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ABSTRACT: From a technical standpoint, free convection flow around an isothermal vertical flat plate 

in the presence of a magnetic field is very critical, and many researchers have studied such problems. 

The effects of variable viscosity and thermal conductivity on magneto hydrodynamics (MHD) natural 

convection flow over a heated vertical plate immersed in a fluid with stress work will be investigated in 

this research. The basic governing equations are converted into non-dimensional governing equations 

by using the necessary variables. These equations' numerical calculations are carried out using an 

effective implicit finite-difference system. The Crank-Nicolson scheme is what it's called. This research 

uses a viscous incompressible fluid with temperature-dependent viscosity and thermal conductivity. The 

two-dimensional laminar and unsteady boundary layer equations are discussed here. The effect of 

various parameters on velocity, temperature, local skin friction, local Nusselt number, average skin 

friction, and average Nusselt number profiles will be seen in this analysis, and the results will be 

compared to those of other researchers. We'll also make a comparison between the current work's figures 

and those from previous publications. 

 

KEYWORDS: Steady State, Magneto-Hydrodynamics, Variable Viscosity, 

Dependent Thermal Conductivity  

 

INTRODUCTION 

The viscous dissipation effect is significant in natural convection in a variety of 

devices that are subjected to large decelerations or run at high rotational speeds, as 

well as in strong gravitational field processes on large scales (on large planets) and 

geological processes. The effects of variable viscosity and thermal conductivity on 

MHD natural convection flow along an isothermal vertical flat plate with stress work 

are usually overlooked in discussions and analyses of natural convection flows, 

friction, and viscous stress work effects. Furthermore, scientists and researchers are 

interested in the issue of natural convection flow along a vertical flat plate because of 

its numerous applications. Convection is widely visualized in engineering 
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applications such as the formation of microstructures during the cooling of molten 

metals and fluid flows around veiled heat dissipation fins, solar ponds, petroleum 

reservoirs, nuclear energy, and fire engineering, to name a few. Because of its various 

applications in the areas of energy conservation, cooling of electrical and electronic 

devices, construction of solar collectors, heat exchangers, and many others, natural 

convection heat transfer has gotten a lot of attention. The most difficult aspect of 

solving natural convection problems is determining the velocity field, which has a 

significant impact on the heat transfer process. The effect of pressure stress work and 

viscous dissipation in natural convection flow along a vertical flat plate with heat 

conduction was studied by Alam et al. [1]. The Joule heating effect on the coupling 

of conduction with MHD free convection flow from a vertical flat plate was presented 

by Alim et al. [2]. The effects of temperature-dependent thermal conductivity on 

MHD free convection flow along a vertical flat plate with heat conduction were 

investigated by Rahman et al. [3]. Alim et al. [4] investigated the influence of viscous 

dissipation and Joule heating on conduction and free convection coupling along a 

vertical flat plate. Molla et al. [5] studied natural convection laminar flow along a 

vertical wavy surface with temperature-dependent viscosity and thermal conductivity. 

The effects of temperature-dependent thermal conductivity on natural convection 

flow along a vertical flat plate with heat generation were presented by Safiqul Islam 

et al. [6]. The effects of viscous dissipation on MHD natural convection flow along a 

vertical wavy surface were investigated by Kabir et al. [7]. Hossain [8] investigates 

the effects of viscous and Joule heating on MHD free convection flow with variable 

plate temperature. Soundalgekar et al. [9] investigate the finite difference study of 

transient free convection on an isothermal flat plate. Elbashbeshy et al.[10] investigate 

a steady free convection flow with variable viscosity and thermal diffusivity along a 

vertical plate. Kafoussius et al.[12] consider the numerical analysis of the combined 

free and forced convective laminar boundary layer flow past a vertical isothermal flat 

plate with temperature dependent viscosity. Anwar Hossain et al.[13] present the 

effect of radiation on free convection flow of fluid with variable viscosity from a 

porous vertical plate. Seddeek[14] investigates the effect of variable viscosity on an 

