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ABSTRACT: The article proves several important properties of the square and the square 
root of a node of T3 tree. The new properties describe how the square and the square root of 
a node are distributed on the T3 tree and are helpful to locate divisors of a composite integer. 
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INTRODUCTION 

The square and the square root are undoubtedly very important operations for a number. As a 
new structure of odd integers, the 3T  tree, which was introduced in WANG (2016 & 2018), is 
of course necessary to make clear these two operations. In fact, for a given node in the tree, 
the problem where its square and its square root locate is surely a fundamental problem. 
Some general properties of the square of a node in 3T  were mentioned in WANG (2018) and 
CHEN (2018) disclosed several properties of the square root of a node. However, one can see 
that, there are still a lot of unknown properties. This paper shows a little more of the 
properties related with the square and the square root of a node. 

 

PRELIMINARIES 

This section lists for later sections the necessary preliminaries, which include definitions, 
notations and lemmas. 

Definitions and Notations 

Let S  be a set of finite positive integers with 0s and ns being the smallest and the biggest 
nodes respectively; an integer x is said to be clamped in S  if 0 ns x s≤ ≤ . Symbol x S  
indicates that x  is clamped in S . Symbol x⎢ ⎥⎣ ⎦ is the floor function, an integer function of real 
number x  that satisfies inequality 1x x x− < ≤⎢ ⎥⎣ ⎦ , or equivalently 1x x x≤ < +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . 

In this whole paper, symbol 3T is the 3T  tree that was introduced in WANG (2016 & 2018) 
and symbol ( , )k jN is by default the node at position j  on level k  of 3T , where 0k ≥ and 
0 2 1kj≤ ≤ − . By using the asterisk wildcard *, symbol ( ,*)kN means a node lying on level k . An 
integer X  is said to be clamped on level k  of 3T if 1 22 2 1k kX+ +≤ ≤ −  and symbol X k  
indicates X is clamped on level k . If a positive integer X  is clamped on level k  and there is 
a node Y  of 3T  satisfying X Y⎢ ⎥= ⎣ ⎦ , then X  is said to be a floor square root of the node Y  
and Y  is called a square source of X .   
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Remark 1. CHEN (2018) put forward the concept that an integer is clamped on a level of 3T . 
In CHEN’s paper, a positive integer X  was said to be clamped on level k  of 3T  if 

1 22 1 2 1k kX+ ++ ≤ ≤ − .  Since 12 1k+ − is the rightmost node on level 1k − and 12 1k+ + is the 
leftmost node on level k , there is an integer 12k+ between the two. In order to avoid leaving 
out the number 12k+ , this paper redefines it by 1 22 2 1k kX+ +≤ ≤ − . 

Lemmas 

Lemma 1 (See in WANG (2018)). T3 Tree has the following fundamental properties. 

(P1). Every node is an odd integer and every odd integer bigger than 1 must be on the T3 tree. 
Odd integer N with 1N >  lies on level 2log 1N −⎢ ⎥⎣ ⎦ . 

(P2). On level k with 0,1,...k = , there are 2k nodes starting by 12 1k+ +  and ending by 22 1k+ − , 
namely, 1 2

( , ) [2 1,2 1]k k
k jN + +∈ + −  with 0,1,..., 2 1kj = − . 

(P3). ( , )k jN  is calculated by 

1
( , ) 2 1 2 , 0,1,..., 2 1k k
k jN j j+= + + = −  

 (P4) Multiplication of arbitrary two nodes of T3, say ( , )mN α and ( , )nN β , is a third node of T3. Let  
2 (1 2 )mJ β= +  2 (1 2 ) 2n α αβ α β+ + + + + ; the multiplication ( , ) ( , )m nN Nα β× is given by 

2
( , ) ( , ) 2 1 2m n
m nN N Jα β

+ +× = + +  

If 12m nJ + +< , then ( , ) ( , ) ( 1, )m n m n JN N Nα β + +× =  lies on level 1m n+ + of T3; whereas, if 12m nJ + +≥ , 

( , ) ( , )m nN Nα β×  ( 2, )m nN χ+ += with 12m nJχ + += −  lies on level 2m n+ + of T3. 

