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ABSTRACT: This research article established the global computational structure of solution 

matrices for single–delay autonomous linear neutral equations. The development of the 

solution matrices exploited the continuity of these matrices for positive time periods, the 

method of steps, change of variables and theory of linear difference equations to obtain these 

matrices on successive intervals of length equal to the delay h. 

KEYWORDS: Computational, Equations, Matrices, Neutral, Solution, Structure. 

 

INTRODUCTION 

 
Solution matrices are integral components of variation of constants formulas in the 

computations of solutions of linear and perturbed linear functional differential equations.  But 

quite curiously, no other author has made any serious attempt to investigate the existence or 

otherwise of their general expressions for various classes of these equations. Effort has usually 

focused on the single – delay model and  the approach has been  to start from the interval [0, ]h

, compute the solution matrices and solutions for given problem instances and then use the 

method of steps to extend these to the intervals [ ,( 1) ],kh k h for positive integral k , not 

exceeding 2, for the most part.  Such approach is rather restrictive and doomed to failure in 

terms of structure for arbitrary k . In other words such approach fails to address the issue of the 

structure of solution matrices and solutions quite vital for real-world applications. 

THEORETICAL UNDERPINNING 

 

It is a herculean task to compute the solution matrices of linear autonomous delay differential 

equations from the governing equations, from one interval to the next successive interval of 

size equal to the delay. Worse still, it is impossible to obtain these matrices on non-contiguous 

intervals using the afore-mentioned equations. This is a severe constraint imposed by method 

of steps. This can only be mitigated through the construction of optimal expressions for such 

matrices, which can be used to obtain such matrices on arbitrary intervals. Therefore, the need 

for this article is imperative. With a view to addressing such short-comings, Ukwu and Garba 

(2014w) blazed the trail by investigating the structure of the solution matrices of the class of 

double – delay scalar differential equations: 

 

                   ( ) ( ) ( ) ( 2 ), ,x t ax t bx t h cx t h t     R  

where , and a b c are arbitrary real constants.  
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METHODOLOGY 

 

By deploying ingenious combinations of summation notations, multinomial distribution, 

greatest integer functions, change of variables techniques, multiple integrals, as well as the 

method of steps, Ukwu and Garba (2014) derived the following optimal expressions for the 

solution matrices: 
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This article makes a positive contribution to knowledge by establishing the expressions for the 

solution matrices of linear neutral equations on  , 5 ;h  in the sequel the article derived the 

optimal computational structure of such matrices on the interval   ,,  laying the issue to 

rest once and for all. 

 

RESULTS  
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Let ( )k iY t ih 
 
be a solution matrix of  

                                   
1 0 1( ) ( ) ( ) ( ), (1)x t a x t h a x t a x t h      
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Note that ( )Y t  is a generic solution matrix for any .tR   

The coefficients 
1 0 1
,   ,a a a


and the associated functions are all from the real domain. 
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Theorem on ( )Y t  
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Proof 
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From the relation (3), we obtain 
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The evaluation of the integrals and skillful collection of like terms result in the following expression for  ( ) :Y t
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Observe that for {0,1,2,3} and  ,kk t J   

 
      

      

    

0 0

0

0

1 0 1

1

1

1 1 0 1

1

2 2

1 1 0 1

[ 1]

( 3 )

( ) sgn max 0,
!

( [ 1] ) sgn max 0, 1

( 3 ) sgn max 0, 2 (4)

i
k

ia t

i

k
i

i

a t ih

a t i h

a t h

a a a
Y t e t ih e k

i

a a a a t i h e k

a a a a t h e k







 



 



 



 
   

 
 

    

   



  

The process continues. 

4 4 3 4 3Consider the interval and hence the relation (3) implies that ; , 4 ={4h}  ;  J s t J h J J s h J     

 

 
       

 

0

0

3
1 0 1

1 0 1

1

2

1 0 1

00

0

2
4

1( 4 )
1

2

1

[3 ]4
4 3

!( )

i

i

i

a h i

a t h
i

h

a i ha i h

a

a a a
i h a a a i h

i

a a a

e e a e
Y t e

a h e









  







  



 
  

  
  

 

 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

28 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

   
    

     

0 4

0 4

4 4

0 4

0 0

3
1 0 1

4

1( )

1 4
24 2 2

1 1 0 1 4 1 1 0 1 4

1

1

[ 2] ( 4 )

1
!