MHD free convection flow past a semi-infinite flat plate with an aligned magnetic 
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field in the case of unsteady flow. G.palani.Kwang et al. [18] investigated a numerical 

analysis of a vertical plate with varying viscosity and thermal conductivity. In this 

research, an analytical solution for the variable viscosity and dependent thermal 

conductivity in natural convection flow along a vertical flat plate in the presence of 

magneto-hydrodynamics with heat conduction will be performed based on 

experimental analysis. The discretization of momentum and energy equations in terms 

of non-dimensional coordinates x and y in order to express the equations in finite 

difference form by approximating functions and derivatives in terms of the core 

differences in both coordinate directions. The numerical calculations of these 

equations led to the creation of a programming code for the current problem, which 

uses an effective implicit finite-difference scheme known as the Crank-Nicolson 

scheme. For various parameters such as variable viscosity  λ, dependent thermal 

conductivity ϒ, magnetic parameter M, pressure work parameters Ge, and Prandtl's 

number Pr, the outcomes data analysis has established for velocity profile, 

temperature profile, local skin friction local Nusselt number, average skin friction, 

and average Nusselt number. 

 

MATHEMATICAL ANALYSIS  

The unsteady flow of a viscous incompressible fluid past a semi-infinite vertical plate 

is considered here. As shown in Fig.1, the x-axis is taken vertically upward along the 

plate, and the y-axis is chosen perpendicular to the plate at the leading edge. The x-axis 

is assumed to begin at the plate's leading edge. Except for the fluid viscosity, which 

varies exponentially with fluid temperature, the thermal conductivity, which varies 

linearly with fluid temperature, and the density variation in the body force term in the 

momentum equation, where the Bossiness approximation is used, all fluid physical 

properties are assumed to be constant. The mathematical statement of the basic 

conservation laws of mass, momentum and energy for the steady viscous 

incompressible and electrically conducting flow, after simplifying we have 



International Journal of Mathematics and Statistics Studies 

Vol.9, No.2, pp.33-52, 2021 

 Print ISSN: 2053-2229 (Print),  

                                                                                   Online ISSN: 2053-2210 (Online) 

36 

 

 

Figure 1 

 

The mathematical statement of the basic conservation laws of mass, momentum and 

energy for the steady viscous incompressible and electrically conducting flow, after 

simplifying we have  
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Where, u  and v  are the velocity components along the x  and y  axis respectively, t

is the time, T   is the temperature of the fluid in the boundary layer and 
T

  is the fluid 

temperature far away from the plate , g is the acceleration due to gravity,    is the 

thermal conductivity of the fluid,  is the density, pC
 is the specific heat at constant 

pressure and   is the variable dynamic co-efficient of  viscosity of the fluid.  The 

hydrostatic pressure  
e

P
g

x



 

  where, e  ,  Tk  is the thermal conductivity of the 

fluid depending on the fluid temperature T  , 0 is the electric conduction and 0 is the 

magnetic field strength. 
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The initial and boundary conditions are 
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TRANSFORMATION OF THE GOVERNING EQUATIONS  

 Heat on introducing the following non-dimensional quantities in equations (1) to (4), 

we have 
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(5) 

 

Here L is the length of the plate,   is the kinematic viscosity, Gr is the Grashof number, 

Pr is the Prandtl’s number.  

Out of many forms of variation of viscosity and thermal conductivity with 

dimensionless temperatureT , which are available in the literature. The following forms 

are proposed by Stattery[21], Ockendon and Ockendon[8], Elbashbeshy and Ibrahi[10], 

Wilson and Duffy[16], and Seddeek and Abdelmegguid[19] 
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 Where     and   denote the viscosity and thermal conductivity variation parameters 

respectively, depended on the nature of the fluid. Here 0  and 0k  are the viscosity and 

the thermal conductivity at temperature wT  . 

The magneto-hydrodynamic field in the fluid is governed by the boundary layer 

equations, which in the non-dimensional form obtained by introducing the 

dimensionless variables described in (5), may be written the equation of continuity as 
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Now momentum equation (2) can be reduced by applying the non- dimensional 

transformation (5) and (6), we have 
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Again the energy equation (3) can be reduced by the above similarity transformation 

(5) and (7), we have 
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The Corresponding initial condition and boundary condition in dimensionless forms are 

as follows  
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Equations (8) to (10) with the boundary condition (11) describe the free convective 

unsteady laminar boundary layer flow with variable viscosity and thermal conductivity 

along an isothermal semi- infinite vertical plate. Where,
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The local shear stress in the plate is defined by  
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By introducing the non-dimensional quantities given in equations (5)-(6) in (12), we 

get non-dimensional form of local skin friction and it is given by 
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The integration of equation (13) from 0x   to 1x   gives the average skin friction and 

it is given by 
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The local Nusselt number is defined by 
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The integration of equation (15) from 0x   to 1x   gives the average skin friction and 

it is given by 
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NUMERICAL TECHNIQUES  

