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ABSTRACT: The aim of this study was to investigate the possible effects of neonatal 

bisphenol A (BPA) exposure on the neuroendocrine system (thyroid-brain axis). 20 or 40 µg/kg 

of BPA was orally administered to neonatal male albino rats (Rattus norvigicus) from postnatal 

days (PNDs) 15 to 30. Both administrations gave rise to a lower serum thyroxine (T4) and 

triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control group at PND 30.  

Also, a marked reduction in serum of neonatal growth hormone (GH) was observed in both 

treated groups. In neonatal cerebellum and cerebrum, the elevations of oxidative markers 

[lipid peroxidation (LPO), nitric oxide (NO), and hydrogen peroxide (H2O2)] due to both 

administrations were observed at PND 30, along with decreased activities of antioxidants 

markers [total ascorbic acid (TAA), total thiol (t-SH), glutathione (GSH), glutathione 

peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and catalase 

(CAT)] with respect to control group. Thus, hypothyroidism in BPA might disturb the neonatal 

thyroid-brain axis via production of free radicals, and this, might destruct the plasma 

membrane and cellular components delaying cerebrum and cerebellum development. 

KEYWORDS: Bisphenol A, Thyroid hormones, Cerebellum, Cerebrum, Antioxidants, 

Prooxidants.  

 

INTRODUCTION 

Endocrine system regulates a developmental, metabolic, and reproductive processes including 

embryonic development, growth, and digestion (Ahmed et al., 2008; Ahmed, 2011, 2013 & 

2016c). Endocrine-disrupting compounds (EDCs) are defined as exogenous chemicals or 

chemical mixtures that impact endocrine system structure or function and cause several adverse 

effects (Ahmed, 2016c).  They may affect these processes by either binding to or blocking 

hormone receptors, thereby triggering or preventing hormonal response (Witorsch, 2002; Gore 

et al., 2015; Ahmed, 2016a; Ejaredar et al., 2016). These compounds including many agents 

of chemical or natural origin, among these products is bisphenol A [BPA; 2,2-bis (4-

hydroxyphenyl) propane]. It is assigned as the third highest Toxicological Priority Index 

(ToxPi) score of the 309 chemicals examined based on its ability to interact with a number of 

signaling pathways by the US Environmental Protection Agency (EPA) and US National 

Toxicology Program (NTP) (Vandenberg et al., 2013). It is an industrial chemical used in 

thermal papers, flame retardants and the manufacture of food packaging, including 

polycarbonate plastics and epoxy resins lining metal cans (Johnson et al., 2015; Ahmed, 2016a; 

Sharma et al., 2016). The vital route of BPA exposure appears to be oral from food contact 

materials (Thayer et al., 2015), and its daily intake for adults is estimated at 0.4-1.4 mg/kg/day 

(World Health Organization, 2010). In human, BPA is mainly stored in the adipose tissue, with 

http://www.eajournals.org/


International Journal of Sociology and Anthropology Research 

Vol.6, No.2, pp.26-38, October 2018 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

27 

ISSN: 2053-4108(Print), ISSN: 2053-4116(Online) 

an elimination half-life of approximately 6 h (Rochester, 2013; Leung et al., 2016; Muhamad 

et al., 2016).  

BPA inhibits both the synthesis of thyroid hormones (THs) in the thyroid gland, and the 

conversion of thyroxine (T4) to its active form (T3) in peripheral tissues. The deficiency in 

THs (hypothyroidism) during the developmental period may result in an irreversible 

impairment, morphological and cytoarchitecture abnormalities, disorganization, 

maldevelopment and physical retardation that are permanent (Zoeller and Rovet, 2004; Zoeller 

and Crofton, 2005; Argumedo et al., 2012; Hassan et al., 2013). These effects can produce an 

increase of oxidant species that causes lipid peroxidation (LPO), nitration, carbonylation, or 

glutathionylation of proteins, and fragmentation of DNA (Halliwell and Gutteridge, 2007; 

Valko et al., 2007). Generally, reactive oxygen species (ROS) generation is controlled by 

enzymatic antioxidants such as glutathione peroxidase (GPx) and catalase (CAT), and non-

enzymatic antioxidants such as total thiol (t-SH) and glutathione (GSH) (Ahmed et al., 2013; 

Al-azzawie et al., 2013; Imosemi, 2013). These mechanisms involve preventive mechanisms, 

repair mechanisms, physical and antioxidant defenses (Ahmed et al., 2014). However, studies 

on potential connections between BPA and neonatal brain development associated with thyroid 

dysfunction during the postnatal period are limited. Thus, the objective of this study was to 

evaluate the effect of neonatal BPA exposures on aspects of the development of the neonatal 

thyroid-brain axis in male albino rats (Rattus norvigicus) during the postnatal period, 

specifically at PND 30. 