( [ 2] ) ( 4 )

i
ia s h

t
ia t s

h
i

i

a s i h

a s i h a s h

a a a
e s i h e

i
a e ds

a a a a s i h e a a a a s h e

    



   



 

  

  
    

     
       
  






 

   
    

   

 

0 4

40 4

4

0 4

0

0

3
1 0 1

4

1

2
( )

1 1 1 0 1 4 4

144

2 2

1 1 0 1 4

1

[ 2]

( 4 )

1
!

( [ 2] )

( 4 )

i
ia s h

i

t

a t s i

ih

a s i h

a s i h

a s h

a a a
e s i h e

i

d
a e a a a a s i h e ds

ds

a a a a s h e

    





  



 

 

 



  
    

   
 
     
 
 
   
 
  





 
       

 

0

3
1 0 1

1 0 1

1

2

1 0 1

00

0

2
( )

1

1

( 3 )2

1

[ 1]
4 3

!
( )

i

i

i

t iha t i

i

t h

a t i ha

a

a a a
i h a a a i h

i

a a a

Y t e e a e

a h e



















 
  



   



 

 

 
 

    

 
 

 
 

 

 
 

0 0

0
0

0

3
1( ) 1 1 0 1

1

1

23 2
11 1 0 1

1 1 1 0 1

1 1

22

1 1 1 0 1 1 1 1

1

1

[ 2]
1

2

4 1
( 1)!

( [ 2] )
[3 ]

( 1)! 2

([2 ] )

2

i
ia t h

i

i

i i

i i

i

i

a t i h

a t i h
a t i h

a t i h

a a a a
a t h e t i h e

i

a a a a t i h e
i h e a a a a a

i

i h e
a a a a a a a a

     



   

 

 

  

   



 

 
 

 


    



  
   




  



 

   0

3
2

0 1

( 4 )( 4 )

3

a t ht h
a a e




 
 

      
    

0 0 0
3 3

( ) 1 1 0 1 1 1 0 1

1 0

1 1

1 1
4 1 3

! !

i i
i ia t h

i i

a t i h a t i ha a a a a a a a
a a t h e t i h e i h e

i i

          



 

    
       

 

 
      

 
    0 0

3 3
1 11 0 1 1 0 1

1 0 1 0

1 1

1 1
1 3

1 ! 1 !

i i
i i

i i

a t i h a t i ha a a a a a
a a t i h e a a i h e

i i

        

 

 

    
    

 
 

     
    

 
        

 
 

0 0

0 0

0

2
2 2

1 1

1 1 0 1 1 0 1 0 1

1 1

2
2

2 21 2

1 0 1 0 1 1 1 0 1

1

3

22

1 0 1 0 1

[ 2] [ 2]

[ 2] ( 4 )

( 4 )

2
( 4 )

2

2
4

2

4

3

i i

i i

i

i

a t i h a t i h

a t i h a t h

a t h

t i h
a a a a t h e a a a a a e

i h
a a a a a e a a a a t h e

t h
a a a a a e

 

   

 



   



 

   

  



 
    


    


 

 


 

It is evident from change of variables and grouping techniques that  

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

29 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

 
      

 
    

   
 

  

 
 

0

0 0

3
1 0 1

1

0 0

0

0

3 3
1 11 1 0 1 1 0 1

1 0

1 1

( )( ) ( )

1 1 0

3
11 1 0 1

1

1 1

[ 1

4
!

1 1
( 1)! 1 !

4 4

[3 ]
( 1)!

i

i

i

i i
i ia t

i i

t iha t h a t h

i

i

i

a t i h a t i h

a

a t i

a a a
i h

i

a a a a a a a
e t i h e a a t i h e

i i

a t h e a a t h e e

a a a a
i h e

i





        



 

 







   

 




 
     

 

    


 





 


   

 
     

 
   0

0

0

3
1 11 0 1

1 0

1

4
1 0 1

1

]
3

1 !