Under the initial and boundary conditions in Equation (11) the two-dimensional, non-

linear, unsteady, and coupled partial differential Equations (8)-(10) are solved using an 

implicit Crank-Nicolson type finite difference scheme that is fast convergent and 

unconditionally stable. The finite difference equation corresponding to Equations (8) to 

(10) are given by 
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The region of integration is considered as a rectangle with sides xmax(= 1) and ymax(=10), 

where ymax Corresponds to y=, which lies very well outside the momentum and energy 

boundary layers. The maximum of y was chosen as 6 after some preliminary 

investigations so that the last two of the boundary conditions (11) are satisfied. Here, 

the subscript i-designates the grid point along the u-direction, j-along the v-direction 

and the superscript k along the t-direction. During any one time step, the coefficients 

,
k
i ju

 and ,
k
i jv

 appearing in the difference equations are treated as constants. The values 

of u, v and T are known at all grid points at t = 0, from the initial conditions. The 

computations of u, v and T at time level (k + 1) using the values at previous time level 

(fe) are carried out as follows: the finite difference Eq. (18) at every internal nodal point 

on a particular i-level constitute a tridiagonal system of equations. Such a system of 

equations is solved by Thomas algorithm as described in Carnahan et al. [19]. Thus, the 

values of T are found at every nodal point for a particular i at (k + l)th time level. Using 

the values of T at (k + l)th time level in the Eq. (13), the values of u at (k + l)th time level 

are found in a similar manner. Thus, the values of T and u are known on a particular i-

level. Finally, the values of v are calculated explicitly using the Eq. (12) at every nodal 

point on a particular i-level at (k + l)th time level. This process is repeated for various i-



International Journal of Mathematics and Statistics Studies 

Vol.9, No.2, pp.33-52, 2021 

 Print ISSN: 2053-2229 (Print),  

                                                                                   Online ISSN: 2053-2210 (Online) 

42 

 

levels. Thus the values of T, u and v are known, at all grid points in the rectangular 

region at (k + l)th time level. 

After considering with few sets of mesh sizes, they have been fixed at the level x = 

0.05, y = 0.25, and the time step t = 0.01. In this case, spatial mesh size is reduced 

by 50% in one-direction then in both directions, and the results are compared. It is 

observed that, when mesh size is reduced by 50% in x-direction and y-direction the 

results differ in fourth decimal place. Hence the above mentioned sizes have been 

considered as appropriate mesh size for calculations. Computations are carried out until 

the steady-state is reached. The steady-state solution is assumed to have been reached, 

when the absolute difference between the values of u, as well as temperature T at two 

consecutive time steps are less than 10-5 at all grid points. The local truncation error is 

O (f2 + F2 + Ax) and it tends to zero as t. x and y tend to zero, which shows 

that the scheme is compatible. Also the Crank-Nicolson type of implicit finite 

difference scheme is proved to be unconditionally stable for a natural convective flow 

in which there is always a non-negative value of velocity u and a non-positive value of 

v. Thus, compatibility and stability ensures the implicit finite difference scheme is 

convergent. 

RESULTS AND DISCUSSION  

The direct microscopic exchange of kinetic energy of particles across the boundary 

between two structures is known as heat conduction, also known as diffusion. Water is 

a strong heat transfer fluid because of its high thermal ability and low viscosity. Oil has 

a higher liquid temperature than water, so it's been a popular option for avoiding the 

problem of high pressure. Heat is transferred between the Earth's surface and the 

atmosphere by conduction, radiation, and convection. Heat is transferred by convection 

when a heated fluid, such as air or water, is forced to travel away from the source of 

heat, bringing energy with it. Convection happens as hot air expands, becomes less 

dense, and rises over a hot surface. Since liquid metals have a low Prandtl's number, 

heat transfer by molecular thermal conduction is important not only in the near-wall 

layer, but also in the flow center, even in a fully developed turbulent flow. The 

following ranges for ,  and Pr are considered in the present study are: 
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 For air:   - 0.7    0, 0    6,   Pr = 0.733 

 For water: 0    0.6, 0    0.12, 2  Pr  7.00  

In order to check the accuracy of our computed values, we compare our results with the 

curves computed by G.palani.Kwang-Yong Kim and Elbashbeshy & Ibrahim for 

various values of   and fixed values of  = 0.40, M = 0.00, Ge = 0.00 for air (Pr =0.733). 

