
European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

33

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

MEASURABLE METRICS FOR SOFTWARE PROCESS IMPROVEMENT

Supun Dissanayake

University of Colombo School of Computing

ABSTRACT: Software Engineering organisations should adapt new technologies for

software process improvement (SPI) due to the advancement of technologies. Since big data

processing is widely required for new organisations, it is required to build new technologies

to reduce manual workloads and automate processes. Therefore, this research paper focuses

on identifying measurable metrics that can be used by software development companies to

improve the quality of the development process and their products by quantifying the maturity

level achievement within the organisation.

KEYWORDS: Software Engineering, Software Process Improvement, Measurable Metrics,

Key Process Indicators, Maturity Models

INTRODUCTION

Software Process Improvement is the improvement of business processes in a software

development organisation (Olson et al, 1989). Paulk et al (1993) define software processes as

activities, practices, transformations and methodologies that allow development and

sustenance of software products. Moreover, it improves the productivity of software and

reduces development times. This implicates that the successful application of SPI across all

sections of the organisation will allow the business to thrive against its competitors.

Prior to the application of SPI, it is vital to identify a structure of a software engineering

organisation (Paulk et al., 1993). This allows SPI to be separated in terms of development

processes, reliability management, cost analysis etc. Then measurable metrics could be

identified to apply SPI.

Implementation of maturity models within the organisation is regarded as one of the most

effective strategies to apply SPI (Sommerville, 2007). It allows the identification of areas of

improvement in a software development company, thus implicating level of quality within a

company (Herbsleb, 1997). Carnegie Mellon University introduced widely accepted maturity

models for the software engineering industry in the form of CMM in 1989 and CMMI in 2002

(Bayrasken, 2009). Conversely, maturity models such as ICMM and SCMM can be used to

improve CBSE practices. Moreover, maturity models such as ISO/IEC WD 15504 and SCMM

are used in the software development industry. These models provide Key Process Areas

(KPA) to achieve maturity criteria, however, most of these KPA are either too vague or lack

the ability to quantify the achievability of the maturity level. Therefore, this research paper

identifies measurable metrics that can act as measurable Key Process Indicators (KPI) for

KPAs. Thus, organisations can produce a measurement of achievement for each KPA.

Software Process Improvement

Software Process Improvement (SPI) has obtained great attention from the software

engineering industry during past few decades (Sjoberg et al, 2007). Software processes can be

defined as human-centred functions, which can cause unexpected or unintentional behaviours

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

34

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

with the organisation (Fuggetta, 2000). Hence, software quality identification is a very

significant aspect of the organisation. Pressman (2009) denotes three subsections of software

quality: good software development processes, setting up of quality standards and

identification of functional requirements. Moreover, IEEE (Galin, 2004) defines software

quality as the requirement achievements of the organisation in terms of processes, system and

components. Therefore, software processes in the organisation should be continuously checked

to validate their efficiency. Moreover, SPI provides a platform to carry out necessary evaluation

processes to show the efficiency of software processes in the organisation (Unterkalmsteiner

et al, 2011). Hence, weak areas of the development process can be identified for improvements.

Furthermore, SPI had been widely evaluated for software development processes during past

few decades and its strengths and weaknesses were meticulously identified (Salo, 2007).

Identification of Required Measurable Metrics

Prior to looking for measurable metrics, it is required gather relevant information from

personnel who work in software development companies through a qualitative research

methodology. Therefore, interviews were carried out with 10 personnel who are working in

software development organisations.

Interviews collect participant’s honest opinions about the subject area and provide a wide

spectrum of information for each question (Kvale, 1996). The interview contained a semi-

structured style of questions with open-ended answers to gather the maximum amount of

information. Semi-Structured interviews allowed the participants to express their true opinions

and feelings towards each question depending on their understanding of the question and

personal experiences (Matthews, 2010). Therefore, these answers were used to build a valid

hypothesis for this research study.

The participants were identified and contacted via LinkedIn and all the participants are

professionals who are working in the software engineering industry, thus results are valid and

accountable. Interview questions were designed to identify structures of organisations in terms

of development methodologies, employees, culture etc. Moreover, participants could stay

anonymous in the interview since substantial information about the participants’ organisation,

employees and development processes were gathered through this interview.

The interview was used to identify valid measurable maturity metrics that is required in the

software development industry. It achieved this feature by identifying the use of SPI

methodologies in companies and identifying areas of improvements suggested by participants.