; (5)
!

i
i t i

i

i

ia t

i

a hh

a t ih

a a a
a a i h e

i

a a a
e t ih e

i

  












 




  





 

 
 

 
    

 
     

   

 
 

0

0

0 0

0

2
22 2

1

1 1 1 0 1 1 0 1 0 1

1 1

2 2

2 22

1 1 0 1 1 1 0 1

22
2

1 1 0 1

1

[ 2]
[ 2]

3 4

[ 2]

2( [ 2] )

2 2

3 4
(6)

2 2

( [ 2] )
;

2

i i

i i

i

i

a t i h
a t i h

a t h a t h

a t i h

t i ht i h e
a a a a a a a a a a e

t h t h
a a a a e a a a a e

t i h e
a a a a



   

 

   

 



 
 

 

 

  
  

 
   

 
 

 



   
 

 
      

2

1 0 1

2
2

1 0 1

0

0

0 0

22
( 3 )2

1 1 1 1 0 1

1

2
2

( 3 )1

1 0 1 0 1 1

1

2

[ 2]

2

Also,

([2 ] )

2

2
(7)

2

t h i

i

t hi

i

a t i h

a

a t i h a

a a a

h
a a a

i h e
a h e a a a a a

i h
a a a a a e a e





  


  





  



 

 






 


  





      

       

 
   

  

1 0 1

0 0

0 0

0

32
2

1 1 1 1 0 1

1

2
2 21 2

1 1 0 1 1 1 0 1

1

3
3

2 1 1 0 12

1 0 1 0 1

1

[ 1] ( 4 )

[ 2] ( 4 )

( 4 )

3

Furthermore,

( 4 )

3

( 4 ) 4

4
1

3 !

i

i

i

i

i
i

i

a t i h a t h

a t i h a t h

a t h

a a a i h
t h

a e a a a a a e

a a a a t h e a a a a t h e

t h a a a a
a a a a a e t i h e

i

  





   



 

 



  

  



 


 

     

 
    






 

 
    

0

0
3

1 1 0 1

1

1

1
3

!

i
i

i

a t i h

a t i ha a a a
i h e

i

  

    



 

 
 

 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

30 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

          

     

 

1 0 1

0 0

0 0

0

4 1
2 2

1 1 1 0 1

1

3
2 2 32

1 1 0 1 1 1 0 1

2
2

1` 1 0 1

[ 1] ( 3 )

( 4 ) ( 4 )

( 3 )

1
1 3

2

( 4 )
4

2

(8)
2

i

i

a t i h a t h

a t h a t h

a t h

a a aa t i h e a a a a t h e

t h
a a a a t h e a a a a e

h
a a a a e





  



   

 

  

 



     


    

 



 

Adding up expressions (5), (6), (7) and (8) yields 

 
   

     

   

0 0

0 0

0

4
1 0 1

1

4 1
2 2

1 1 0 1 1 1 0 1

1

3
3 22 2

1 1 0 1 1 1 0 1

[ 1] ( 3 )

( 4 )

( )
!

( [ 1] ) ( 3 )

( 4 ) 3
( 4 ) (9)

2 2

i

ia t

i

i

i

a t ih

a t i h a t h

a t h

a a a
Y t e t ih e

i

a a a a t i h e a a a a t h e

t h
a a a a a a a a t h e







   



   



  



 
   

 
 

      

 
     
 




 

 

 Hence  for , 0, 1, 2, 3, 4 ,kt J k 

 
      

      

    

   

0 0

0

0

0

1 0 1

1

1

1 1 0 1

1

2 2

1 1 0 1

3
3 22 2

1 1 0 1 1 1 0 1

[ 1]

( 3 )

( ) sgn max 0,
!