MATERIALS AND METHODS 

- Chemicals: 

Bisphenol A (BPA; 2, 2-bis(4-hydroxy-phenyl) propane) used in the present study is White to 

light brown flakes or powder. The chemical formula is C15H16O2, the molecular weight is 

228.29 g/mol, the CAS Registry Number is 80-05-7 and the purity is 97%. Any other chemicals 

were purchased at a high purity grade (99%) from Sigma company (Nasr city, Cairo, Egypt). 

- Experimental animals: 

A total of 24 neonatal male white albino rats (Rattus Norvegicus, Wistar strain) weighing about 

25-35 g, were used in this investigation. They were obtained from the National Institute of 

Ophthalmology, Giza, Egypt. Animals were kept under observation for about 14 days before 

the onset of the experiment to exclude any intercurrent infections.  The chosen animals were 

housed in plastic cages in the department of animal house at the normal atmospheric 

temperature (23 ± 2 °C), relative humidity 50 ± 5% and constant daily 12hr normal light/dark 

cycle. They were received a free access to tap water (drink ad libitum) and standard rodent 

pellet diet manufactured by an Egyptian company during the experimental period (Ahmed et 

al., 2015a,b; Ahmed, 2016b,c; Ahmed and El-Gareib, 2017). All animal procedures were in 

agreement with the general guidelines of animal care and the recommendations of the Canadian 

Council on Animal Care (Olfert et al.,1993). All efforts were made to diminish the animal 

suffering and to reduce the number of animals used.  

- Experimental design: 

BPA were dissolved in corn oil and given to neonatal rats daily and orally by gastric intubation 

from PND 15 to 30. Non-anesthetized neonatal rats received two doses of BPA (20 & 40 µg/kg 

bw/day). The vehicle control group received the same amount of corn oil during the same 
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period. These doses were previously reported by Ahmed (2016c). In the United States (the US 

Environmental Protection Agency, USEPA), Europe (the European Food Safety Authority, 

EFSA), and Canada (the Health Canada), regulating bodies have determined that 25-50 µg/ kg 

bw/day of BPA exposure is the recent tolerable daily intake (TDI) for humans, based largely 

on rodent multigenerational, sub-chronic, oral toxicity studies, measuring endpoints such as 

body weight and developmental deformations (Rochester, 2013; Kinch et al., 2015). Also, 

pharmacokinetic experiments, taking into account the alterations in BPA metabolism between 

rodents and humans have assessed that exposures to 400 µg/kg bw/day produce bioactive BPA 

concentrations in their blood, within the range of recorded human blood concentrations 

(Vandenberg et al., 2012).  

At PND 30, rats were sacrificed under mild diethyl ether anesthesia in the early morning. The 

neonatal blood samples (6 per group) were taken from a jugular vein, allowed to coagulate at 

room temperature then centrifuged at 3000 round per minutes (r.p.m.) (1006.2 g) and 15-24 °C 

for 20 min. The clear supernatant sera were rapidly removed, divided into three portions for 

each individual animal, and kept at -70 °C till used. On the other hand, the slices of the selected 

brain regions were homogenized in 0.9% NaCl (10% w/v). The obtained homogenate was kept 

in deep freezer at –20 °C for measurement of prooxidant and antioxidant parameters. 

- The radioimmunoassay examinations: 

The serum concentrations of thyroxine (T4), triiodothyronine (T3), thyrotropin (TSH), and 

growth hormone (GH) were estimated quantitatively by RIA at the Diabetic Endocrine 

Metabolic Pediatric Unit, Center for Social and Preventive Medicine, New Childrens Hospital, 

Faculty of Medicine, Cairo University, Egypt, according to the method of Thakur et al. (1997) 

for T4, Maes et al. (1997) for T3, Mandel et al. (1993) for TSH, and Reutens (1995) for GH. 

The kits were obtained from Calbiotech, Inc. (Spring Valley, CA, USA). 

