+1)(m+2)k

∞
k=0  < 

2(2m−1)(m+1−j−θ)

2m
[1 −

1

2m+1
], 

we get 

|1 +
2(2m−1)(m+1−j−θ)2

m+1
∑

(j+θ)k

(2m+k+1)(m+2)k

∞
k=0  −

(2m−1)(m+1−j−θ)

m
|  

 |1 +
2(2m − 1)(m + 1 − j − θ)

2m + 1
−

(2m − 1)(m + 1 − j − θ)

m
| 

=|1 −
(2m−1)(m+1−j−θ)

m(2m+1)
| 

>1-
2m−1

2m+1
 

>
1

2m+1
.           (1.9) 
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Now, using (1.8)and (1.9)in the part of the expression of Lemma 1, we get 

|F(j, m, θ)| [
2𝑚 − 2
𝑚 − 1

]
1

2m + 1
≤ | ∑ (𝑥𝑘)2𝑙𝑘(𝑥)

2m+1

k=m+2

| 

≤ |F(j, m, θ)| [
2𝑚 − 2
𝑚 − 1

]4m.        (1.10) 

The second inequality in (1.10) gives 

|∑ (𝑥𝑘)2𝑙𝑘(𝑥)2m+1
k=m+2 | ≤

Γ(j+θ)Γ(2m+2−j−θ)

(Γ(m+1))2  
2

2m−1
 

Now, following the result fo Luke [5] (also,[7]p.30-31), we have 

Log Γ (y)=(y-
1

2
) logy-y+

log2π

2
+ 0(

1

y
), 

And (logy/y) → 0 as y → ∞. Since 1+x=(j-1+ θ)/m, we find that as m→ ∞, j tends to ∞. Also, 2m-

j=m(1-x)+( θ − 1) → ∞as m→ ∞, Hence 

1

m
log | ∑ (𝑥𝑘)2𝑙𝑘(𝑥)

2m+1

k=m+2

| 

≤(
j+θ−(1/2)

m
)log(

j+θ

m+1
)+(

2m+(
3

2
)−j−θ

m
)log(

2m+2−j−θ

m+1
)+o(

logm

m
)    (1.11) 

Since j/m →1+x as m → ∞, we obtain 

lim
𝑛→∞

sup 
1

m
 log |   ∑ (𝑥𝑘)2𝑙𝑘(𝑥)2m+1

k=m+2 |  ≤  [(1 +  x) log (1 + x)  + (1 −  x) log (1 −  x)]    

(1.12)          

Finally, for the left hand inequality of (1.10), we observe that for each x such that x=xj+ θ 

/m, 0≤  θ <1, there exist an increasing sequence {rm} of positive integers (cf.[2],) Lemma 1 ) such 

that, when we write 

X=xj+ θ/rm,0< θ < 1, 

http://www.ea-journals.org/


International Journal of Mathematics and Statistics Studies  

Vol.2, No. 2, pp.76-85, June 2014 

           Published by European Centre for Research Training and Development UK (www.ea-journals.org) 

84 

 

Where j=j(n) and θ = θ(n), the inequalities 

K1≤ θ ≤  k2 

Hold for all m and o<k1<k2<1. Since sin π θ has a positive lower bound, that is to say, 

( sin π θ)/ π = c,from (1.10),we obtain  

1

rm
log |[∑ (𝑥𝑘)2𝑙𝑘(𝑥)2rm+1

k=rm+2
]| 

≥
1

rm
log Γ(j+ θ)+ 

1

rm
 logΓ (2rm+2-j- θ)- 

2

rm
 logΓ (rm+1)+0(

1

rm
)                                             (1.13) 

As we have already shown that the right hand side of the inequality (1.10) approaches (1+x) 

log (1+x)+(1-x)log(1-x),as m→ ∞, (1.13)also approaches to the same limit. This proves the 

theorem for r=1. Theorem 1 follows after a similar computations and using the fact that (k-m-1) μ 

can be written as  

(k − m − 1)μ = ∑ gt
μ𝜇

𝑡=0 (𝑚) ∏ (k − i)
μ−t
i=0  

where gt μ(m) denote polynomials in m of degree t and is defined by the following recurrence 

relations: 

g0
1(m)=1,g1

1(m)=-m,g0
2(m)=1,g1

2(m)=1-2m,g2
2(m)=m2, gμ+1

μ+1(m)=−𝑚gμ
μ (m), 

 gμ
μ+1(m)=(1-m) gμ−1

μ (m)+ gμ
μ (m) and g0

μ (m)= g0
μ+1 (m), and 

2m+1 

X2r=∑ (𝑥𝑘)2𝑙𝑘(𝑥)2m+1
k=1 , 

and Ln-1(f2r,x)-f2r(x)=2∑ (𝑥𝑘)2𝑙𝑘(𝑥)2m+1
k=m+1 . 

the case n= 2m is very similar to that of n=2m+1. 
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Proof of theorem 2. We know that Ln-1(f,x), n=2,3,… is convergent for x ∈ {-1,0,1}.Let x 

be a point different than {-1,0,1} and its distance from zero be a. Now, from Theorem 1, from 

arbitrary ∈>0 there exists a positive integer sequence r1<r2 <….rm …such that 

|Lrm−1(f2r, x) − f2r(x)| ≥ [(1 + 𝑎)1+𝑎(1 − 𝑎)1−𝑎−∈ ]𝑟𝑚
𝑎

2⁄  

For all m Therefore 

| Ln-1(f2r ,x) –f2r (x)| ≠ o(nk),      (n -> ∞)                     (1.14) 

Thus ,theorem 2 follows when we combine (1.14) with lemma 2. 
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