( [ 1] ) sgn max 0, 1

( 3 ) sgn max 0, 2

( 4 ) 3
( 4 )

2 2

i
k

ia t

i

k
i

i

a t ih

a t i h

a t h

a

a a a
Y t e t ih e k

i

a a a a t i h e k

a a a a t h e k

t h
a a a a a a a a t h e







 



 

   



 



 
   

 
 

    

   

 
     
 





  ( 4 )
sgn max 0, 3 (10)

t h
k




 

          

     

0 0

1

1 1 0 1

0 1

0 1 1 22

[ ]

Observe that  0,1, , 4 ,

( ) max 1,0 [ ] sgn max 0,

where 

1 1 3
, 0, , ; 1, 1, , 1 ; , 1, , 1 ; , 4

! ( 1)! 2

It is also instruc

k

k k i
j ja t i

i j

i j

j i j

a t i j h

k t J

Y t e k c a a a a t i j h e k

c j k c i k c j k c k
j j

 

 

 

 

  

 
      

 

         




21 1 2 22

1 1

1 1 3
tive to recognize that 1 . Further involved 

2 2 2

1
investigation suggests the emerging relationship . This pattern will be 

validated by an inductive proof.

i j i j i j

c c c

c c c
j

 

    

 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

31 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

 

 
 

     

      

        

0 0

0

0

1 0 1

1

1

1 1 0 1

1

2

1 1 0 1

1 2

[ 1]

[ ]

Alternatively, 0,1, , 4 ,

( ) max 1,0 max ,0
!

[ 1] max 1,0

[ ] sgn max 0, 2 (11

k

j
k

ja t

j

k
i

j

k k i
j ji

i j

i j

a t jh

a t i h

a t i j h

k t J

a a a
Y t e k t jh e k

j

a a a a t i h e k

c a a a a t i j h e k







 



 

 

 



 

 

  


   

    

 
     
 





 )

 1 22

21 1 2 22

1 1

where 

1 3
, 1, , 1 ; , for 4.

( 1)! 2

1 1 3
It is also instructive to recognize that 1 . Further investigation-quite 

2 2 2

1
involved-suggests the emerging relationship: ,

j

i j i j i j

c j k c k
j

c c c

c c c i
j

 

    


    

     1,2, , 2 , 1,2, , .

This pattern will be validated using an inductive proof.

k j k i  

The next result gives the optimal computational structure of the solution matrices. 

 

Theorem On The Optimal Computational Structure of the Solution Matrices 

   

 
      

      

 

0 0

0

0 1 1 1 0 1

1 0 1

1

1

1 1 0 1
1

1 1 0 1

[ 1]

1
Let , , 1,2, ,  and let , 1. Suppose that 0. Then

!

( ) sgn max 0,
!

( [ 1] ) sgn max 0, 1

j ik

j
k

ja t

j

k
i

i

ji
i j

a t jh

a t i h

t J i j k c c a a a a
j

a a a
Y t e t jh e k

j

a a a a t i h e k

c a a a a

 







 


 



 

 
 
 
 

     


  

    

 





    0
2

1 2

[ ]
(12)( [ ] ) sgn max 0, 2

k k i
j

i j

a t i j h
t i j h e k

 

 

 
  

 
   

   

  

1 2

1 1and There are exactly 

max such unknown  values to be d

for some real positive constants such that
1 1

 = , 1 , 1,2, 2
1 ! 2

1
  0, 2,3, 2 , 2,3, .

1
3 2 sgn( 1),0

2
i j

i j j i

i j i j i j

c

c c c i i k
j

c c c i k j k i
j

k k k

 

 
 
 

   


       

  

  1

etermined quite easily;

this number is  pruned to a mere max in any transition from to2, 0 ,   ( )  ( ).k kk Y t Y t
 

Proof 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

32 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

1

1 3, 2 4 . Assume the

validity of the theore

It is clear from theorem 2.1 that the t

m for all 1 2, 2 ,  for some integer 5. The

heorem is valid for

n for ,

 

k

i j i

i k j k i k t J 

    

       

the relation (3) implies that 

 
          

      

      

 
     

 

 

0 0 0

0

00

1
1 0 1

1 1 0 1

1 1

2

1 1 0 1

1 2

1 11 0 1

1 1

1

1 0 1

1

[ 1]

[ ]

( ) 1 ( )
!