Therefore, this information was used to hypothesise measurable metrics that should be adopted

by maturity models like CMMI, SCMM, ISO etc. to enhance their effectiveness. Following

questions were asked from the participants and their results were thoroughly analysed.

Please specify the business area(s) of your organisation?

This question was developed to confirm that the participant is working in a software

development company. This is a vital piece of information since it depicts the validity of the

opinion received from the participant. Moreover, it identifies the type of organisation that the

participant is working in the industry (e.g. Software Testing Company, IT Consultant, Software

Development Company, Web Development Company). Thus, if there is a huge variation in

answers to next set of questions, this question validates its reasoning. 100% of the answers

collected for this question suggested that participants are working in a software development

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

35

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

organisation. Therefore, this answer validates results gathered for all the questions since

participants have knowledge of software development and software process improvement

methodologies followed by their respective companies. This implicates the validation of results

gathered for the next set of questions and there is no need to be concerned about answer

variations.

What types of data does your organisation collect from employees?

This question was developed to identify whether the organisation is collecting measurable

information from their employees. (e.g.: break times, working efficiency, work delivery time

etc.). The answer to this question helps the identification of measurable maturity metrics for

Key Process Areas (KPA). Thus, these results can be used to identify valid measurable metrics

through the literature. There was a common theme in all the answers to this question. Almost

all the respondents answered this question by saying that the organisation collect working days

and hours. They said they are unaware of further data that organisations collect from their

employees. This might be due to their lack of understanding of managerial criteria of the

organisation since none of these participants hold managerial roles in their companies. This

clearly implicates that there is a larger research area for identifying measurable metrics from

individual employees to improve software process maturity. However, one participant

elaborated by saying that his organisation collects Agile metrics such as “Actual Stories

Completed vs. Committed Stories, Communication, Technical Debt Management etc.”.

Therefore, these could be viable metrics that could be used for the development of KPI for the

maturity model. Thus, measurable metrics can be identified for these areas to identify

methodologies to improve employee work rates.

What types of data does your organisation collect from development processes?

This question was developed to identify whether the organisation is collecting measurable

information from their development processes. The answer to this question benefits the

development of KPIs that are related to the development process efficiency. Moreover, it helps

to identify and propose further data that organisations can collect from their development

processes to benefit their overall SPI by comparing collected data with information analysed

in the literature review. There were a wide variety of answers obtained for this question. They

are,

Fig 1: Development Process Data

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

36

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Therefore, certain aspects of these categories were used to identify measurable metrics for a

maturity model. These answers clearly implicate organisations use both agile and Component-

Based Software Engineering. Moreover, mathematical metrics should be identified to measure

the efficiency of most of the aspects identified through this question.

The critical analysis of the interviews allowed the identification of measurable metrics for a

software development company. Hence, the data gathered from this qualitative research

procedure was used to identify mathematical metrics to provide numerical feedback for SPI.

Measurable Metrics for software process improvement

The qualitative analysis identified that the mathematical metrics should be identified in terms

of reusability, cost analysis, development efficiency, reliability etc. to measure SPI in a

software development organisation. Moreover, it is vital to identify measurable metrics that

support SPI in terms of Agile development and CBSE since these methods are widely used in

the industry. Following sub sections depict these identified mathematical metrics and their

evaluations.

Development method metrics

Reusability Assessment

Frakes (1995) depicts that reuse metrics identifies and monitors software reuse levels by

assessing the percentage of reuse life-cycle objects for a period of time. This allows the

organisation to understand that they are following a good amount of software reuse practices

to improve development process efficiency. This metric can be measured using following

equation,

𝑹𝒆𝒖𝒔𝒆 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒎𝒆𝒏𝒕 𝑬𝒇𝒇𝒐𝒓𝒕 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑖𝑓𝑒 𝑐𝑦𝑙𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑟𝑒𝑢𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
 𝑋 100%

However, this metric can be simplified to identify lines of code reused in a software product.

Lines of code (LOC) can be used to measure the reuse code percentage to make the

development process more efficient (Dubey et al, 2015). Moreover, it improves the

understandability, maintainability and the reusability of the code (Lorenz and Kidd, 1994).

Lorenz and Kidd (1994) denote that it is not a strongly endorsed metric to be used for object-

oriented systems, however, it is easy to measure thus it is widely used in the industry.