- Biochemical assays in neonatal cerebellum and cerebrum: 

The levels of lipid peroxidation (LPO), nitric oxide (NO), hydrogen peroxide (H2O2) were 

measured according to the methods of Preuss et al. (1998), Dutta et al. (2008), and Sergiev et 

al. (1997), respectively. Also, the levels of total ascorbic acid (TAA), total thiol (t-SH), 

glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-

transferase (GST), and catalase (CAT) were estimated according to the method of Kyaw 

(1978), Koster et al. (1986), Beutler et al. (1963), Pinto and Bartley (1989), Goldberg and 

Spooner (1983), Mannervik and Guthenberg (1981), and Cohen et al. (1970), respectively. 

Statistical analysis: 

The experimental data were analyzed with the software PC-STAT (University of Georgia, 

1985). The data were evaluated by one-way analysis of variance (ANOVA) followed by LSD 

analysis to discern the main effects and compare various groups with each other. F-probability 

for each variable expresses the general effect between groups. The data were presented as mean 

values and standard error (SE) and the statistical differences at P <0.01 and P <0.001 were 

considered statistically highly significant and very highly significant, respectively. 
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RESULTS 

- Neonatal thyroid and growth markers: 

Both dosage administrations of BPA (20 or 40 µg/kg) to neonatal rats resulted in a highly 

significant increase (LSD; P < 0.01) in serum TSH level at PND 30 when compared with the 

control group, where the percentage indices for TSH was +121.06% in the low dose group, and 

+204.40% in the high dose group (Table, 1). This elevation was associated with a marked 

reduction (LSD; P < 0.01) in serum triiodothyronine (T3), thyroxine (T4) and Growth hormone 

(GH) levels at tested day with respect to the control group, where the percentage indices for 

T3, T4 and GH were -29.91, -33.15 and -50.51 in the low treated group and - 69.24, -51.07 and 

-79.08% in the high treated group respectively. Based on one-way ANOVA of these 

parameters, it was found that the general effect between the groups was very highly significant 

(P < 0.001) at examined day (Table, 1).  

- Antioxidants and prooxidants markers in neonatal cerebrum and cerebellum: 

In both brain regions, both administrations led to a high significant decrease in total ascorbic 

acid (TAA), total thiol (t-SH), and glutathione (GSH) concentrations at PND 30 when 

compared with the control group (Table, 2). Also, these administrations produced a highly 

significant decrease (LSD; P < 0.01) in the activities of catalase (CAT), glutathione reductase 

(GR), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) at studied day 

compared with the control group (Tables, 3 & 4). 

In cerebrum, the lipid peroxidation (LPO), nitric oxide (NO) and hydrogen peroxide (H2O2) 

levels were highly significant increase in both treated groups in comparison with the 

corresponding control (Table, 5). Their elevations in the low dose group were +77.96% for 

LPO, +131.31% for NO and +200.00% for H2O2. These variabilities in the high dose group 

were +155.24, +319.44 and +571.53%, respectively. Parallelly in cerebellum, LPO, NO and 

H2O2 levels showed a highly significant increase (LSD; P < 0.01) in both treated groups, where 

their percentage indices in the high dose group were +154.79, +397.84 and +1021.91%, 

respectively or in the low dose group were +51.15, +143.96 and +384.41%, respectively when 

compared to control group (Table, 5). 

A one-way analysis of variance (ANOVA) showed that the effect between the groups on all 

previous parameters was very highly significant (P<0.001) at examined day in comparison to 

the control group (Tables, 2-5). 

 

DISCUSSION  

In our study rats administered two different doses of BPA, the low dose which was the TDI 

dose and the high dose which was 10 times the TDI given daily for 30 days. Both neonatal 

dosage administrations of BPA affected thyroid function during postnatal period. These 

administrations caused a remarkable decline in the levels of neonatal serum T4, T3 and GH, 

and a clear increase in the level of neonatal serum TSH at PND 30 as compared to the control 

group. These alterations were dose dependent. Similarly, BPA caused a subclinical 

hypothyroidism (Wang et al., 2015; Porreca et al., 2016) by inhibiting hormone synthesis 

(suppressed the transcriptional activity by inhibiting T3 binding to the thyroid receptor (TR) 

and by recruiting N-CoR on the promoter), reducing the ability of THs to bind the transport 
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proteins (transthyretin) in the bloodstream (Wetherill et al., 2007), or increasing catabolism of 

THs (Evans et al., 2014). It potentially altered the thyrotropin-releasing hormone (TRH) that 

induced TSH secretion and inhibited sodium iodide symporter (NIS)-mediated iodide uptake 

in a concentration-dependent manner (Wu et al., 2016). Also, it disrupted the TRs, androgen 

receptor (AR), estrogen receptors (ERs), peroxisome proliferator-activated receptor-γ 

(PPARγ), and other endocrine-relevant signaling pathways (Wetherill et al., 2007). These 

disturbances may be a substantial risk factor for thyroid diseases (Tang et al., 2013). 