These are plotted in Figs. 2(a), 2(b). Our results agree very well with those of 

G.palani.Kwang-Yong Kim and Elbashbeshy & Ibrahim at the steady state. 

The body force has not had enough time to produce and effective motion in the fluid 

during the initial phase following step changes in the wall temperature. As a result, for 

small time t, the velocity components u and v are both negligible. Pure heat conduction 

dominates heat transfer during this initial transient regime, resulting in constant 

viscosity and thermal conductivity. Equation (10) reduces to 

2

2

1

Pr

T T

t y

 


   

Thus, for a given Prandtl's number, magnetic parameter, and normal distance from the 

wall, the temperature profile is only a function of time and normal distance from the 

wall for short periods. Setting Pr = 1, the solutions of Eq. (15) subject to the initial and 

boundary conditions given in local Nusellt’s number are 

2

y
T erfc

t

 
  

   (20) 

For different viscosity, thermal conductivity, magnetic variation parameters, and 

Prandtl's numbers, Figures 3.2(a), 3.2(b), 3.3(a), 3.3(b), 3.4(a), 3.4(b), 3.5(a), 3.5(b), 

3.6(a) 3.6(b), 3.7(a), 3.7(b), 3.8(a), 3.8(b),  3.9(a), 3.9(b), 3.10(a), 3.10(b), 3.11(a), 

3.11(b)  show the variation of velocity and temperature at their transient, temporal limit, 

and steady state against the co-ordinate y at the leading edge of the plate, viz., x = 1.0. 

For all time t, the fluid velocity increases until it reaches its maximum value very close 

to the wall (i.e., 0  y  2), and then monotonically decreases to zero as y becomes 

larger. It's also worth noting that the velocity and temperature rise with time t, reach a 

temporal limit, and then settle into a steady state. 

The variance of transient velocity and temperature profiles with area A for fixed values 

of   = 0.20, M = 0.30, Ge = 0.50 in air (Pr = 0.733) is shown in Figures 3(a) and 3(b). 
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The fluid's velocity increases over time until it reaches a temporal limit, after which it 

gradually decreases until it reaches the ultimate steady state. It is observed that as the 

viscosity variance parameter is increased, the time taken to reach the steady state 

decreases slightly. The velocity u at any vertical plane near the plate increases as x 

increases (the viscosity of air decreases), as shown in Fig. 3(a). At a certain distance 

from the wall, however, the opposite pattern is observed. The temperature of the fluid 

decreases as  increases, as shown in Fig. 3(b) (the viscosity of air decreases). 

The numerical values of the variation of transient velocity and temperature profiles with 

 for a fixed value of  = - 0.60, Ge = 0.30, M = 0.40 in air (Pr = 0.733) with the 

variation of thermal conductivity parameter  are shown graphically in Figs. 4(a) and 

4(b). For fixed values of , M, Ge, and Prandtl's number, it can be shown that the 

velocity and temperature distribution in the fluid increases as  increases (thermal 

conductivity of air increases). It's also worth noting that as  increases, the magnitude 

of the velocity and temperature increases significantly, implying that the volume flow 

rate increases as  increases. Even during the initial transient phase, the effect of thermal 

conductivity variation on velocity and temperature is more important. With increasing 

the thermal conductivity parameter, the time to hit the temporal limit and steady state 

decreases. 

