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ABSTRACT: This article introduces the Marshall-Olkin extended power function (MOEPF) 

distribution as a generalization of the standard power function distribution. The new 

distribution has a bathtub shaped hazard rate function. The MOEPF distribution have the 

beta and power function distribution as special cases. Some statistical and reliability 

properties of the new distribution were given and the method of maximum likelihood 

estimates was used to estimate the model parameters. The relevance and exibility of the 

MOEPF distribution was demonstrated with two di erent real and uncensored lifetime data 

sets. The goodness of ts of the distribution was assessed via the p − value criterion. All the 

three parameters of tted MOEPF distribution were found statistically signi cant based on 

their corresponding p − values (p − value = 2.20 × 10−16 for each of the three parameters). 

The MOEPF distribution is therefore recommended for e ective modelling of lifetime data.  
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INTRODUCTION 

The two parameter power function distribution is widely used in reliability engineering to 

model components, systems or device reliability. The intuitive simplicity of the power 

function distribution makes it most appealing to reliability engineers; for example, Meniconi 

and Barry[1] proposed the power function distribution for assessing the reliability of 

electrical components due to its simplicity. But in the ideal context, the goodness of t of a 

model should not be compromised for its simplicity. The standard probability distributions 

have been remarked for their lack of ts in modelling data sets that are generated from various 

complex processes. Over a decade ago, many researchers have proposed various methods of 

modifying standard distributions as a way of remedying the lack of ts that is akin to them. 

Marshall and Olkin [2] introduced a new family of distributions known as the MarshallOlkin 

extended/generalized distributions. The Marshall-Olkin’s approach is well known for its 

ability of enhancing the exibility of probability distributions through an introduction of an 

additional parameter to the original distribution. The very robust Marshall-Olkin family of 

distributions can represent a variety of data sets from a wide range of complex phenomena. 

The Marshall-Olkin family of distributions can be obtained as follows, 

 . (1.1) 

It follows that F(x) = 1 − F¯(x) and 
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 , (1.2) 

where G¯(x) and g(x) are the complementary cumulative density function (survival/reliability 

function) and density function corresponding to the baseline distribution (original 

distribution). 

So many existing standard distributions have received a fair share of their Marshall-Olkin 

extended counterparts from various researchers. For instance; Ristic´and Kundu [3] 

introduced the Marshall-Olkin generalized exponential distribution generalizing the 

exponential distribution. Ghitany et al. [4] introduced the Marshall-Olkin extended Weibull 

distribution as a generalization of the standard Weibull distribution. Ghitany [5] introduced 

the MarshallOlkin extended Pareto distribution as a generalization of the standard Pareto 

distribution. Ristic´ et al.[6] introduced the Marshall-Olkin extended gamma distribution as 

a generalization of the standard gamma distribution. Ghitany et al.[7] introduced the 

Marshall-Olkin extended Lomax distribution as a generalization of the standard Lomax 

distribution. Jose and Krishna [8] introduced the Marshall-Olkin extended continuous 

uniform distribution as a generalization of the standard continuous uniform distribution. Al-

Saiari et al. [9] introduced the Marshall-Olkin extended Burr type XII distribution as a 

generalization of the standard Burr type XII distribution. Alizadeh et al. [10] introduced the 

Marshall-Olkin extended Kumaraswamy distribution as a generalization of the standard 

Kumaraswamy distribution. Gui [11] introduced the Marshall-Olkin extended log-logistic 

distribution as a generalization of the standard log-logistic distribution. Poga´ny et al. [12] 

introduced the Marshall-Olkin extended exponential Weibull distribution generalizing the 

exponential Weibull distribution. Jose [13] gave a comprehensive review of the Marshall-

Olkin family of distributions and their applications to reliability, time series and stress-

strength analysis. For more extensive reviews of the Marshall-Olkin generalized family of 

distributions see; Nadarajah [14] and Barreto-Souza et al. [15]. Sandhya and Prasanth [16] 

introduced the Marshall-Olkin extended discrete uniform distribution as a generalizion of 

the standard discrete uniform distribution; etc. Analogously, this article introduces the three 

parameter Marshall-Olkin extended power function (MOEPF) distribution as a 

generalization of the standard two parameter power function distribution. Note; there is a 

slight di erence in model parameterization between the Marshall-Olkin extended power 

(MOEPo) distribution that was discussed without any comprehensive account of its 

distributional properties in Barreto-Souza et al. [15] and the MOEPF distribution studied 

here. 

