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ABSTRACT: The “mode” has been proposed as an appropriate statistic to improve estimate especially in 

situations when data distributions are skewed or contain outliers such as activity duration in project scheduling. 

Since the underlying distribution of activity duration may be unknown and different modes can be obtained using 

different bin sizes of the histogram method, this paper, investigates the effect of varying  histogram bin width and 

data distribution on the behaviour of the mode. Random numbers were generated from five distributions 

commonly used to model project activity duration at five different levels and varying sample sizes. Each set of 

sample is then binned using varying histogram bin width, Sturges’rule and Scott’s rule.  The grand mode for all 

levels per classification is recorded and analyzed. It was found that bin width does not significantly affect the 

behaviour of the mode but the value of the mode is significantly dependent on the data distribution and sample 

size.  
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INTRODUCTION 
 

Project scheduling has been described as one of the critical areas of project management. Morgenshtern and Dvir  

[1] empirically found that greater uncertainty in project scheduling is associated with increasingly erroneous 

project duration estimation. This may be due to inability to accurately estimate project activity duration. One of 

the earliest methods of quantifying uncertainty in project activity duration by  Malcolm et al [2] emphasized the 

importance of knowing the ‘most likely’ duration experienced during stable work conditions. Statistically, actual 

activity duration values experienced at instances of this type are those with the highest likelihood of occurrence. 

Subsequent works by Ginzburg [3], Ravi Shankar et al [4], Marounek [5] emphasized likewise. Hall and Johnson 

[6] in their study, sought and applied field data on “most of the times”, “pessimistic” durations and the likelihood 

of overrun per critical activity in their effort to estimate expected activity duration. Various distributions which 

have also been used to model project activity duration [2, 7-12] are continuous, positively skewed and  unimodal. 

For data distribution of such characteristics, Hedges and Shah [13] considered the ‘mode’ an appropriate statistic 

to represent their center of location.This shows the importance of the mode in project scheduling and other fields 

such as the medical domain, biology, astronomy [14-16] where it has been used to improve accuracy of estimates. 

  

Despite the importance of the mode and its recognition as a natural measure of central tendency, there are few 

methods of estimating the mode [13, 17-21].  Hedges and Shah  carried out a comparative  study on the available 

mode estimating techniques, they pointed out that different mode estimators perform better in different conditions. 

Thus, in general circumstance in which the underlying data distribution is unknown, one should employ a 

nonparametric method for the inference of the mode [22]. Among them, the histogram seems to be the most basic, 

easily applicable non parametric method which does not involve too much computational overhead for mode 

estimation. Although, the method has been widely applied, its major shortcoming is that different modes can be 

obtained using different bin width. 
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The first and widely criticized histogram bin width selection rule by Sturges [23] led to the work of Scott [24].He 

derived formulae for the optimal bin width by minimising the integrated mean square error (IMSE) of the 

histogram model   of the true density, based on the assumption that data is normally distributed. The bin width 

which minimizes the IMSE is chosen as the optimal bin width. Legg et al, [14] however, argued that in the context 

of image registration, Sturges’ Rule consistently outperformed Scott’s Rule and since the underlying distribution 

of data may be unknown, it may be inappropriate to use an optimization criterion that relies on the error between 

the density model and the true density [25]. Instead, Knuth[25] considered the histogram to be a piecewise-

constant model of the underlying probability density. Wand[26] extended Scot’s formula in order to give better 

consistency properties but it requires too much computational effort, therefore ‘defeating’ the simplicity of the 

histogram technique. Other techniques for the selection of histogram bin based on similar assumption are 

presented in [27-29]. These reveal that there is no general consensus on the determination of optimal bin width 

and in the context of project scheduling where distribution of project activity duration varies depending on project 

circumstance, there is a need to investigate the behavior of the mode with respect to varying histogram bin width 

and varying  distribution of  project activity duration. 

 

 

METHODOLOGY  

To pursue this goal, one may adopt the following approach. Distributions commonly used to estimate project 

activity durations may be selected and a set of respective parameter values representing very low, low, medium, 

moderately large and very high values of activity duration specified. Based on these, samples of durations may be 

generated randomly from each distribution using an authenticated random number generator. Each sample is then 

binned into ‘n’ classes from which the mode per bin width is derived. Considering all samples, the modes are 

statistically examined for any significance differences due to number of bins and data distribution. Indeed, this is 

the approach adopted in this study. 