1

1 1
1 !

1 !

i
k k

ia t i

i i

k k i
jji

i j

i j

i
k

i i

i

i

i

a t ih a t i h

a t i j h

a t ha t h

a a a
Y t e k i h e a a a a k i h e

i

c a a a a k i j h e

a a a
a t k h e a t i h e

i

a a a
a

i




 

 

 

 

 

 







  

 




      

    


     








 





       
   0

0

21
1

1 1 1 0 1

1 1

[ 2]
( 2 )

2

k k
i i i

i

a t i h
a t h t i h e

k i h e a a a a a




 



 
  

   

 

 
   

 
    

0

0

21

1 1 1 0 1

1

1
2

1 1 1 0 1

1 2

[ 2]

[ 1]

( 1 )

2

1

1

k
i

i

j
k k i

ji

i j

i j

a t i h

a t i j h

k i h e
a a a a a

t i j h e
c a a a a a

j



 




 

 

 

 

  

 
 

  
 







 
    0

1
2

1 1 1 0 1

1 2

[ 1]

1

j
k k i

ji

i j

i j

a t i j h
k i j h e

c a a a a a
j


 

 

 

  
 

 




       
   

 
     

   

0 0

0 0

1 1 0 1

1 0

1

11 1 0 1 1 0 1 0 1

1 1

[ 1]

[ 1] [ 1]

1 e  + [ 1]
!

[ ] [ 1]
! ( 1)!

i
k

ia t h

i

i i
k k

i i

i i

a t i h

a t i h a t i h

a a a a
a a t k h t i h e

i

a a a a a a a a a
k i h e t i h e

i i

  





   

 

 

   


    

 
    





 

 
       0 0

1
11 0 1 0 1 1

1 1 0 1

1 1

[ 1] [ 2]
[ ] ( [ 2] )

( 1)!

i
k k

i i

i i

a t i h a t i ha a a a a
k i h e a a a a t i h e

i


  

 

 

   
     


 

       

   

   

0 0

0

0

21 1
1 1

1 1 0 1 1 0 1 0 1

1 1

21
1

1 0 1 0 1

1

2
1

1 1 0 1

1 2

[ 2] [ 2]

[ 2]

[ 1]

( [ 2] )
([ 1] )

2

([ 1] )

2

( [ 1] )

k k
i i

i i

k
i

i

k k i
ji j

i j

i j

a t i h a t i h

a t i h

a t i j h

t i h
a a a a k i h e a a a a a e

k i h
a a a a a e

c a a a a t i j h e

 
 

   

 




 



 


 

 

   

 

  

 
     

 
 

    

 





http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

33 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

   

 
 

 
 

0

0

0

2
1

1 1 0 1

1 2

12
1

1 0 1 0 1

1 2

12
1

1 0 1 0 1

1 2

[ 1]

[ 1]

[ 1]

([ ] )

( [ 1] )

1

([ ] )

1

k k i
ji j

i j

i j

jk k i
ji

i j

i j

jk k i
ji

i j

i j

a t i j h

a t i j h

a t i j h

c a a a a k i j h e

t i j h e
c a a a a a

j

k i j h e
c a a a a a

j

 


 

 

 


 

 

 


 

 

  

  

  

   

  
 



 
 









 
      

 
     

      

 
 

00

0

1 11 0 1 1 0 1

1

1 1

1 0 1

1 1

1

Use of change of variables, as well as appropriate groupings yields the following relations

1 1
! 1 !

1

:

1 !

i i
k k

i i i

i i

i
k

i

a t ha t ih

a t h

a a a a a a
k i h e a t i h e

i i

a a a
a t k h e a k i

i

  

 









 
    




    



 

          

 
     

   

 
   

00

0 0

0

1

1 0

1 11 0 1 0 1 1 0 1 0 1

1 1

1
1 0 1

1

[ 1] [ 1]

1 e

[ 1] [ ]
( 1)! ( 1)!

