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ABSTRACT: This paper presents the Adomian decomposition method for the solution of second 

order ordinary differential equations. The Adomian decomposition method (ADM) is a creative and 

effective method for exact solution of functional equations of various kinds. It is important to note 

that a large amount of research work has been devoted to the application of the Adomian 

decomposition method to a wide class of linear and non-linear, ordinary or partial differential 

equations. The decomposition method provides the solution as an infinite series in which each term 

can be easily determined. 
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INTRODUCTION 

The Adomian Decomposition Method is a semi-analytical method for solving differential 

equations. The method was developed from the 1970s to the 1990s by George Adomian, chair of 

the center for applied Mathematics at the University of Georgia. It is further extensible to 

stochastic systems by using the Ito integral. The aim of this method is towards a unified theory 

for the solution of partial differential equations (PDE). The crucial aspect of the method is 

employment of the Adomian polynomials which allow convergence of solution for the non-linear 

portion of the equation without linearizing the system. 

In this paper, we introduce a non-local approximation of the non-linear terms of the usual 

Adomian polynomials in the Adomian Decomposition method. 

 ADOMAIN DECOMPOSITIONMETHOD 

The take-off point is to give a review of the Adomian decomposition method as follows; 

It is assumed that is sufficiently differentiable and that the solution of 
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0( , ); ( )y f x y y a y                               

(1) 

Exists and satisfies the Lipchitz condition. 

Let   and the inverse operator  1L  to be the one fold integral operator defined by 

                    

(2) 

for the first order differential equation; and 

Let  
2

2

d
L

dx
  and the inverse operator  1L  to be the two fold integral operator defined by 

                                                

(3) 

For the second order ordinary differential equation 

Thus, the numerical solution to ( , )y f x y   is given by 

                                                                                                            

(4) 

  

 Where  

    

 
This is as a result of Adomian’s Decomposition Method, which assumes a series solution for y(x) 

by given it as an infinite sum of the components of   (2). 
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The components  will be determined recursively. Adomian decomposition method defined 

the non-linear function by the infinite series of polynomials. 

 
          

The  is called Adomian’s polynomials. This can be calculated for various classes of non-

linearity according to 

  

 
 Or       

 

 
and C (k, n) means the sum of possible products of K components of U, whose subscripts add to 

n, divided by the factorial of the number of repetitions. 

Substituting (6) and (7) into (4) we have; 

 

Each term of the series (11) is given by the recurrent relation 

                                        

(12) 

and 

                                        

(13) 
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Numerical Examples and Results of Adomian Decomposition Method 

Here, we focus our attention on the applications of Adomian decomposition method to generate 

numerical results, in each problem, only the first ten term of the decomposition series will be 

used in computing the results. 

Example 1 

We consider the second order differential equation of the form; 

   

With exact solution of the form 

                  

(14) 

The solution is then compared with the exact solution. The detail of the results is given in the 

Table 1, Figures 1A and 1B below. 

Table 1 

  x   Exact Solution    Numerical 

Solution 

  Error 

 0.00  1.00000000  1.00000000  0.00000000 

 0.10  1.00517094  1.00517094  0.00000000 

 0.20  1.02140272  1.02140284  0.00000012 

 0.30  1.04985881  1.04985881  0.00000000 

 0.40  1.09182477  1.09182477  0.00000000 

 0.50  1.14872122  1.14872134  0.00000012 

 0.60  1.22211885  1.22211874  0.00000012 

 0.70  1.31375265  1.31375277  0.00000012 

 0.80  1.42554104  1.42554104  0.00000000 

 0.90  1.55960321  1.55960333  0.00000012 

 1.00  1.71828210  1.71828198  0.00000012 
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Figure1
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Figure 1B: The 3-D view 
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Example 2 

We consider the second order differential equation of the form 

    

 

The results generated are shown in Table 2, Figures 2A and 2B below. 

 

Table 2 

 X   Exact Solution    Numerical Solution   Error 

 0.00  2.00000000  2.00000000  0.00000000 

 0.01  1.98960352  1.98960185  0.00000167 

 0.02  1.97842801  1.97841477  0.00001323 

 0.03  1.96649432  1.96645010  0.00004423 

 0.04  1.95382380  1.95371914  0.00010467 

 0.05  1.94043684  1.94023347  0.00020337 

 0.06  1.92635429  1.92600477  0.00034952 

 0.07  1.91159725  1.91104472  0.00055254 

 0.08  1.89618587  1.89536524  0.00082064 

 0.09  1.88014126  1.87897825  0.00116301 

 0.10  1.86348355  1.86189568  0.00158787 

 

Figure 2A 
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Figure 2B: The 3-D view 
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Example 3 

We shall consider the second order differential equation of the form; 

 

The results obtained are shown in the Table 3, Figures 3A and 3B below.  

Table 3 

  X   Exact Solution    Numerical Solution   Error 

 0.00  4.00000000  4.00000000  0.00000000 

 0.01  3.98931456  3.98931503  0.00000048 

 0.02  3.97731566  3.97732186  0.00000620 

 0.03  3.96408510  3.96411610  0.00003099 

 0.04  3.94970179  3.94979882  0.00009704 

 0.05  3.93423939  3.93447471  0.00023532 

 0.06  3.91776776  3.91825366  0.00048590 

 0.07  3.90035462  3.90124989  0.00089526 

 0.08  3.88206244  3.88358259  0.00152016 

 0.09  3.86295199  3.86537480  0.00242281 

 0.10  3.84307981  3.84675431  0.00367451 
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Figure3A

3.75000000

3.80000000

3.85000000

3.90000000

3.95000000

4.00000000

4.05000000

1 2 3 4 5 6 7 8 9 10 11

Series1

Series2

 

Figure 3B:  The 3-D view 
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DISCUSSION OF RESULTS 

From the Tables above, we can see that Adomian decomposition method is very close to the 

exact solution. Also, the results presented here indicate that the method is reliable, accurate and 

converges very rapidly. 

 

CONCLUSION  

It was observed that better accuracy can be obtained by accommodating more terms in our 

decomposition series, and that the solutions of the presented equations is stable and consistent in 

the interval .  

The above results are obtained using Fortran 77 programming language. 
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