The rest of this article is organized as follows: Section 2 introduces the power function 

distribution and the Marshall-Olkin extended power function (MOEPF) distribution; Section 

3 presents some reliability characteristics of the (MOEPF) distribution such as the reliability 

function, hazard rate function and the mean residual life time; Section 4 presents some 

statistical properties of the (MOEPF) distribution such as the kth crude moment, moment 

generating function, pth quantile function, Re´nyi entropy measure of the (MOEPF) 

distribution and the distribution of order statistics of the (MOEPF) distribution; Section 5 

proposes parameter estimation of the (MOEPF) distribution by the method of maximum 

likelihood estimation; Section 6 presents the application of the new (MOEPF) distribution to 

two real data sets; Section 7 presents the discussion of results and lastly, Section 8 presents 

the conclusion of the study. 
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Marshall-Olkin Extended Power Function Distribution 

A random variable X is said to follow the power function distribution if its cumulative density 

function (cdf) and probability density function (pdf) is given by 

 , (2.1) 

and  

f(x) = γξψ−ξxξ−1;0 < x < ψ; ψ,ξ > 0, (2.2) 

respectively. 

If X is distributed according to Equation 2.2 then, the corresponding Marshall-Olkin 

generalized form of its cdf and pdf using Equations 1.1 and 1.2 is given by 

 , (2.3) 

and 

 , (2.4) 

respectively, where ψ and γ are the scale parameters and ξ is the shape parameter. The new 

distribution given by the pdf Equation 2.4 is called the Marshall-Olkin extended power 

function (MOEPF) distribution. Notably, the beta distribution and the power function 

distribution are special cases of the MOEPF distribution when ψ;γ = 1 and γ = 1, respectively. 

 

Figure 1: Possible shapes of the density function f(x) of the MOEPF distribution for xed 

parameter values of ψ = 1.50,ξ = 1.00 and selected values of γ parameter. γ = 0.45 (solid 
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lines), γ = 0.60 (dashed lines), γ = 0.30 (dotted lines), γ = 1.00 (dotdashed lines), γ = 0.50 

(long dashed lines) and γ = 0.75 (two dashed lines). 

 

Figure 2: Possible shapes of the cumulative density function F(x) of the MOEPF distribution 

for xed parameter values of ψ = 5.00,ξ = 1.00 and selected values of γ parameter. γ = 1.00 

(solid line), γ = 0.10 (dashed line), γ = 0.19 (dotted line), γ = 0.45 (dotdashed line), γ = 0.30 

(long dashed line) and γ = 1.50 (two dashed line). 

Some Reliability Properties of the MOEPF Distribution 

The Reliability Function 

The reliability function gives the probability that a system will not fail until some speci ed 

time t under certain prede ned conditions. It could be expressed mathematically as F¯(x) = 

P(X > x) = 1 − F(x) , using Equation 1.1 the reliability function of a MOEPF random 

variable is given by 

 . (3.1) 

The Hazard Rate Function 

The hazard rate function of a system is the probability that the system fails given that it has 

not failed up to time t. it is given by 

 . (3.2) 

Thus, the hazard rate function of the (MOEPF) distribution is given by 

 . (3.3) 
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Figure 3: Possible shapes of the reliability function R(x) of the MOEPF distribution for xed 

parameter values of ψ = 5.00,ξ = 1.00 and selected values of γ parameter. γ = 1.00 (solid 

line), γ = 0.10 (dashed line), γ = 0.19 (dotted line), γ = 0.45 (dotdashed line), γ = 0.30 (long 

dashed line) and γ = 1.50 (two dashed line). 

 

Figure 4: Possible shapes of the hazard rate function h(x) of the MOEPF distribution for xed 

parameter values of ψ = 5.00,ξ = 1.00 and selected values of γ parameter. γ = 1.00 (solid 

line), γ = 0.10 (dashed line), γ = 0.19 (dotted line), γ = 0.45 (dotdashed line), γ = 0.30 (long 

dashed line) and γ = 1.50 (two dashed line). 