; (13)
!

i i a t h

i i
k k

i i

i i

i
k

i

i

a t h

a t i h a t i h

a t ih

h e a a t k h

a a a a a a a a a a
t i h e k i h e

i i

a a a
t ih e

i

 



    

 








   



  

 
    

 


 

 



     
   

     
   

0 0

0 0

1
1 1 0 11

1 1 0 1

1 1

[ 1] 1 [ 1] 1
1 1 0 1

1 1 0 1

1 2

[ 2] [ 1]

[ 1] [1 ]

( [ 2] ) [ 1] (14)
!

( [ 1] ) [1 ]
!

i
k k

ii

i i

jk k
ji

i j

a t i h a t i h

a t i h a t j h

a a a a
a a a a t i h e t i h e

i

a a a a
a a a a t i h e t j h e

j


 

 

 

   
 

 

 

   

   


     


      

 

 

 
   

   

 
    

0

0

0

2 21 1
1

1 1 1 0 1 1 0 1 0 1

1 1

21 2
2

1 1 0 1

1

[ 2]
[ 2]

[ 2]

Furthermore,

( 2 ) ( [ 2] )

2 2

( 2 )
(15)

2

k k
i i

i i

k

i

i

a t i h
a t i h

a t i h

t i h e t i h
a a a a a a a a a a e

t i h e
a a a a

 


   

 

 

 



 
 

 

   
  

 
 

 



     

 
       

     

 

0 0

0 0

1 2

2
1 1

2 2 1

1 1 0 1 1 1 0 1

1 2

[ 1] 2
2

1 1 0 1

1

All the other five summations free of , of the terms in   and  add up to 

1
(16)

2 !

a t i h a t i h

i j

j
k k

ja t i h a t j hi

i j

k
i

i

c e e

k i h k j h
a a a a e a a a a e

j

k
a a a a

   

 
   

   

 

 

 



  
   


  

 


       

     0 0

2
[ 1] 1

2 1

1 1 0 1

2

1

2 !

j
k

ja t i h a t j h

j

i h k j h
e a a a a e

j

 
   

 



 
 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

34 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

 
 

 
 

 

0

0

12
1

1 1 0 1

1 2

12
1

1 1 0 1

1 2

1 1 0 1

[ 1]

[ 1]

The seven summations involving  add up to

( [ 1] )

1

([ ] )

1

([ 1 ] )

i j

jk k i
ji

i j

i j

jk k i
ji

i j

i j

ji j

i j

a t i j h

a t i j h

c

t i j h e
c a a a a

j

k i j h e
c a a a a

j

c a a a a k i j h e

 


 

 

 


 

 

 

  

  

  




 
 



    





 

   

   

0

0

0

2

1 2

2
1

1 1 0 1

1 2

2
1

1 1 0 1

1 2

[ ]

[ 1]

[ 1]

( [ 1] )

([ ] ) (17)

k k i

i j

k k i
ji j

i j

i j

k k i
ji j

i j

i j

a t i j h

a t i j h

a t i j h

c a a a a t i j h e

c a a a a k i j h e

 

 

 


 

 

 


 

 

 

  

  

    

   







 1 1 1 0 1

All summations with constant coefficients  add up to zero. Therefore appropriate changes of 

variables transform above expressions to the following equivalent equation:

([ 1 ] ) j
ji

i j

k i j h e
c a a a a  

  
 

 

   

0

0

2 1

1 3

2

1 1 0 1

1 2

[ ]

[ ]
([ 1 ] )

k k i

i j

k k i
ji j

i j

i j

a t i j h

a t i j h

j

c a a a a k i j h e

  

 

 

 

 

 

 
    

 



 

   

 
       

     0 0

0

1

1 1 1 0 1

2 2

2
2 1

2 2 1

1 1 0 1 1 1 0 1

1 2

[ ]
([ 1 ] )

1
0

2 !

k k i
ji j

i j

i j

j
k k

ja t i h a t j hi

i j

a t i j h
c a a a a k i j h e

k i h k j h
a a a a e a a a a e

j

 

  

 

 
   

   

 

 
    

  
    



 

         

      

      

 

0

0

0

0

22

12 1 1 0 1

1

1 1 1 1 1 0 1

3

2
22

2 1 2 1 1 0 1

2

1 1 1 1 0 1

3

[ 1]

[ 2]

[

1

1 1

!