Interestingly, the reduction in the concentration of GH can be attributed to the disruption of the 

activities of THs (Ahmed, 2012), of the synthesis and release of growth hormone-releasing 

hormone (GH-RH), of the sensitivity of the pituitary gland to GH-RH, and of the transcription 

of the GH gene (Osfor et al., 2013). Based on these results, it can be suggested that the 

administrations of BPA might act antagonistically with developmental hypothalamic-pituitary-

thyroid axis (HPTA) and this may lead to adverse developmental defects. 

On the other hand, the stepwise progress in the levels of THs during this   period may be 

necessary for normal cerebrum and cerebellum development as observed in this study. 

Consistent with these data, THs in rat mainly affect cerebral and cerebellar development during 

the first 2-3 weeks of postnatal life (El-Bakry et al., 2010; Ahmed, 2012; Wang et al., 2012) 

and are required for normal maturation of these regions (Koibuchi, 2006; Bernal, 2007; Ahmed, 

2011; Ahmed and Incerpi, 2013). Also, Koibuchi (2013) emphasized that the genomic and non-

genomic actions of the T3 and T4 play a critical role in cerebellar development. Thus, we 

studied its effect on the prooxidant/antioxidant markers. In the control group, the levels of 

antioxidant markers (TAA, t-SH, GSH, GPx, GR, GST and CAT) and prooxidant markers 

(LPO, NO and H2O2) of neonatal cerebrum or cerebellum followed by a synchronized course 

of development. The enzymatic and non-enzymatic antioxidant defense variables (GR, GST, 

CAT, GPx, t-SH and GSH) and LPO in the control rat were substantially and gradually 

increased from the first to the third week old in most brain regions (Ahmed et al., 2006 & 2012; 

Ahmed, 2012). As well, the prooxidant/antioxidant balance and detoxification of potentially 

damaging ROS was crucial for cellular homeostasis (Livingstone, 2001; Ahmed, 2012; Ahmed 

et al., 2012), and may play an important role in a healthy life for the newborns (Ahmed et al., 

2013). Thus, based on this evidence, higher levels of cerebellar or cerebral enzymatic and non-

enzymatic antioxidant markers in the control rats detected at PND 30 may be important in 

protecting the neonatal brain from H2O2 or NO toxicity. This balance or protection may be 

mediated by the thyroid states of newborns. These investigations were in accordance with those 

of Das and Chainy (2001), Dasgupta et al. (2007) and Ahmed et al. (2008 & 2012). Also, there 

are modulation between THs and GSH in developing cerebrum and cerebellum of the control 

group. These investigations are in accordance with Ahmed et al. (2008 & 2010). Moreover, a 

positive association between the production of CAT and H2O2 with the THs and TSH levels in 

the control group. Under normal conditions, specific membrane-bound nicotinamide adenine 

dinucleotide phosphate hydrogen (NADPH) oxidase (DUOX complex) provides H2O2 for THs 

synthesis (Ahmed, 2012; Petrulea et al., 2012), THs modulate the action of CAT on the H2O2 

formation and breakdown (Das and Chainy, 2001), and TSH stimulates the organification of 

iodine by the increase in the production of H2O2 (Petrulea et al., 2012). From this, it can be 

inferred that the production of these markers is synergistic and closely interrelated with the 

behavior of the HPTA during the postnatal period. Accordingly, HPTA regulates metabolism 

and growth, and brain development (Lema et al., 2009).  

In the present study, both administrations of BPA suppressed the activity of antioxidant 

enzymes (GPx, GR, GST and CAT) and non-enzymatic antioxidants (t-SH, TAA and GSH) in 
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cerebrum and cerebellum. on the other hand, prooxidant markers (LPO, NO and H2O2) were 

increased in these brain regions at PND 30. BPA caused marked oxidative impact by decreasing 

the activities of antioxidant enzyme compared to their activities in the control group. These 

results agree with the previous studies which demonstrated that administration of BPA 

increases MDA levels (Kabuto et al., 2003). BPA administration increased dose-dependently 

the thiobarbituric acid-reactive substance (TBARS) levels in the brain of male rats (Aydogan 

et al., 2010; Korkmaz et al., 2011). This was indicated from the significant increase in LPO 

and NO level in the cortex. Chitra et al. (2003) and Hassan et al. (2013) illustrated that BPA 

causes cell rupture and membrane damage, and increases ROS production and oxidative stress. 