 

Generating Random Variates 

Accordingly, the uniform, normal, lognormal, triangular and beta distributions which have been used to estimate 

project activities duration will be used to generate the data for this study. Detail information on the distributions 

follows: 

          The uniform distribution has two parameters (minimum value, a; and maximum, b) with the following as 

the probability density function (PDF): 

𝑓(𝑥) = {
1

𝑏−𝑎    

   0    ,   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
, 𝑎 ≤ 𝑥 ≤ 𝑏;                  

and the cumulative,    

      𝐹(𝑥) =  {

0,       𝑥 ≤ 𝑎
𝑥−𝑎 

𝑏−𝑎
   ,   𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑏 ≤ 𝑥

          

while the associated  activity duration (x) to be generated randomly is given by the expression:  

  𝑥 = 𝑎 + (𝑏 − 𝑎) 𝑅𝑖;    [30]               (1) 

where 𝑅𝑖~𝑢𝑛𝑖𝑓(0,1). 
     

Similarly, for the normal distribution, the pdf is:  

                                𝑓(𝑥|𝜇, 𝜎) =  
1

𝜎√2𝜋
 𝑒
−
(𝑥−𝜇)2

2𝜎2    ;            

where ‘μ’ is the location parameter equal to the mean and ‘σ’ is the standard deviation and    -∞<x<∞, - 

∞<μ<∞, σ>0.   

The cumulative function is given as  

𝐹(𝑥) =  ∫
1

𝜎√2𝜋
 𝑒
−
(𝑥−𝜇)2

2𝜎2
∞

−∞
dx         [31]        

Because its inverse does not exist, 𝑅 ~ normal(0,1), standard normal distribution may be generated using -Muller 

method or Polar-Marsaglia method and random activity duration, x  generated using 

𝑥 = 𝜇 + 𝜎𝑅      [32]          (2) 

 

If the distribution of activity duration is assumed to be lognormal distributed, the pdf is given as  

     

𝑦 = 𝑓(𝑥|𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
 𝑒

−(𝑙𝑛𝑥−𝜇)2

2𝜎2  
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The cumulative function is 

            𝐹(𝑥|𝜇, 𝜎) =
1  

𝜎√2𝜋    
∫

𝑒

−(ln(𝑡)−𝜇)2

(2𝜎)2

𝑡
 𝑑𝑡

𝑥

0
       

where the variable x > 0 and the parameters  𝜇 𝑎𝑛𝑑 𝜎   > 0 all are real numbers. A lognormal distribution with 

mean (m) and variance (v) has parameters  

                             𝜇 = log (𝑚2  /√𝑣 + 𝑚2          )   and       

   𝜎 = log √(𝑣/𝑚2 + 1)        (3) 

If x is lognormally distributed, then log(x) is normally distributed[33].Note that (𝜇, 𝜎2)    are not the arithmetic 

mean and standard deviation of the lognormal distribution. 

 

The asymmetric triangular distribution may also be used to model activity duration when an expert is 

able  to give an upper (b) and lower bound (a) on the possible activity duration with an  inclusion of an estimate 

of the most likely duration (m). The probability density function is given as     

 𝑓(𝑥|𝑎,𝑚, 𝑏) =

{
 

 
2(𝑥−𝑎)

(𝑏−𝑎)(𝑚−𝑎)
, 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

2(𝑏−𝑥)

(𝑏−𝑎)(𝑏−𝑚)
 , 𝑓𝑜𝑟 𝑚 ≤ 𝑥 ≤ 𝑏

                    0, 𝑒𝑙𝑠𝑒𝑤𝑒ℎ𝑒𝑟𝑒

 

where a < b and a ≤ m≤ b. 

The cumulative function is given as 

 𝐹(𝑥) = {
 (
𝑚−𝑎

𝑏−𝑎
) (

𝑥−𝑎

𝑚−𝑎
)
2

,   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑚

1 − (
𝑏−𝑚

𝑏−𝑎
) (

𝑏−𝑥

𝑏−𝑚
)
2

, 𝑓𝑜𝑟 𝑚 ≤ 𝑥 ≤ 𝑏
 

and the associated activity duration can be generated using the following expressions; 

𝐹−1(𝑦|𝑎,𝑚, 𝑏, 𝑛) =  {
𝑎 + √𝑦(𝑚 − 𝑎)(𝑏 − 𝑎),   𝑓𝑜𝑟 0 ≤ 𝑦 ≤  

𝑚−𝑎

𝑏−𝑎

𝑏 − √(1 − 𝑦)(𝑏 − 𝑚)(𝑏 − 𝑎), 𝑓𝑜𝑟 
𝑚−𝑎

𝑏−𝑎
 ≤ 𝑦 ≤ 1

  

                             

where y ~ unif(0,1) [34]         (4) 

Equation (4) allows for straightforward sampling from a triangular distribution with given [35].  