Figures 5(a) and 5(b) show the numerical values of variance velocity and temperatures 

determined from Eqs. (13) and (14) for different values of  for fixed values of M = 

0.50, = - 0.30, Ge = 0.40 in water (Pr = 3.00). It is obvious that as the viscosity variance 

parameter  is increased, the time taken to reach the temporal maximum and steady 

state decreases. Since the viscosity of water decreases with an increase in the viscosity 

variation parameter , as seen in Eq. 5, an increase in the viscosity variation parameter 

 increases the velocity of the flow near the wall (6). For higher values of , the 

maximum velocity also gets very close to the wall. This qualitative effect occurs 

because the fluid with variable viscosity ( > 0) is able to pass more easily in a region 

close to the heated surface due to the lower viscosity of the fluid with > 0 compared 

to the fluid with constant viscosity. As a consequence, the velocity and thermal 

boundary layers become thinner. The velocity of the fluid particle increases only in the 
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area 0  y  2 as  increases (the viscosity of water decreases). The temperature profiles 

decrease with increasing , as shown in Fig.5 (b). This is due to the fact that an increase 

in  results in an increase in peak velocity. The first effect increases the velocity of the 

fluid particle due to a decrease in viscosity, while the second effect reduces the velocity 

of the fluid particle due to a decrease in temperature near the plate, where T is high. As 

a result, the first force will be dominant, and the velocity u will increase as  increases. 

When the temperature T is low far away from the plate, however, the second effect 

takes over, and the velocity decreases as  increases. We can see from the discussion 

that ignoring the difference of fluid viscosity and thermal conductivity can result in a 

significant mistake. 

The variance of velocity and temperature for different values of  for fixed values of = 

0.40, M = 0.50, Ge = 0.50 in water (Pr = 3.00) is shown in Figures 6(a) and 6(b). 

It has been found that as the value of  increases, the time it takes to reach the steady 

state decreases. It's also worth noting that as the value of  rises, so does the temperature 

distribution of the fluid. Figures 7(a) and 7(b) show the velocity and temperature 

profiles for various values of the pressure work parameter Ge for specific values of Pr, 

, , and M under steady state conditions. As can be seen in Fig.7 (a), an increase in the 

pressure work parameter Ge is correlated with a significant increase in velocity profiles, 

but near the plate's surface, the velocity increases and becomes maximum, then 

decreases and asymptotically reaches zero. However, for certain values of the pressure 

work parameter Ge, Fig.7(b) shows the distribution of temperature profiles against y. 

The temperature distribution clearly increases with rising values of the pressure work 

parameter Ge, with the limit being at the plate wall's edge. Figures 8(a) and 8(b) display 

the variance of transient velocity and temperature with Prandtl's numbers for fixed 

values of  = - 0.30, = 0.40, and M = 0.40 . With increasing Prandtl's number of the 

fluid, it is observed that the time taken to reach the temporal limit and steady state 

increases. We can see from the numerical results that the velocity profile decreases as 

Prandtl's number increases. Since a greater Prandtl's number value indicates that the 

thermal diffusion from the wall is not prevailing, while the velocity diffusion spreads 

further from the wall, thinner temperature profiles result. In Figs. 9(a) and 9(b), the 

numerical values of variance of velocity and temperature profiles with M are 
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graphically shown for fixed values of = 0.50, = - 0.10 for air (Pr = 0.733). It can be 

seen from these graphs that the time it takes to enter the steady state increases as the 

magnetic parameter M decreases. It's also worth noting that as M gets closer to the 

vertical plate, the velocity rises. As the magnetic parameter M decreases, the 

temperature of the fluid decreases. 

 

  

Figures 2(a) and 2(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of variable thermal conductivity parameter  with Pr = 0.733,  

= 0.40, Ge = 0.0 and M = 0.0. 

  

Figures 3(a) and 3(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of variable viscosity parameter  and steady state condition with 

Pr = 0.733,  = 0.20, Ge = 0.30 and M = 0.50. 
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Figures 4(a) and 4(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of variable thermal conductivity parameter  and steady state 

condition with Pr = 0.733,  = 0.60, Ge = 0.30 and M = 0.40.   

  

Figures 5(a) and 5(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of variable viscosity parameter  and steady state condition with  

fixed values Pr = 3.00,  = 0.30, Ge = 0.40 and M = 0.50. 

  

Figures 6(a) and 6(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of variable thermal conductivity parameter  and steady state 

condition with fixed values Pr =3.00,  = 0.40, Ge  = 0.50 and M = 0.50. 
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Figures 7(a) and 7(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values pressure work parameter Ge  and steady state condition with  

 = 0.30,  = 0.40 and M = 0.40.   

  

Figures 8(a) and 8(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of Prandtl’s number Pr  and steady state condition with fixed 

values  = 0.40,  = 0.50, Ge = 0.20 and M = 0.30. 