(P5) Product 2
( , ) ( , ) ( , )m m mN N Nα α α× =  is a left node of 3T , and it lies on level 2 1m + or 2 2m +  

Lemma 2 (See in WANG (2017)). For real numbers x , y and positive integer i , it holds 

(P13) x y x y≤ ⇒ ≤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ; x n x n< ⇒ <⎢ ⎥⎣ ⎦ , where n is an integer. 

(P31) 1 2
2
ii i⎢ ⎥− ≤ ≤⎢ ⎥⎣ ⎦

. 

 

MAIN RESULTS AND PROOFS 

Theorem 1. Let k be a positive integer; then there are 2 1k +  consecutive integers 
1 2 2 1, ,..., kn n n + that satisfy

( 1,2,...,2 1)i i k
n k

= +
⎢ ⎥ =⎣ ⎦ . 

Proof. Consider an arbitrary integer n such that n k⎢ ⎥ =⎣ ⎦ ; then by definition of the floor 
function it holds 1k n k≤ < + . That is 

2 2 2 1k n k k≤ < + +  
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Hence the 2 1k +  integers, 2
1 0n k= + , 2 2

2 31, 2,...n k n k= + = + , and 2
2 1 2kn k k+ = + , are the integers 

satisfying 
( 1,2,...,2 1)i i k

n k
= +

⎢ ⎥ =⎣ ⎦ . 

 

Proposition 1. Let ( , )mN α be a node of 3T  with 0m > ; then when 
2 32 1 10 2

2

m
mα

+⎢ ⎥+ −
⎢ ⎥≤ ≤ −
⎢ ⎥⎣ ⎦

, 

2
( , )mN α lies on level 2 1m + ; otherwise it lies on level 2 2m + . Particularly, 1

2
( ,0) (2 1,2 )mm m

N N ++
=  and 

2 2 2
2
( ,2 1) (2 2,2 2 )m m mm m

N N + +− + −
= . 

Proof. Direct calculation shows 

2 1 2 2 2 2 2 1
( , ) (2 2 1) 2 2(2 2 2 2 ) 1m m m m
mN α α α α α+ + + += + + = + + + + +  

By Lemma 1 (P4 & P5), it knows that 2
( , )mN α lies on level 2 1m +  if and only if 

2 2 1 2 12 2 2 2 2m m mJ α α α+ + += + + + < . Consequently,  

2 1 2

2 1 2

1 1 2 2

2 3 1

2 3

2 3

2 2 2

(2 1) 2 2 0

(2 1) (2 1) 4 (2 2 )
0

2

2 1 (2 1)0
2

2 1 10 2
2

2 1 10 2
2

m m m

m m m

m m m m

m m

m
m

m
m

α α α

α α

α

α

α

α

+

+

+ +

+ +

+

+

+ + + <

⇒ + + + − <

− + + + − × −
⇒ ≤ <

+ − +
⇒ ≤ <

+ −
⇒ ≤ < −

⎢ ⎥+ −
⎢ ⎥⇒ ≤ ≤ −
⎢ ⎥⎣ ⎦

 

which validates the first part of the proposition.  

The second part is easily obtained by the following calculations. 

1
2 1 2 2 2 1
( ,0) (2 1,2 )

(2 2 0 1) 2 2 2 1 m
m m m

m m
N N +

+ + +
+

= + × + = + × + =  

2 2 2

2 1 2 1 1 2
( ,2 1)

2 2 2 2 2 3 2 2

2 3 2 3 3

2 3 2 2 2

(2 2,2 2 )

(2 2 (2 1) 1) (2 2 1)

2 2 1 2 2 2
2 2 2 1
2 2 (2 2 ) 1

m

m m

m m m m
m

m m m m m

m m m

m m m

m

N

N + +

+ + +

−

+ + + + +

+ + +

+ + +

+ −

= + × − + = + −

= + + + − −

= + − +

= + × − +
=

 

 

Remark 1. The condition 0m > in Proposition 1 is proposed because it can get rid of the case 
2 2
(0,0) (2,0)3 9N N= = = , which is the unique example that violates 1

2
( ,0) (2 1,2 )mm m

N N ++
= .  
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Proposition 2. Let k be a positive integer, (2 1,*)kN + and (2 2,*)kN + be nodes of 3T ; then 
1

(2 1,*)( 2 2 )k
kN k+
+

⎢ ⎥ ⎢ ⎥≤⎣ ⎦ ⎣ ⎦  and 1
(2 2,*)( 2 2 )k

kN k+
+

⎢ ⎥ ⎢ ⎥≤⎣ ⎦ ⎣ ⎦ . On level 2k there is not a node 

(2 ,*)kN satisfying (2 ,*)kN k  and there is neither a node (2 3,*)kN + satisfying (2 3,*)kN k+ on 
level 2 3k + . 