Mathematical metric for LOC is (Dubey et al, 2015),

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝑹𝒆𝒖𝒔𝒆𝒅 (%) =
𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝑟𝑒𝑢𝑠𝑒 𝑐𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑜𝑑𝑢𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑟 𝑚𝑜𝑑𝑢𝑙𝑒
 𝑋 100%

Complexity

Identification of coupling, constraints and cohesion would allow the measurement of software

complexity (Patel et al, 2016). Moreover, as the software component complexity increases, the

quality of the software will automatically decrease. Component coupling, which is the

identification process of relationship between classes by identifying internal structures of

components can be used to measure component complexity (MajdiAbdellatiefab et al, 2012).

Patel et al (2016) depicts the metric for Component Coupling,

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

37

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝑪𝒐𝒖𝒑𝒍𝒊𝒏𝒈 =
𝑁𝑜 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑟 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐶𝐵𝑆𝐸 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Moreover, as the complexity increases, components will develop more testing and debugging

issues. Therefore, the application of constraints and configuration metrics should be used to

measure these complexity levels (Patel et al, 2016).

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 =
𝑁𝑜 𝑜𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑎𝑛𝑡𝑠

𝑁𝑜 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝑪𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 =
𝑁𝑜 𝑜𝑓 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑜 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑓 𝑢𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

Therefore, these metrics can be used to mathematically identify software complexity.

4.1.3-Reuse Cost Analysis

Cost analysis was another measurable that was identified though the qualitative research. This

could be achieved by following metrics proposed by Gaffney and Durek (1989). These metrics

can be used to analyse the cost of software component reuse.

C= software development cost relative to new code (where C =1).

R= reuse code proportion in the software product (R<=1).

b= the cost that is relative to newer code merging the reuse code when developing a software

product (b =1 for newer code).

Therefore, the mathematical metric for this process is (Frakes, 1995),

𝑪𝒐𝒔𝒕 = (1)(1 − 𝑅) + (𝑏)(𝑅)

Therefore, the productivity is (Frakes, 1995),

𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =
1

𝐶𝑜𝑠𝑡

It is important that b should be less than 1 for the reusable code to be cost-effective and its size

is purely dependent upon its reusable life-cycle (Frakes, 1995).

Therefore, these metrics can be used for evaluation of cost and productivity in a software

development company.

Work in Progress (WIP)

WIP is the process of tracking number of developing processes that are currently in progress

(Little et al, 2008). These processes should be constantly tracked by software development

organisations to improve the overall flow of the development process. Some organisations use

Kanban boards to track development progress of their organisations. Hence, WIP can be

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

38

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

measured by adding the number of unfinished processes on the Kanban Board or by analysing

a Cumulative Flow Diagram using a Kanban board software.

X= unfinished tasks

𝑾𝑰𝑷 = ∑ 𝑋𝑖

𝑛

𝑖=1

This was another aspect that was identified through the qualitative research, thus it satisfies the

research scenario. However, it is important to denote that WIP is not enough for SPI since it is

only one of the factors that can be used to improve the development life cycle (Little et al,

2008). Therefore, it is required to calculate the average throughput.

Throughput

Throughput is the average output of development processes per unit time (Little et al, 2008).

For example, many processes are completed per day, week, month etc. It is important to

recognise and outline throughput depending on the way it affects the economy of the

development process; also, outliers that could become effective must be identified (Little et al,

2008). Therefore, this metric aids business decisions made by the organisation. Throughput can

be calculated through the following equation.

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑁𝑜 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑝𝑒𝑟 𝑑𝑎𝑦, 𝑤𝑒𝑒𝑘, 𝑚𝑜𝑛𝑡ℎ 𝑒𝑡𝑐.

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑑𝑎𝑦, 𝑤𝑒𝑒𝑘, 𝑚𝑜𝑛𝑡ℎ 𝑒𝑡𝑐.)

However, since the throughput is an average value, the forecast made only using throughput

does not seem to be a very reliable result (Little et al, 2008). Hence, it is very important to

combine throughput with cycle time and lead time to satisfy Little’s Law.

Cycle Time

Cycle time is the average time that it takes for the development process to go from the initiation

to completion (Little et al, 2008). Therefore, the reduction of cycle time is beneficial for the

organisation since it allows the business to meet its deadlines in a quicker time span. Cycle

Time can be calculated by following Little’s Law using measurements identified in previous

two subsections.