  

Figures 9(a) and 9(b): Variation of dimensionless velocity profiles and temperature profiles against 

dimensionless y for different values of magnetic parameter M  and steady state condition with fixed 

values  = 0.60,  = 0.30, Ge = 0.40 and Pr = 0.733. 
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Figures 10(a) and 10(b):  Variation of dimensionless local skin friction and local Nusselt number 

against dimensionless distance x for different values of M, Ge,  ,  and Pr at steady state condition. 

  

Figures 11(a) and 11(b):  Variation of dimensionless average skin friction and average Nusselt number 

against dimensionless distance x for different values of M, Ge,  ,  and Pr at steady state condition. 

 

Eqs. (12), (14), (15), and (16) include the evaluation of derivatives using a five-point 

approximation formula, followed by the evaluation of integrals using the Newton-Cotes 

closed integration formula. Eq. (13) is used to calculate the local skin-friction values, 

which are then plotted in Fig. 10(a) as a function of the axial coordinate  for air and 

water, as well as selected values of the variation parameters , , M, and Ge. As  rises, 

so does the local skin friction. It is observed that as the value of viscous variation 

parameter  increases, local skin friction decreases. It's also worth noting that as the 

value of thermal conductivity parameter  rises, so does the local wall shear stress. 

 

Local skin friction is found to decrease as the value of Prandtl's number rises. For 

different values of viscosity and thermal conductivity parameters for air and water, 

average values of skin friction are determined numerically from Eq. (14) and 
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graphically shown in Fig. 11(a). It increases over time and reaches a stable state after a 

period of time. With increasing values of viscous parameter , pressure work parameter 

Ge, and magnetic parameter M, average skin friction decreases. It's also worth noting 

that as the value of thermal conductivity parameter  increases, the average wall shear 

stress increases as well. Average skin friction is observed to decrease as the value of 

Prandtl's number increases. For different values of variance parameters, Fig.10 (b) 

indicates a dimensionless steady state local heat transfer rate for air and water. The rate 

of local heat transfer is found to increase as the viscosity, thermal conductivity, and 

magnetic parameters increase. The rate of local heat transfer increases as Pr increases. 

Since a larger Pr results in a thinner thermal boundary layer, a larger wall temperature 

gradient, and thus a higher heat transfer rate, this pattern is anticipated. The effects of 

variance parameters and Pr on the average Nusselt number are shown in Fig. 11(b). 

Since increasing the Prandtl number speeds up the spatial decay of the temperature in 

the flow region, resulting in an increase in the rate of heat transfer, but on the opposite 

side for the magnetic parameter, increasing the Prandtl number leads to an increase in 

the average heat transfer rate. It's also worth noting that as , , Ge, and M decrease, 

the average Nusselt number decreases. 

 

CONCLUSION  

The effect of variable viscosity and thermal conductivity on magneto-hydrodynamics 

laminar natural convection boundary-layer vertical plate with stress work and constant 

surface temperature is studied in this paper. The thermal conductivity is assumed to be 

a linear function of temperature and the fluid viscosity is assumed to be an exponential 

function of temperature. An implicit Crank-Nicolson style finite difference scheme is 

used to solve the dimensionless governing equations. Graphically, a distinction is made 

between the current numerical findings and previously published works. The 

arrangement between the two parties is deemed to be excellent.  

 

According to the findings of this study: 

(i) The dimensionless fluid velocity increases as the viscosity parameter  

increases and the fluid temperature decreases. Higher velocity is observed 
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in a region near the wall when the viscosity variance parameter  is 

significant, resulting in a higher Nusselt number and lower skin friction. 

(ii) The fluid velocity, fluid temperature, the dimensionless wall velocity 

gradient, and the dimensionless rate of heat transfer from the plate to the 

fluid all increase as the thermal conductivity parameter  increases. 

(iii) With higher values of the pressure work parameter, the time to achieve the 

temporal limit and steady state decreases. Ge causes the velocity and 

temperature distributions to widen. 

(iv) It's worth noting that ignoring viscosity and thermal conductivity variations 

can result in significant errors. As a result, we conclude that the effects of 

variable viscosity and thermal conductivity must be considered in order to 

predict more accurate outcomes. 

(v) The local skin friction coefficient, the local Nusselt number, and the velocity 

distribution over the entire boundary layer decrease with the impact of 

magnetic parameter M, but the temperature distribution increases with the 

steady state condition. 
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