The Mean Residual Life Time 

The remaining life time of a system that has not failed up to time t is random because the 

failure time is not known. The expected value of this random failure times is known as the 

mean residual life time denoted by M(t). M(t) only exist for F¯(t) > 0 and its mathematical 

representation is given by M(t) = E(X − t|X > t). Hence, 
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  (3.4) 

The mean residual 

lifetime of the 

MOEPF distribution 

could be obtained as 

follows 

(3.5) 

(3.6) 

Setting   ; and , gives 

  (3.7) 

  (3.8) 

  (3.9) 

 

(3.11) 

(3.12) 

Some Statistical Properties of the MOEPF Distribution 

The kth Crude Moment of the MOEPF Distribution 

The crude moment of a random variable plays a very vital role in statistics because so many 

other essential properties of the distribution can be derived from it, more importantly some 

descriptive statistics such as the mean, variance, coe cient of variation, skewness and kurtosis 

statistics. The kth crude moment of any continuous random variable 

I t = 
 t 

ψ  
ξ 
+ γ  1 −  t 

ψ  
ξ  

1 −  t 
ψ  

ξ 
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X is generally given by E(xk) = R
all x x

kf(x)dx. Hence, the kth crude moment of the MOEPF 

distribution could be obtained as follows, 

  (4.1) 

ψ 1ξ−1 making the following substitutions,; and dx = ξ y dy, gives 

  (4.2) 

  (4.3) 

  (4.4) 

(4.5) 

(4.6) 

 

 

  (4.9) 

In reliability theory the mean (often referred to as the mean time to failure (MTTF) ) is a very 

important characteristics of a lifetime distribution. Under certain prede ned conditions MTTF 

could be interpreted as the expected length of time a non-repairable system can last in 

operation before it fails. The mean of the MOEPF distribution could be obtained by 

evaluating Equation 4.9 at k = 1 as presented below, 

 . (4.10) 
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Evaluating Equation 4.9 at k = 2 gives the second order moment of the MOEPF distribution 

as 

 . (4.11) 

The variance V (x) could be obtained by substituting Equations 4.10 and 4.11 in the following 

expression V (x) = E(x2) − (E(x))2. Other higher order moments like E(x3) and E(x4) are 

required for the computation of the skewness and kurtosis statistics of the MOEPF 

distribution. 

The Moment Generating Function of the MOEPF Distribution 

The moment generating function (mgf) of a random variable X is generally de ned by 

 . (4.12) 

It follows from Equation 4.13 that the mgf of the MOEPF distribution is given by 

  (4.13) 

The pth Quantile Function of the MOEPF Distribution 

The pth quantile function of the MOEPF distribution is given by 

 . (4.14) 

We can simulate random variables from the MOEPF distribution through the inversion of the 

cdf method by simply substituting p in Equation 4.14 with a U(0,1) variates. Also, we can 

obtain the median of the MOEPF distribution by evaluating Equation 4.14 at p = 1/2. 

The Re´nyi Entropy Measure of the MOEPF Distribution 

The Re´nyi entropy is used to quantify the uncertainty or variation in a random variable X. 

The Re´nyi’s entropy measure has been noted as a powerful tool for comparing the tails and 

shapes behaviour of many standard probability distributions, Song [17] . The Re´nyi entropy 

measure is generally given by 

  (4.15) 

 . (4.16) 

where Iδ for the MOEPF distribution could be obtained as follows 
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(4.17) 

(4.18) 

ψ 

1ξ−1 also, 

setting; and 

dx = ξ y dy, we 

have 

(4.19) 

(4.20) 

  (4.21) 

  (4.22) 

  (4.23) 

 

 

 

 

Order Statistics of the MOEPF Random Variable 

The distribution of the rth order statistics denoted by fx(r)(x) of an n sized random sample 

X1,X2,X3,...,Xn is generally given by 
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 . (4.28) 

Then the density of the rth order statistics of the MOEPF distribution is obtained as 

 (4.29) 

The density of the rth smallest order statistics of the MOEPF distribution could be obtained 

as 

  (4.30) 

  (4.31) 

  (4.32) 

  (4.33) 

The density of the rth largest order statistics of the MOEPF distribution is given by 

  (4.34) 

Estimation of the Parameters of the MOEPF Distribution 

Here, we propose to estimate the parameters of the MOEPF distribution through the method of 

maximum likelihood estimates (mle). Suppose the following sample x1,x2,x3,...,xn of size n is 

drawn from the MOEPF distribution then, the mle of its parameters could be obtained as follows 

  (5.1) 

  (5.2) 

 

  (5.4) 
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There is no known closed-form analytical solution for Equations 5.4, 5.5 and 5.6 thus, we 

recommend the use of some nonlinear numerical optimization technique such as the Newton 

Raphson algorithm as an e ective way of circumventing this intractable analytical issue. 