Proof. (2 1,*)kN +  and (2 2,*)kN + being the nodes on levels 2 1k + and 2 2k +  respectively yields 

2 2 2 2 2 3 2 3
(2 1,*)

1 2 2 1
(2 1,*)

2 2 1 2 1 2

2 2 2 2

k k k k
k

k k k
k

N

N

+ + + +
+

+ + +
+

< + ≤ ≤ − <

⎢ ⎥ ⎢ ⎥⇒ = ≤ ≤ ⎣ ⎦⎣ ⎦
 

and 

2 3 2 3 2 4 2 4
(2 2,*)

1 2
(2 2,*)

2 2 1 2 1 2

2 2 2

k k k k
k

k k
k

N

N

+ + + +
+

+ +
+

< + ≤ ≤ − <

⎢ ⎥ ⎢ ⎥⇒ ≤ <⎣ ⎦ ⎣ ⎦
 

Note that 1 1 11 2 1
2 4 2

+ − < < + , it yields 

1 1 1 1 112 2 2 2 2 ( 2 (1 ) 2 2
2

k k k k k k k+ − + + +⎢ ⎥⎢ ⎥+ − ≤ ≤ + = +⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Hence it holds 

1 1 1
(2 1,*)2 2 2 2 2k k k k

kN+ + +
+

⎢ ⎥≤ ≤ ≤ +⎣ ⎦  

and  

1 1 1 2
(2 2,*)2 2 2 2 2 2k k k k k

kN+ − + +
+

⎢ ⎥ ⎢ ⎥+ − ≤ ≤ <⎣ ⎦ ⎣ ⎦  

That is 1
(2 1,*)( 2 2 )k

kN k+
+

⎢ ⎥ ⎢ ⎥≤⎣ ⎦ ⎣ ⎦  and 1
(2 2,*)( 2 2 )k

kN k+
+

⎢ ⎥ ⎢ ⎥≤⎣ ⎦ ⎣ ⎦ . 

Considering the biggest node 2(2 ,2 1)kk
N

−
on level 2k , it yields  

2 2
2 2 2 2 1

(2 ,*) (2 ,*)(2 ,2 1) (2 ,2 1)
2 1 2 2k k

k k k
k kk k

N N N N+ + +

− −
⎢ ⎥⎢ ⎥≤ = − < ⇒ ≤ <⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Likewise, considering the smallest node (2 3,0)kN + on level 2 3k + , it yields  

2 4 2 4 2 2
(2 3,0) (2 3,*) (2 3,0)2 1 2 2 2 1k k k k

k k kN N N+ + + +
+ + +

⎢ ⎥ ⎢ ⎥= + > ⇒ ≥ ≥ > −⎣ ⎦ ⎣ ⎦  

Hence there is not a node (2 ,*)kN satisfying (2 ,*)kN k , and there is neither a node 

(2 3,*)kN + satisfying (2 3,*)kN k+ . 
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Proposition 3. Node ( , )k jN  ( 1k > ) of 3T  satisfies 

1 1 1 11 1
2 2 2 2

( , )2 1 2 2 1 2
k k k k

k jN
+ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥− < ≤ ≤ − <⎣ ⎦  

Or equivalently ( , )
1

2k j
kN −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Proof. Since 1 2
( , )2 1 2 1k k
k jN+ ++ ≤ ≤ − , it yields 1 2