𝑪𝒚𝒄𝒍𝒆 𝑻𝒊𝒎𝒆 =
𝑊𝑜𝑟𝑘 𝑖𝑛 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 (𝑊𝐼𝑃)

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

This metric depicts a hypothetical demo for the process development time. Moreover, it clearly

implicates that the increase in WIP can cause an increase in predicted Cycle Time. For example,

if there are 25 processes to be completed (WIP) and the throughput is 1.5 per day, the average

cycle time will be 16.67. However, if the throughput stays the same and the WIP is decreased

to 20, the cycle time becomes 13.33, which is an improvement for the business. It can be argued

that the increase in throughput can also decrease the cycle time, however, this is proven to be

a difficult practice in real-life business scenarios since it causes costs to increase (Little et al,

2008).

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

39

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

Lead Time

Lead time is the measurement of the time taken to deliver the product from the customer request

(Muharremoglu et al, 2003). It is the duration period from the project initiation to the end,

which includes process times, queue time, delays etc. The measurement of this metric

determines influences that changes have made to the development process. It can be calculated

by following mathematical metric (Muharremoglu et al, 2003),

𝑳𝒆𝒂𝒅 𝑻𝒊𝒎𝒆 = Cycle Time X WIP

It allows SPI for a similar project in the future through the development and changes to the

inputs to make the lead time faster. Moreover, it identifies the causes and effects of the

organisation that could affect the end-product. Hence, it allows the organisation to inform new

customers about the exact time frame that the organisation will be able to deliver the product

compared to making educated guesses about the delivery date.

Mean time to IPL (MTI)

Reliability of software and software systems is an extremely important factor for software

development processes since it allows the software development processes to run smoothly.

Therefore, organisations must track system and software reliability and take measures for

improvements. Therefore, Kan et al (2001) propose Mean time to IPL (MTI) as a mathematical

metric to achieve this principle. This calculation requires the division of CPU running hours

per week with a number of unplanned breakdowns plus 1. Moreover, it uses weighting factors

to depict results from previous weeks to make the result more meaningful. The equation for

this metric is Kan et al (2001),

𝑊𝑒𝑒𝑘𝑙𝑦 𝑀𝑇𝐼𝑛 = ∑ 𝑊𝑖 ∗ (
𝐻𝑖

𝐼𝑖 + 1
)

𝑛

𝑖=1

n= week no

W= weighting factor

H= weekly running hours of CPU

I= Unplanned IPLs resulted from system failures per week

Software Quality Metrics

After identifying measurable metrics that are applicable for development processes, the next

step is to identify measurable metrics for software quality analysis. Therefore, this section

critically evaluates metrics that can be used to improve software efficiency.

Weighted method per class (WMC)

WMC is the sum of total methods in a class or the method complexity, which is measured via

cyclometric complexity (Harrison et al, 2001). Hence, the identification of WMC allows the

prediction of time and effort needed to build and preserve a class. Moreover, if a class have

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

40

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

more methods, the inheritance level for child classes will be higher (Chidamber and Kemerer,

1994). Therefore, it will hinder the reusability factor of the application. Moreover, WMC will

allow the identification of maintainability, understandability and reusability (Chidamber and

Kemerer, 1994). The mathematical metric for WMC is,

𝑾𝑴𝑪 = ∑ 𝐶𝑖

𝑛

𝑖=1

c= number of methods

4.2.2-Depth of Inheritance Tree (DIT)

The maximum length between the class node and the root of the tree can be explained as a

depth of a class within its inheritance order (Chidamber and Kemerer, 1994). Hence, the

summation of ancestor classes is used to measure this metric. The complexity to predict the

class behaviour rapidly increases if the depth of the class increases (Chidamber and Kemerer,

1994). Deeper trees consist of more methods and classes and therefore they cause higher design

complexities, however, it increases the potential for reuse methods (Harrison et al, 2001). DIT

is mainly used for the evaluation of reuse, understandability, efficiency and testability

(Harrison et al, 2001). Therefore, the DIT can be measured through the following metric,

𝑫𝑰𝑻 = ∑ 𝐴𝑖

𝑛

𝑖=1

A= number of ancestor classes that can potentially affect the selected class

4.2.3-Number of Children (NOC)

NOC is the immediate subclasses in a class hierarchy; it can influence software classes

(Harrison et al, 2001). The inheritance is a type of reuse, therefore, higher the NOC, higher the

reusability factor of the class. However, the testing time rapidly increases with increasing

number of children (Chidamber and Kemerer, 1994). Thus, it implies that NOC is a valuable

metric to measure testability, efficiency and reusability. Therefore, a viable metric for NOC

should be,

𝑵𝑶𝑪 = ∑ 𝑋𝑖

𝑛

𝑖=1

Coupling between object classes (CBO)

CBO is the summation of classes that are coupled with a particular class (Chidamber and

Kemerer, 1994). It can be measured by adding different non-inheritance associated class

hierarchies that are dependent on the software (Chidamber and Kemerer, 1994). Therefore,

higher the CBO, lower the reusability of the class and the maintainability (Harrison et al, 1997).

