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ABSTRACT : In this paper we present a new design for Binary Linear Block code (BLBC)
by using the coupled matrices of Hadamard rhotrix . The Hadamard rhotrix of order 3 ,5 ,7
, 9 are used to explained our design ,as well as theorems and propositions are given for this
design to the Binary Linear Block code (BLBC) with proofs.
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INTRODUCTION

Rhotrix is a new concepts introduced in the literature of mathematics in 2003 [1] .1t is a
mathematical object which is ,in some way between 2*2 - dimensional and 3*3 — dimensional
matrices . A rhotrix of dimension 3 is defined as :

a;
RH; =<a, a3 a,> ..

as
Where a; a, az a, as € R.A rhotrix of higher order is defined in [7]. Algebra and analysis
of rhotrices is discussed in the literature [1-3,5-15] . Hadamard rhotrix over finite field is
defined in [14-15] . Hadamard rhotrices were used in construct of Balanced Incomplete Block
Design (BIBD) [13] .
The Hadamard rhotrix of order n is defined as:

ajq
as; azy )
ag—21 Ga1 3z @22 A1n-1
-2, N . N . ,n—
. a3 n_
RH, =<ag;,; @a-11 Qa-2,2 : . a3'” 1 azn-1 ain> . ..(2)
g, Qd-12 - 4n-1  qg
Ag-2n-1 - Ag—2n
Agn-1 Ag-1n-1 Ad-2,n
ad,n
Two coupled matrices of eq.(1.2) are :
a11 a12 . aln
a a ...oa
Vy=|"31 32 o em ... (2a)
adll ad,z e ad,n
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a21 azz LR az'n_l
V= % s o s ... (2b)
Ag-11 Ad-1,2 -+ Qd—1n-1
Example (1) : Let RH; be a Hadamard rhotrix of order 3 defined as :
1
RH; =<0 0 0> BN )
1
The coupled matrices in RH; are :
1 o
v, = [o 1] .. .30
V,=[0] .. . (3b)

Having order 2 and O respectively .
Example (2) : The Hadamard rhotrix of order 5 is defined as :

1
010
RH;=<101 11> N C))
000
1
The coupled matrices in RH5 are :
1 0 1
V1=[O 1 0] N 1))
1 0 1
V2=[é é] .. .(4b)

Having order 3 and 2 respectively.
Example (3) : Let RH, be a Hadamard rhotrix of order 7 defined as :

1
010
10111
RH,=<0111111> . (5)
01111
110
1
Two coupled matrices of RH, are :
1 0 1 1
=19 1 1 % (5a)
0 0 1 1
1 1 1
szlo 1 1] . . . (b
1 1 1

Having order 4 and 3 respectively .
Example (4) : Let RHy be a Hadamard rhotrix of order 9 defined as :
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1
101
01111
0111011
RHy=<111111111> (6)
0011011
11101
110
1
Two coupled matrices of RH, are :
1 1 1 1 1
1 1 0 1 1
=10 1 1 0 1 (6a)
|l0 1 1 1 of
1 0 1 1 1
0 1 1 1
1 1 0 1
2211 11 0 - (6b)
1 0 1 1

Having order 5 and 4 respectively .

Binary Linear Block Code (BLBC)

In this section , we shall review the some basic definitions and properties of Binary Linear
Block Code , which are used further in this paper .

Definition(1): An (r, s) binary linear block code is a s-dimensional subspace of the r-
dimensional vector space Pr={c=(Co,C1,. . .,Cr1)/VCj,c€{0,1}=GF(2) }; r is called the
length of the code , sth dimension.

Definition(2): An (r,s) BLBC can be specified by any set of s linear independent codeword

Co,Ct,. . .,Cs1 . If we arrange the s code words in to a s*r matrix G , G iscalled a generator
matrix for code C.
Definition(3): Let u=(uo, U1, . . . ,Us1),wWhereu; € GF(2),then: c=(co,C1,.. ., Cr1)=UG

Definition(4): LetG=[Is: A].Since cH'=uGH'=0,GH"' must be 0 .If H=[-A': I\ ]
Then G H' = 0s«rs) , thus the above H is called the parity - check matrix .

Definition(5): The Hamming distance between two code words ¢ and z is defined as du(c, 2)
= the number of components in which ¢ and z are differ.

Definition(6):The minimum distance dmin Of abinary code C,is the smallest distance between
two distinct code word : dmin=min{ dn(c,z)/c,z€e C, c#z}.

Definition(7): A BLBC with minimum distance dmin can correct all error patterns of weight
less than or equal to t=[ (dmin-1) /2], where t is called the error correction capability of a
code C.

Definition(8): A binary block code C(r,s) of length r and r=2° code words is called linear if
its 2° code words form a s- dimensional subspace of the vector space P: of r-tuples over the
field GF(2)={0, 1}.