( , )2 2k k
k jN+ +< < ; hence it holds 

1 1
2 2

( , )2 2
k k

k jN
+

+
< <  

By Lemma 2(P31), the inequality 12 1
2

kk k+⎢ ⎥≤ ≤ +⎢ ⎥⎣ ⎦
yields 

1 1
2 22 2

k k+⎢ ⎥ +
⎢ ⎥⎣ ⎦ ≤ and 

1 11 222 2
kk +⎢ ⎥++ ⎢ ⎥⎣ ⎦≤ , hence it 

holds 

1 1 1
2 2

( , )2 2
k k

k jN
+ +⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦< <  

By Lemma 2 (P13) it immediately leads to 

1 1 1
2 2

( , )2 2
k k

k jN
+ +⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥≤ <⎣ ⎦  

which is ( , )
1 1( 1 )

2 2k j
k kN + −⎢ ⎥ ⎢ ⎥⎢ ⎥ − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 

Remark 2. This proposition is a modification of the Corollary 2 in CHEN (2018). That paper 

claimed that ( , )
1 1

2k j
kN +⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

or ( , ) 2k j
kN ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. However, seeing from Propositions 1, 2 and 

3, one can see that ( , )
1

2k j
kN +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 never occurs. 

Theorem 2. Given 3N >  be an odd integer; then 2log
1

2
N

N
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Proof. Let 2log 1k N= −⎢ ⎥⎣ ⎦ . By Lemma 1(P1), N  is a node on level k  of 3T . By Proposition 3 

it knows 1
2

kN −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, that is 2log

1
2

N
N

⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦
.   

 

Example 1. Table 1 lists several odd integers that are randomly picked, and their positions 

in 3T as well as their square roots in 3T . It can see that, 2log
1

2
N

N
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ −⎢ ⎥⎣ ⎦ ⎣ ⎦

 holds for each 

number. Readers can check it manually or with Mathematica. 
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Table 1. Odd Integers and their square roots in 3T  

Odd Integer N N’s in 3T  2log
1

2
N⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥

⎣ ⎦
N⎢ ⎥

⎣ ⎦  & its level 

1517 (9,246)N  4 1517 38 4⎢ ⎥ =⎣ ⎦  

20491 (13,2053)N  6 20491 143 6⎢ ⎥ =⎣ ⎦  

386757 (17,62306)N  8 386757 621 8⎢ ⎥ =⎣ ⎦  

6947533 (21,1376614)N  10 6947533 2635 10⎢ ⎥ =⎣ ⎦  

104678919 (25,18785027)N  12 104678919 10231 12⎢ ⎥ =⎣ ⎦

 

Remark 3. Table 1 can be easily checked manually or with Mathematica. When programmed 
as follows, 

f[x_]:=Floor[Floor[Log[x]/Log[2]]/2]-1; 

g[x_]:=Floor[Log[Sqrt[x]]/Log[2]]-1; 

r[x_]:=Floor[Sqrt[x]]; 

inData={1517,20491,386757,6947533,104678919}; 

r1=Table[f[inData[[i]]],{i,5}]; 

r2=Table[g[inData[[i]]],{i,5}]; 

r3=Table[r[inData[[i]]],{i,5}]; 

t={r1,r2,r3}//MatrixForm 

the screenshot in Mathematica 7.0 is as figure 1 

 

Figure 1.  Screenshot of the program and outputs 
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Corollary 1. Let 3N > be an odd integer and 2log 1k N= −⎢ ⎥⎣ ⎦ ; then
1

2 1( 2 2 )
2

k
kN

+⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥≤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
 

when k is odd whereas 
1

2 1( 2 2 )
2

k
kN

+⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥ −⎢ ⎥⎢ ⎥⎢ ⎥ ≤ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
when k  is even. 

Proof. By Theorem 2, 1
2

kN −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 is sure. Now consider the fact that, whether 2 1k l= +  or 

2 2k l= + , 1 1
2

k l+⎢ ⎥ = +⎢ ⎥⎣ ⎦
 always holds. By Proposition 2, it knows that, 

1
2 1( 2 2 )

2

k
kN

+⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥≤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
 

when k is odd whereas 
1

2 1( 2 2 )
2

k
kN

+⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥ −⎢ ⎥⎢ ⎥⎢ ⎥ ≤ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
when k  is even.  

 

CONCLUSION 

The square and the square root are important numbers. For an integer, the square root is 
essentially important because it is the cut-off point of divisors of a composite integer. Study 
of these numbers is helpful to understand distribution of the divisors on 3T . The Theorem 2 
proved in this paper is of course a foundation for us to know where the square root of a node 
lies. Hope it is helpful in the future. 
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