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ABSTRACT: This study modeled the inflation rates in Nigeria using Box Jenkins’ time 

series approach. The data used for the work ware yearly collected data between 1961 and 

2013. The empirical study revealed that the most adequate model for the inflation rates is 

ARIMA (0, 0, 1). The fitted Model was used to forecast the Nigerian inflation rates for a 

period of 12 years.  Based on these results, we recommend effective fiscal policies aimed at 

monitoring Nigeria’s inflationary trend to avoid damaging consequences on the economy. 
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INTRODUCTION 

A high and sustained economic growth in conjunction with low inflation rate is the central 

objective of macroeconomic policy. Low and stable inflation along with sustainable budget 

deficit, realistic exchange rate and appropriate real interest rate are among the indicators of a 

stable macroeconomic environment. Thus, as an indicator of stable macroeconomic 

environment, the inflation rate assumes critical importance (Fatukasi, 2014). 

It is therefore important that inflation rates be kept stable even when it is low. The primary 

focus of monetary policy both in Nigeria and elsewhere has traditionally been the 

maintenance of a low and stable rate of aggregate price of inflation as defined by commonly 

accepted measures such as the consumer price index (Ret and Sheffarin, 2003). 

Forecasting and modeling inflation rates could be done using time series analysis, which is a 

sequence of observations on a single entity reported or measured at regular time intervals. 

Modeling provides not only a defined description of time series but also an important step 

towards predicting or controlling the series. The Box-Jenkins’ Autoregressive integrated 

moving average (ARIMA) modeling approach enables us to identify a tentative model, 

estimate the parameters and perform diagnostic checking or residual analysis. 

This paper outlines the practical steps needed in the use of autoregressive integrated moving 

average (ARIMA) time series models for forecasting Nigeria’s inflation rates. 

 

METHODOLOGY 

In this work, we shall consider the first step in developing a Box-Jenkins’ model, which is to 

determine if the series is stationary and if there is any significant seasonality that needs to be 

modeled. Stationarity can be examined from a run sequence plot as it showcases constant 

location and scale. Alternatively, an autocorrelation plot is capable of revealing any case of 
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stationarity. The autocorrelation at lag p is the correlation between the pairs (Yt, Yt-p) given 

by rp =  , and it ranges from -1 to +1. 

 On the other hand, non stationarity is often indicated by an autocorrelation plot with very 

slow decay. Differencing approach is recommended to achieve stationarity, often differencing 

is used to account non-stationarity that occurs in the form of trend and or seasonality. The 

difference, xt - x t - l, can be expressed as (1-B) xt     or = 1- B. Thus 

 = xt - xt - l. 

Our goal for model identification is to detect seasonality and identify the order, if it exists. 

However, it may also be helpful to apply a seasonal difference to the dataset and generate the 

ACF and PACF plots. This may help in the model identification of the non-seasonal 

components of the model (Box and Jenkins (1976). All the AR(p) , MA(q) and ARMA(p, q) 

models that will be presented below are based on the assumption that the time series can be 

written as: 

Xt = δt + wt, where δt is the conditional mean series, i.e. δt = E[Xt|Xt-1, Xt-2, …] and wt is a 

disturbance term. 

AR, MA, ARMA, and ARIMA Models  

 An AR (1) model is given by: xt = xt - l + wt, where wt  iid N(0, ). In 

this case, the maximum lag = 1. Thus, the AR polynomial is; 1B or 

(1- B)xt = . 

 A MA (1) model is given by: xt =  + wt - l  and could be written as xt = 

B)wt.  A factor such as 1 + B  is called the MA polynomial, and it is 

denoted as  It has the following properties: -   

(i) The mean is: ) = . 

(ii) The variance is: Var(xt) = . 

(iii) The autocorrelation function (ACF) is:  =  , = 0 for h . 

Generally, we can write an MA model as wt -  = wt.  