In similar, BPA was reported to induce oxidative damage in several tissues (Aydogan et al., 

2010; Korkmaz et al., 2010; Korkmaz et al., 2011). This results in inhibition of antioxidant 

enzymes (Obata and Kubota, 2000; Bindhumol et al., 2003; Chitra et al., 2003; Kabuto et al., 

2003). As well, the variations in total antioxidant defenses in developing rat brain may 

predispose structures to oxidative stress-related neurodegenerative disorders (Siqueira et al., 

2005; Kolosova et al., 2006) and cell death depending on the region of the brain affected and 

the severity of the insult (Ferriero, 2004). The early postnatal period of development is a time 

of rapid change in brain architecture which shapes a broad range of neuroendocrine and 

characteristics. Similarly, a progressive hypothyroidism during the postnatal rat brain 

development led to a decline in GSH level (Rahaman et al., 2001; Mogulkoc et al., 2005; 

Ahmed, 2012), t-SH level and GPx activity (Ahmed, 2012) associated with an increase in H2O2 

(Bhanja and Chainy, 2010) and LPO (Rahaman et al., 2001; Bhanja and Chainy, 2010). These 

disorders are associated with augmented oxidative stress (Dasgupta et al., 2005; Ahmed et al., 

2012) and are consistent with those reported in the present study. An alternative attribution for 

the present findings is that the high levels of H2O2 are also known to inactivate the CAT 

(Lardinois et al., 1996) and increase tissue sensitivity to oxidant injury (Ho et al., 2004). This 

disturbance has deleterious effect on the health of the newborns and adulthood (Ahmed et al., 

2013). This supports the hypothesis that decreased TH may be a relevant predictor for long-

lasting developmental neurotoxicity.  

 

CONCLUSION & FUTURE DIRECTION 

Three conclusions can be drawn from these data: (1) Neonatal exposures to BPA seem to alter 

TH synthesis and secretion, either by acting directly on the thyroid gland or by acting on the 

pituitary or hypothalamic control of TSH or GH secretion. (2) These administrations appear to 

disrupt the prooxidant and antioxidant system. These drastic effects may play a significant role 

in brain and thyroid diseases. (3) BPA seems to play the role of a stress-responsive factor in 

the neonatal endocrine system (HPTA). Further investigations are required to elucidate the 

potential associations with human health due to the toxicity of BPA is dependent on compound 

congeners, dose, exposure duration, developmental period, and the species involved. From this, 

it can be concluded that the endocrine-disrupting compounds can exert complex, mosaic effects 

during an animal’s life cycle (Zoeller et al., 2012).  
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APPENDIX 

Legends 

Tables 

Table 1. Effect of BPA on thyroid functions [triiodothyronine (T3), thyroxine (T4), and 

thyrotropin (TSH)] and growth hormone (GH) of neonatal rats during the postnatal 

period. Data are expressed as mean ± standard error. Number of animals per each group 

is six. Values which share the same superscript symbols are not significant. ANOVA 

(F-probability) expresses the effect between groups, where P < 0.001 is very highly 

significant. 

Table 2. Effect of BPA on the levels of non-enzymatic antioxidants in neonatal cerebrum and 

cerebellum during the postnatal period. Data are expressed as mean ± standard error. 

Number of animals per each group is six. Values which share the same superscript 

symbols are not significant. ANOVA (F-probability) expresses the effect between 

groups, where P < 0.001 is very highly significant. 

Table 3. Effect of BPA on the levels of enzymatic antioxidants in neonatal cerebrum during 

the postnatal period. Data are expressed as mean ± standard error. Number of animals 

per each group is six. Values which share the same superscript symbols are not 

significant. ANOVA (F-probability) expresses the effect between groups, where P < 

0.001 is very highly significant. 

Table 4. Effect of BPA on the levels of enzymatic antioxidants in neonatal cerebellum during 

the postnatal period. Data are expressed as mean ± standard error. Number of animals 

per each group is six. Values which share the same superscript symbols are not 

significant. ANOVA (F-probability) expresses the effect between groups, where P < 

0.001 is very highly significant. 

Table 5. Effect of BPA on the levels of prooxidants in neonatal cerebrum and cerebellum during 

the postnatal period. Data are expressed as mean ± standard error. Number of animals 

per each group is six. Values which share the same superscript symbols are not 

significant. ANOVA (F-probability) expresses the effect between groups, where P < 

0.001 is very highly significant.. 
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