 

For activity duration that is beta distributed, the continuous probability distribution is defined on the 

interval (a, b) parameterized by two positive shape parameters, typically denoted by α and β. The pdf is given as 

𝑓(𝑥; 𝛼, 𝛽) =
𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
   
((𝑥−𝑎)𝛼−1)(𝑏−𝑥)𝛽−1   

(𝑏−𝑎)𝛼+𝛽−1
         

where ‘a’ and ‘b’ are the minimum and maximum values of activity duration [35].The beta cumulative density 

function is given as 

  𝐹(𝑥|𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
 ∫ 𝑡𝑎−1
𝑥

0
(1 − 𝑡)(𝑏−1)dt                               

x ~ beta(α,β). If ‘ 𝑦𝑚’  and ‘𝑦𝑛’  are two independent variables distributed according to the chi-squared distribution 

with m and n degrees of freedom, respectively, then the ratio  
𝑦𝑚

𝑦𝑛+𝑦𝑚
  [30]        (5) 

 

 is beta-distributed, See also:[36]. 

 

Using these distributions, two different project planning situations are examined in this study. 

Case I: A project situation in which observed data is actually uniformly distributed (could have been any other 

distribution) but project managers erroneously assumed different types. In this case, the assumed may be normal, 

lognormal, beta and triangular distributions. Indeed, this has been the case by many practitioners as noted by 

Trietsch et al [7]. It will be useful information to know the impact this will have on mode behaviour. 

Case II: A project planning situation where the nature of the observed distribution is known. The data may be of 

uniform, normal, lognormal, triangular or beta distribution etc. representing independent and different project 

activity duration. The data in Table 1 are the parameter values for simulating both cases considering projects of 

very low durations, low, medium, high and very high values of activity duration. 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Shape_parameter
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A B μ Σ μ* σ* a M B α β a B 

C
a

se
 I

 

1 very low 1 30 15.1 8.5 2.58 0.52 1 10 30 2.77 4.65 1 30 

2 Low 31 60 45.3 8.3 3.80 0.18 31 42 60 3.26 4.51 31 60 

3 medium 61 90 76 8.6 4.32 0.11 61 76 90 4.09 3.91 61 90 

4 High 91 120 105 8.9 4.65 0.08 91 100 120 2.77 4.65 91 120 

5 
very 

high 121 150 134 8.7 4.90 0.07 121 146 150 4.38 1.53 121 150 

  

C
a

se
2
 

1 very low 12 30 16 6 2.11 0.42 10 16 40 4.7 2.39 36 67 

2 Low 46 87 89 9 4.02 0.12 59 70 104 1.6 4.45 82 140 

3 medium 105 232 104 7 5.11 0.07 126 176 343 4.6 1.88 167 215 

4 High 289 445 156 15 5.29 0.08 400 478 506 3.7 4.25 295 335 

5 
very 

high 505 969 456 23 6.11 0.07 633 700 888 4.4 3.51 480 540 

 

Table 1: Sets of parameter values 

Data Generation and Classification 

To summarize our approach, the necessary steps are given as follows. 

Step 1: Specify probability distribution, �̃�. 

Step 2: Set 𝑖 =0 where ‘𝑖’ represent range of parameter values; very low, low, medium, high and very 

high (As given on table 1.0). 

Step 3: Generate ‘𝑁’ random sample from �̃� and ‘𝑖’ to form one data set, where  

𝑁 =50,100,150,200,250……….1000. 

Step 4: Classify the data set into ‘n’ bins where 𝑛=5, 10, 15 ,20, 25.Also, compute mode using Sturges  

and Scot’s rule. 

Step 5: For range ‘𝑖’ obtain the mode for bin ‘𝑛’(𝑚𝑖,𝑛). 

Step 6: Repeat steps 2-4 for all ‘𝑖’ 

Step 7: Calculate the grand mode ‘�̅�𝑛’ for bin ‘ 𝑛’ ; that is  �̅�𝑛 =
∑ 𝑚𝑖,𝑛
5
𝑖=1

5
  

Step 8: Repeat steps 2-7 for all N. 