Theorem(1)[4]: A binary code C can correct up to t—errors in any code word iff dn(C) >
2t+1 .
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Description of the design:

Consider the Hadamard rhotrix RH, of order n with their two coupled matrices V/; and V, ,
then , we will have two generating matrices of the form :

Gi=[ li:V;] and G2=[12:V,], where I. and I> are the identity matrices their orders dependent
on the order of V; and V, respectively with their parity check matrices of the form: H; =[- V{
11] and Ha=[- VS :12] . Also ,the code words can be represented by :c1=uG: and c; =VG;
, Where uandv € GF(2) and their lengths dependent on the order of V; and V, respectively

Note : In our work we used MATLAB program to find the code C and their minimum
Hamming distance ( dmin ) .

Figures :(1),(2),(3),(4) respectively shows the design of binary linear block code based on
Hadamard rhotrix of order 3,5,7,9 respectively in above examples with their minimum
Hamming distance and the t- error correction capability of a code C .

Code words (C) dmin t=[(dmin-1)/2]
c1=uG; | {0000,0101,1010,1111} 2 0
c2=vG2 | {0} 0 0

Figure(1) : Binary linear Block code C based on RH; .

Code words( C ) Cmin t=[(dmin-1) /2]
c1 =uG: | {000000,001101,010010,011111,10010 2 0
1,101000,110111,111010}
C2= VG2 | {0000,0100,1011,1111} 1 0

Figure(2) : Binary linear Block code C based on RHs .

Code words( C) dmin t=
[ (dmin -1) /2]

ci=uG: | {00000000,00010011,00101110,00111101,0100011 | 3 1
1,01010100,01101001,01111010,10001011,100110
00, 10100101,10110110,11001100,11011111,11100
010, 11110001}

c2=vG; | {000000,001111,010011,011100,100111,101000,11 | 2 0
0100, 111011}

Figure(3) : Binary linear Block code C based on RH, .

Code words (C) dmin =
[ (dmin -1)
2]
c1 =uG; | {0000000000,0000110111,0001001110,0001111001,0010001101, 3 1
7
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0010111010,0011000011,0011110100,0100011011,0100101100,0
101010101,0101100010,0110010110,0110100001,0111011000,01
11101111,1000011111,1000101000,1001010001,1001100110,101
0010010,1010100101,1011011100,1011101011,1100000100,1100
110011,1101001010,1101111101,1110001001,1110111110,11110
00111,1111110000}

c2=vGz | {00000000,00011011,00101110,00110101,01001101,01010110,01 4 1

100011,01111000,10000111,10011100,10101001,10110010,11001
010,11010001,11100100,111111111}

Figure(4) : Binary linear Block code C based on RH, .

Theorem(1): AIll the binary block code C which generating by the coupled matrices of
Hadamard rhotrix of order 3 , 5, 7 , 9 respectively are linear .

Proof: Consider the binary block code C which generating by the coupled matrices of
Hadamard rhotrix of order 7 in figure (3) :

We need to show that : Vv code words x , y € C and every scalar p € {0,1} , it holds that
:X+ye C,and p*x € C.

However , this follows immediately from x+y=2z € C , z is a linear compensation of x
and y .

And p*x belongs to C , since :

Case(1):if p=0, then , p*x = 0*x=0€ C.

Case(2):if p=1,then, 1*x =1 *x=x€ C.

By using the same processing for the binary block code C which generating by the coupled
matrices of Hadamard rhotrix of order 3 , 5,9 respectively are linear .

Lemma(l) : For all the binary block code C which generating by the coupled matrices of
Hadamard rhotrix of order 3,5 ,7,9 respectively , are contains the zero code word 0.
Proof: We will give the proof , in general case :

Let x be acodeword in C . Since C is a Linear block code (by using theorem (2)), then
x+x =0.

Proposition(1):

For the code C in figure (1) (c1=uGz1),we have r=4 , s=2.

For the code C in figure (2) (ca=uG;y) : we have r=8 , s=3 ,and (c2=vGy): we have r=4

,S=2.

. For the code C in figure (3) (c1=uG;) : we have r=16 , s=4 ,and (c2=vG2): we have r
=8,s=3.

. For the code C in figure (4) (c1=uGy) : we have r=32 , s=5 ,and (c2=vG2): we have r
=16,s=4.

Proof:

In general proof :This is immediate from the dimension of generator matrices G1 and G:.
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Lemma(2): The minimum Hamming distance of code C in our design is 3 or 4.

Proof: The parity check matrices H: and H: for the code C have columns which are all
nonzero and no two of which are the same . Hence C code can correct single error .By
theorem (1) can correct 1-error , as well as , we conclude that the minimum Hamming distance
of C code is at least 3 or 4.

CONCLUSION:

In the present paper , we have used the Hadamard rhotrix with its coupled matrices to design
Binary Linear Block Code (BLB) . Since this code can correct single error , then the Binary
Linear Block Code (BLB) code is belong to error - correcting code which has useful
applications in communication system .
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