1
1

2

1
([ 1 ] )

k
jj

j j

j

k
i

i i

i

ji j

i j i j i j

a t h

a t j h

a t i h

a t

c a a a a k j h e

c c a a a a k j h e
j j

c c a a a a k i h e

c c c a a a a k i j h e
j

 



  





  



   



 

 



   

 
     

 

 
      

 

 
       

 





 
2

2 3

]
0

k k i

i j

i j h
 

 


   

 

     

0 1 12 1 1 1

2 1 2 1 1

1 1 1
These, combined with = , =1 1; , 2,4, , 1 ;

! !

1 1
, 1,2, 2 ; 0, 1,2, 2 , 2,3, .

2

j i j j

i i i j i j i j

c c c c c j k
j j j

c c i k c c c i k j k i
j



  

     

           

 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

35 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

 

 
 

1 1 1

1

Consider the difference equation 

1 1
, 2, , 1 (18)

!

Assertion 1

1
, 2,3, , 1 (19)

1 !

j j

j

c c j k
j j

c j k
j

   

  


 

 
   

 

5

1 1 s satisfy (18) for  

The proof is by mathematical induction on . For , it is clear from (11) that,

1
, 2,3,4 ;  these 2,3,4 . Assume that the assertion is valid

1 !

for 5, , 1 , for some 

j j

j t J

c j c j
j

j k



  


 

Proof

integer 6. Then from (18) and the induction hypothesis,k 

          

 
  

1 1 1 1 1 1

1

1 1 1 1 1 1 1 1
1

! 2 ! ! 2 ! 1 1 ! 1 1 1 !

1
, 2,3, , 1 1 . Hence the assertion is valid.

1 !

k k k

j

c c c
k k k k k k k k k k

c j k
j

  

 
         

       

    


 

   

2 1 2

2

Consider the difference equation 

1
                                      , 2,3, 2 ; (20)

2

Assertion 2

1
1 , 2,3, 2 (21)

2

   

   

i i

i

c c i k

c i i k

 

  1 1,2 2,2

From (11), (20) and (21), it is clear that the assertion is valid for 2,3 . Assume the validity

1
of the assertion for 4, , 2 ,for some integer . Then for ,

2
k k k

i

i k k t J c c  



    

Proof

 

      1,2 2,2

1

1 1 1 1
2 1 1 1 the assertion is valid for 1 2

2 2 2 2

if ,  completing the proof of the asssertion.

k k

k

c c k k i k

t J

 



             



 

 

 

 

 

 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.2,No.4, pp.23-39, September 2014 

       Published by European Centre for Research Training and Development UK (www.eajournals.org) 

36 
 
 ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 
 

DISCUSSION 
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IMPLICATION TO RESEARCH AND PRACTICE 

 

The results of this article have wide-ranging implications to research and practice. First, they 
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the associated computational complexity and proneness to severe errors. Furthermore, the 

extension of the solution matrices from one interval to the next contiguous interval of length 
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determined. The implication is that solution trajectories can be easily obtained for any initial 

function specification. 
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Therefore on the interval , 7 , the general expression for the solution matrices, ( ) can be 

stated as follows: Let , ( 1) , for any integer 6. Let . Then
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CONCLUSION 

 

This article obtained the structure of the solution matrices of single-delay neutral differential 

equations with the determination of the expressions for certain coefficients of the matrices and 

an easily solvable recursive difference equation for the remaining coefficients, proving 

conclusively that there is no general expression for such coefficients. This contrasts quite 

sharply with the coefficients of solution matrices of single-delay and the class of double-delay 

differential equations whose expressions are clearly established, as in the observation in Ukwu 

and Garba (2014).  

 

FUTURE RESEARCH 

 

The investigations carried in this article will be extended to the system counterpart of equation 

(1). If successful, the results will be applied to the corresponding variation of parameters 

formula with a view to explicitly solving associated initial function problems. See Dauer and 

Gahl (1977) for solution trajectories, subject to initial function specifications. 
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