 An ARMA (Autoregressive moving average) model can be denoted by ARMA (p, q) 

and may be defined by the equation; xt =  +  + …+  

 +... + .  

 ARIMA (p, d, q) where p, d, and q denote the order of auto-regression, order of 

differencing and moving average, respectively. Given a time series process  

ARIMA (p, d, q) can be defined as;  = t . 
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In general, an autoregressive process, ARIMA (p, 0, 0), can be denoted as;   xt = 

, + ….+ xt-p +  The ACF declines exponentially and the PACF 

spikes on the first P lags for moving average process. ARIMA (0, 0, q) can be defined as;  

xt =  The ACF spikes on the first q lags 

and the PACF declines exponentially. For fixed processes ARIMA (p, d, q), decline on both 

ACF and PACF. If the ACF and PACF decline slowly (i.e. has autocorrelations with values 

greater than 1.6 for more than five consecutive lags) the process is probably not stationary 

and should therefore be differenced. 

ANALYSIS OF RESULTS 

- The sequence plots of the data (Appendices A1 and A2) shows that there is no trend and 

seasonal variation, and as such it does not require differencing. 

- Appendix B is the autocorrelation function (ACF) of the data while Appendix C shows 

the partial autocorrelation function (PACF) of the dataset. Both cut off at lag 1, and 

every other lag falls within the confidence interval signifying stationarity in the dataset. 

From these plots, it can be concluded that the data are being described by the moving 

average (MA) of  order, q = 1. Based on the diagnostic check, ARIMA (0, 0, 1) is 

suggested as the appropriate model. 

- The residual plot in Appendix D for the ACF and PACF of the model, which serves as a 

diagnostic check of the model, reveals that it is within specification as it shows no 

significant autocorrelations. All the residuals are white noise indicating that the model 

fits the data adequately. It is also observed that all the coefficients are within the limits 

of + 1.96√N, where N = 53, is the number of observations. Also, the Normal probability 

plot is well-shaped and so the assumption of normally distributed residuals is in order. 

From the results in Appendix E, we have that p = 0, d = 0, q = 1,  

θ1 = -0.6392 with a standard error of 0.1079 and t = -5.93, which is highly significant. 

 

CONCLUSION 

The Box – Jenkins’ procedure was applied on the stationary data series and we identified the 

corresponding ARIMA (0, 0, 1) process with the aid of the series correlogram (Appendices B 

and C). The Root Mean Square Error (RMSE) which determines the efficiency of the model 

was estimated at 0.116, indicating that the model is quite efficient. The predicted series of 

inflation rates and the graph for 2014 – 2025 are as shown in Appendix F with the following 

accuracy measures:- MAPE: 131.872, MAD:11.752, and MSD: 256.058. However, we 

recommend effective fiscal policies aimed at monitoring Nigeria’s inflationary trend to avoid 

damaging consequences on the economy with time. 
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APPENDIX A1: SEQUENCE PLOT 

 

 

APPENDIX A2 
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APPENDIX B 
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APPENDIX C 
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Partial Autocorrelation Function of Nigerian Inflation rates (1961-2013)

 

 

APPENDIX D 
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APPENDIX E 

Period   Forecast 

2014     19.9701 

2015     19.1018 

2016     23.4868 

2017     35.6577 

2018     25.7382 

2019     32.6617 

2020     27.8678 

2021      8.0601 

2022      9.9678 

2023     10.9787 

2024     38.2083 

2025     39.1419 
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APPENDIX E 

Final Estimates of Parameters 

Type         Coef  SE Coef      T      P 

MA   1    -0.6392   0.1079  -5.93  0.000 

Constant   16.866    2.958   5.70  0.000 
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Mean       16.866    2.958 

Number of observations:  53 

Residuals:    SS =  8876.73 (backforecasts excluded) 

              MS =  174.05  DF = 51 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag            12     24     36     48 

Chi-Square    9.5   17.6   27.9   30.1 

DF             10     22     34     46 

P-Value     0.489  0.727  0.760  0.966 
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