Step 9: Tabulate the result as shown in table 2 

 

S
A

M
P

L
E

 S
IZ

E
 =

N
 I Range of 

parameter values 

5 bins 10 bins 15 bins 20 bins 25 bins Sturges 

ruls 

Scot’s 

rule 

1 very low 𝑚1,5 𝑚1,10 𝑚1,15 𝑚1,20 𝑚1,25 𝑚1,𝑆𝑡. 𝑚1,𝑆𝑐. 

2 Low 𝑚2,5 𝑚2,10 𝑚2,15 𝑚2,20 𝑚2,25 𝑚2,𝑆𝑡. 𝑚2,𝑆𝑐. 

3 Medium 𝑚3,5 𝑚3,10 𝑚3,15 𝑚3,20 𝑚3,25 𝑚3,𝑆𝑡. 𝑚3,𝑆𝑐. 

4 High 𝑚4,5 𝑚4,10 𝑚4,15 𝑚4,20 𝑚4,25 𝑚4,𝑠𝑡. 𝑚4,𝑆𝑐. 

5 very high 𝑚5,5 𝑚5,10 𝑚5,15 𝑚5,20 𝑚5,25 𝑚5𝑠𝑡. 𝑚𝑚5𝑆𝑐. 

 Grand mode �̅�5. �̅�10 �̅�15 �̅�20. �̅�25. �̅�𝑆𝑡. �̅�𝑆𝑐. 

Table 2 Mode values for specified distribution 

 

Hypothesis Testing  
Based on the above described situations, our main hypothesis is to evaluate the effect of the different bin width of 

histogram on the mode and to determine whether there is a significant difference in the modes obtained due to the 

distribution of data. In addition, we need to determine the effect of increasing sample size on the obtained mode 
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also investigate if there is a significant difference between the mode obtained by Sturges rule and Scot’s rule. In 

order to investigate these statistical variations, the analysis of variance test is used[37, 38].The  test statistics is 

carried out at 0.05 significance level (α), a probability threshold below which the null hypothesis will be rejected. 

In specific term the hypothesis is stated as thus: 
 

Hypothesis 1  

H10: There is no significant difference in the behaviour of the mode with respect to varying bin width. 

H11: There is a significant difference in the behaviour of the mode with respect to varying bin width. 

Hypothesis 2 

H20: There is no significant difference between the mode obtained using varying bin width and  Sturges rule  

H21: There is a significant difference between the mode obtained using varying bin width and  Sturges rule. 

Hypothesis 3 
H30: There is no significant difference between the mode obtained using varying bin width and  Scot rule. 

H31: There is a significant difference between the mode obtained using varying bin width and  Scot rule. 

Hypothesis 4 
H40: There is no significant difference between the mode obtained using  Sturges and Scot’s rule. 

H41: There is a significant difference between the mode obtained using Sturges and Scot’s rule. 

Hypothesis 5 

H50: There is no significant difference in the behaviour of the mode with respect to data distribution. 

H51: There is a significant difference in the behaviour of the mode with respect to data distribution. 

Hypothesis 6  
H60: There is no significant difference in the mode across the four sample sizes. 

H61: There is a significant difference in the mode across the four sample sizes. 

 

PRESENTATION AND DISCUSSION OF RESULTS 

In the previous section we presented the methodology for demonstrating the utility of the histogram method for 

determining the mode of several different data sets from five different distributions. A sample result of the grand 

mode for the case of uniformly distributed data at 50-1000 sample sizes is presented in table 3. 

UNIFORM DISTRIBUTION CASE 1   UNIFORM DISTRIBUTION CASE 2 

  5Bins 10Bins 15Bin 20Bins 25Bins SturgesBin ScotBin 

  