Moreover, strong coupling makes it more difficult to understand the functionality of the class

(Chidamber and Kemerer, 1994). This implicates that classes with weak coupling allow the

complexity to reduce. Therefore, this improves modularity, encapsulation and promotes

reusability and efficiency of software. Following metric allows the quantification of CBO

(Harrison et al, 1997),

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

41

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

𝑪𝑩𝑶 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 𝑋 100%

Lack of Cohesion of Methods (LCOM)

LCOM is a quality measurement metric for the class cohesiveness, which can be achieved by

measuring common attributes in multiple methods. It calculates the level of similarity between

methods through data input variables or attributes (Harrison et al, 2001). Cohesion is the

relationship of methods within a class (Chidamber and Kemerer, 1994). When the cohesion

increases, the effect of encapsulation increases, which is good for object-oriented design

(Chidamber and Kemerer, 1994). If a class have low cohesion, the complexity rises, thus more

errors will occur during the development procedure (Harrison et al, 2001). Therefore, those

classes that have low cohesion should be reduced to a couple of subclasses to increase cohesion.

High cohesion clearly depicts the good nature of class subdivision (Chidamber and Kemerer,

1994). LCOM metric evaluates reusability and efficiency of the software product.

Table I: SPI Metrics Summary

Table 1: Application of measurable metrics for business processes

Process Measurable Metrics for SPI

Reusability Reuse Improvement Effort

Development Efficiency WIP, Throughput, Cycle Time, Lead Time

Cost Cost Analytics and Productivity Analytics, Productivity

Reliability MTI

Software Quality WMC, DIT, RFC, NOC, CBO, LCOM

Complexity Component Coupling, Constraints Complexity, Configuration

Complexity

𝐿𝐶𝑂𝑀(𝐶) = {
𝑃 − 𝑄, 𝑖𝑓 𝑃 > 𝑄

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

P = methods with no common attributes with C

Q = methods with one or more common attributes with C

This section clearly depicts existing SPI metrics in the software development industry that can

improve development processes and software quality. Since they were identified to match the

qualitative research results implies their validity and relevance to the software engineering

industry. Moreover, the measurable nature of these mathematical metrics will benefit

organisations to quantify the level of maturity in areas where they constantly gather

information. Table 1 depicts main areas of data gathering identified through the interview

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

42

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

process and mathematical metrics that can be used to identify their maturity. Thus, the

effectiveness of these processes can be measured and improved.

Conclusion and Future Work

This research study proposes the use of measurable metrics to improve the software

development processes in software engineering companies. It depicts that the lack of

measurable criteria in current maturity models provides a vague impression for improvement

areas for organisations that use these models. Hence, this paper proposes the use of measurable

metrics as Key Process Indicators (KPI) for Key Process Areas (KPA) in a maturity model.

Moreover, it was recognised that big data analytics in organisations has become a vital

functionality due to the growth of digital data processing in past few decades. Thus, combining

big data analytics with mathematical measurable metrics to identify process maturity can

largely benefit software development originations.

Qualitative research was carried out with 10 personnel who are working in software

engineering industry to validate the rationale of the research study to identify structures of the

software engineering organisation and measurable metrics that companies obtain from their

employees/ development processes. Thus, information gathered through these interviews were

used to research mathematical SPI metrics that could be used to measure maturity levels of a

software development organisation. The application of these mathematical metrics through a

maturity model would clearly allow the organisation to quantify the maturity level.

Therefore, this research could be further enhanced by developing a maturity model that

contains purely measurable Key Process Areas to depict the organisation maturity. Thus,

mathematical metrics identified in this research study could be used to achieve this process.

Moreover, it could be further enhanced through the application of machine learning algorithms

to automatically predict future changes to these maturity levels since these mathematical

metrics provide numerical data sets from the existing data. Hence, quantifying the maturity

identification will allow event prediction by completely revolutionising the software process

improvement.