Application 

In this section we would t the MOEPF distribution to two real data sets to illustrate its 

applicability and exibility. The goodness of t of the new distribution would be assessed 

through the signi cance of the model parameters using the p − value criterion. The rst 

uncensored data set in Table 1 represents the failure times in weeks of 50 items that were 

subjected to use at time 0. The data set was reported in Murthy et al. [18]. The second 

uncensored data set in Table 2 shows the 45 yearly survival times data of a group of patients 

who received only chemotherapy treatment. The data set was reported in Bekker et al. [19]. 

Results from the model ttings for each of the reported data set are presented in Tables 3 and 

4. 

Table 1: Data 1 

 

0.013 0.065 0.111 0.111 0.163 0.309 0.426 0.535 0.684 0.747 0.997 1.284

 1.304 1.647 1.829 2.336 2.838 3.269 3.977 3.981 

 4.520 4.789 4.849 5.202 5.291 5.349 5.911 6.018 6.427 6.456 

 6.572 7.023 7.087 7.291 7.787 8.596 9.388 10.261 10.713 11.658 

 13.006 13.388 13.842 17.152 17.283 19.418 23.471 24.777 32.795 48.105 

 

Table 2: Data 2 

 

0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.260 0.282 0.296 

0.334 0.395 0.458 0.466 0.501 0.507 0.529 0.534 0.540 0.641 

0.644 0.696 0.841 0.863 1.099 1.219 1.271 1.326 1.447 1.485 

 1.553 1.581 1.589 2.178 2.343 2.416 2.444 2.825 2.830 3.578 

 3.658 3.743 3.978 4.003 4.033 
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Table 3: Results from Data 1 

Model Parameters Estimates STD Errors p-values logLik AIC 

 γ 14.879 0.00049513 2.20 × 10−16   

MOEPF ψ 47.880 0.00159260 2.20 × 10−16 28030024 -

56060041 

 ξ 14.878 0.00049510 2.20 × 10−16   

 

Figure 5: Density plots of the simulated MOEPF random variables (dashed lines) 

superimposed on the empirical density of data 1 (solid lines). 

Table 4: Results from Data 2 

Model Parameters Estimates STD Errors p-values logLik AIC 

 γ 4.86732097 0.00014760 2.20 × 10−16   

MOEPF ψ 3.81636038 0.00011537 2.20 × 10−16 4369642 -

8739277 

 ξ 4.81109760 0.00014600 2.20 × 10−16   
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Figure 6: Density plots of the simulated MOEPF random variables (dashed lines) 

superimposed on the empirical density of data 2 (solid lines). 

 

DISCUSSION OF RESULTS 

The density plots in Figure 1 depicts some funny unpredictable shapes of the MOEPF 

distribution. The reliability function is a decreasing function of x and the hazard rate function 

could either be increasing or bathtub shaped a unique feature which makes it more suitable 

for analyzing lifetime data sets. The results in Tables 3 and 4 shows that the parameters of 

the tted MOEPF distribution are highly signi cant suggesting that the model is adequate for 

the two lifetime data sets under consideration. Given the complexities of the two data sets 

and without looking too closely to the density plots in Figures 5 and 6 we can see a good t 

of the MOEPF distribution to the data sets. 

 

CONCLUSIONS 

This article introduces a new lifetime distribution - the Marshall-Olkin extended power 

function (MOEPF) distribution. The new distribution generalizes the power function 

distribution and have beta and power function distributions as sub-models. We have given 

explicit mathematical expressions for some of its basic statistical properties such as the 

probability density function, cumulative density function, kth crude moment, variance, 

moment generating function, pth quantile function, the rth order statistics, and the Re´nyi’s 

entropy measure. Also, some of its reliability characteristics like the reliability function, 

hazard rate function and the mean residual life time was given. Estimation of the model 

parameters was approached through the method of maximum likelihood estimation. The 

exibility, applicability and robustness of the new lifetime distribution was demonstrated with 

two real data sets and the results obtained shows that the MOEPF distribution provides good 

ts to the two lifetime data sets. We propose the MOEPF distribution for modelling complex 

lifetime data sets in particular because it would receive reasonably high rate of application 

in this direction as a result of its bathtub shaped hazard rate characteristics. 
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