5Bins 10Bins 15Bins 20Bins 25Bins SturgesBin ScotBin 

50 
73 74 79 75 79 75 77 285 292 287 328 306 296 335 

100 
77 74 73 77 73 73 78 290 302 271 311 300 314 297 

150 
74 75 72 75 73 77 71 292 285 288 260 281 285 300 

200 
78 78 81 78 81 78 77 270 279 281 304 253 240 335 

250 
77 81 79 84 78 81 85 262 262 327 334 299 324 313 

300 
75 67 70 75 72 68 73 285 308 284 275 280 295 287 

350 
79 74 80 76 81 75 81 248 237 259 213 249 238 220 

400 
79 84 79 79 76 82 82 219 243 236 243 244 243 245 

450 
79 77 78 81 78 76 73 287 290 277 279 280 283 287 

500 
80 76 78 76 83 76 75 305 308 266 277 302 305 276 

550 
77 77 72 73 76 76 77 283 292 296 304 299 291 299 

600 
75 80 78 77 78 82 83 236 289 295 300 286 297 298 

650 
77 73 74 75 71 73 77 301 296 314 297 254 272 265 

700 
74 73 75 80 79 83 77 302 307 209 284 274 286 299 

750 
74 74 75 74 81 76 75 334 322 342 346 314 330 334 

800 
78 76 75 77 75 77 75 

281 
263 234 306 275 256 268 

850 
79 81 74 71 78 70 83 319 316 314 313 312 323 326 

900 
85 84 81 84 86 84 86 329 281 280 248 270 316 

284 

950 
77 74 76 75 74 76 75 224 240 224 250 253 237 268 

1000 
78 77 73 80 80 82 78 254 260 308 304 288 278 294 

Table 3 Mode for uniformly distributed data 
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The ANOVA summary result for the six hypotheses across all the distributions  is shown in table 4. 

Hypothesis Case df1 df2 Fcritical Fstatistics Pvalue 

   

1 

I 4 495 2.38995 0.176235 0.9506 

II 4 495 2.38995 0.02446 0.99884 

2 

 

I 5 594 2.22919 0.597461 0.70194 

II 5 594 2.22919 0.027746 0.99963 

3 

 

I 5 594 2.22919 1.231465 0.29273 

II 5 594 2.22919 0.074764 0.996 

4 

 

I 1 198 3.88885 0.329305 0.56672 

II 1 198 3.88885 0.062276 0.80319 

5 

  

  

I 4 695 2.38475 175.0199 1E-103 

II 4 695 2.38475 2419.925 0 

6 

 

            

I           

  Uniform distribution   19 120 1.67388 7.906759 1.1E-13 

  Normal distribution   19 120 1.67388 6.282486 6.6E-11 

  Lognormal distribution   19 120 1.67388 1.849823 0.02447 

  Triangular distribution   19 120 1.67388 16.59659 3.7E-25 

  Beta distribution   19 120 1.67388 4.600535 9.1E-08 

    II           

  Uniform distribution   19 120 1.67388 10.2319 3E-17 

  Normal distribution   19 120 1.67388 3.866522 2.5E-06 

  Lognormal distribution   19 120 1.67388 4.502335 1.4E-07 

  Triangular distribution   19 120 1.67388 11.32565 8.9E-19 

  Beta distribution   19 120 1.67388 3.587229 9.2E-06 

 

Table 4 ANOVA Summary Result  

 

Based on the result in table 4.0, the Fstatistic  and p-value at 4 and 495 degrees of freedom for the first hypothesis 

reveal that we do not reject the null hypothesis of no significant difference in the behaviour of the mode with 

respect to varying bin width for the first and second case situations. Related hypotheses 2,3 and 4 also reveal that 

we do not reject the null of these three hypotheses. This implies that varying histogram bin width do not 

significantly affect the mode of a set of data.  This may be the reason for the use of  rules of thumb for determining 

the number of bins, such as 5-20 bins usually considered as adequate (for example, Matlab uses 10 bins as a 

default). However, for hypothesis 5, at 4 and 695 degrees of freedom,  Fstatistic  and p-value  reveal that the null 

hypothesis should be rejected. In other words, the distribution of data has a direct impact on its mode, this is 

expected. Finally, the sixth hypothesis reveals that the mode is significantly unequal across all the sample sizes. 

A plot of the modes against sample sizes reveals a significant the random behaviour of the mode  for all the 

distributions.    

 

 CONCLUSION  

 

We investigated the behaviour of mode with respect to histogram bin width of five distributions commonly used 

to model duration of project activities. The results show that an estimate of mode is not directly related to the bin 

width. For set of historical activity duration, the choice of histogram bins between 5 and 20 as suggested in the 

literature or any of the optimal bin width selection technique is adequate for mode estimation. However, mode 

estimate for a data set may be misleading when durations in the set are from different sources. In other words, 

durations of project activities are unique to the project organisation and durations of similar projects from different 

organisations may not be mixed to obtain a set. We therefore conclude that the histogram method is an appropriate 
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technique for mode estimation in project scheduling with the availability of historical data and yields minimal 

computation overhead. 

 

RECOMMENDATION FOR FUTURE STUDIES 

 
This investigation on the behavior of the mode with respect to the histogram bin width and distribution may 

provide basic information for developing a framework for estimating activity duration and quantifying schedule 

risk in project management. This aspect which is beyond the scope of this paper is considered further studies.  
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