REFERENCES

A. Dubey, H. Kaur, “Reusability Types and Reuse Metrics: A Survey”, in: International Journal

of Computer Applications, vol 131, 2015, pp. 12–16.

A. Fuggetta, “Software process: a roadmap”, In Proceedings Conference on The Future of

Software Engineering, Limerick, Ireland, 2000, pp. 25– 34.

A.Muharremoglu, J. Tsitsikli, “ Dynamic Leadtime Management in Supply Chains, working

paper”, Graduate School of Business, Columbia University, New York, 2003.

B.Matthews, (2010), “Research methods: a practical guide for the social sciences” [Online]

Harlow: Longman. Available from: < https://www-

dawsoneracom.ezproxy.leedsmet.ac.uk/readonline/9781408226186> [Accessed on 15

August 2017]

D. Galin, “Software Quality Assurance: from Theory to Implementation”, Pearson Education

Limited, United Kingdom, 2004

D. Sjoberg, T. Dyba, M. Jorgensen, “The future of empirical methods in software engineering

research”. Future of Software Engineering (FOSE), Minneapolis, 2007, pp. 358–378.

http://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.6, No.1, pp.33-43, February 2018

___Published by European Centre for Research Training and Development UK (www.eajournals.org)

43

ISSN 2054-0957 (Print), ISSN 2054-0965 (Online)

H. Bayrasken, “A report on the capability maturity model”. Research Paper. Computer Science

Department, University of Nottingham, 2009.

I.Sommerville, “Software Engineering”, 8th edition, 2007, pp- 6-56.

J. E. Gaffney, T. A. Durek “Software reuse— key to enhanced productivity: some quantitative

models”. Inf. Softw. Technol. 31, 5, 1989, pp-258 –267.

J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, M. Paulk “Software quality and the

capability matwurity model” Communications of the ACM 40(6), 1997, pp- 30–40.

J. Little, S. Graves, “Little’s law. Building Intuition”, Research Paper, Chapter 5,

Massachusetts Institute of Technology, 2008, pp- 81–100.

M. Paulk, B. Curtis, M. Chrissis, C. Weber, “Capability Maturity Model for Software, Version

1.1”. Research Paper. Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, 1993.

M. Unterkalmsteiner, T. Gorschek, A. Islam., R. Permadi, R. Feldt, “ Evaluation and

Measurement of Software Process Improvement - A Systematic Literature Review”,

IEEE Transactions on Software Engineering, 2011 .

MajdiAbdellatiefab, A. Sultana, A. AzimAbdGhania, M. Jabara, “Component-based Software

System Dependency Metrics based on Component Information Flow Measurements”,

ICSEA: The Sixth International Conference on Software Engineering Advances, 2012.

O. Salo, “Enabling Software Process Improvement in Agile Software Development Teams and

Organizations”. VTT publications, 2007.

R. Harrison, S. Counsell, R. Nithi, “An overview of object-oriented design metrics”. In

International Conference on Software Technology and Engineering Practice, (STEP),

IEEE Computer Society Press, 2001, pp 230–234.

R. S. Pressman, “Software Engineering: A Practitioner’s Approach”, 7th ed., New York:

McGraw-Hill International, 2009.

S. H. Kan, J. Parrish, D. Manlove, “In-Process Metrics for Software Testing”, IBM Systems

Journal 40, No. 1, 2001, pp. 220– 241.

S. Kvale, “Interviews: An Introduction to Qualitative Research Interviewing”, 1 Edition.

SAGE Publications,1996.

S. Patel, J. Kaur, “A Study of Component Based Software System Metrics”, in: International

Conference on Computing, Communication and Automation (ICCCA2016), 2016, pp.

824–828.

S. R. Chidamber, C. F. Kemerer, “A metric suite for object oriented design”, IEEE Transactions

on Software Engineering, pp. 476–493.

T. Olson, W. Humphrey, D. Kitson, “Conducting SEI-Assisted Software Process

Assessments”. Technical Report, CMU/SEI-89-TR 7, Pittsburgh, 1989.

W. B. Frakes, “Software reuse. In Encyclopedia of Microcomputers”, A. Kent and J. G.

Williams, Eds. Marcel Dekker, Inc., New York, NY, 1995, pp. 179–184.

http://www.eajournals.org/

