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Abstract: The MHD forced convection in a horizontal double – passage with uniform wall heat 
flux has been studied by taking into account the effect of magnetic parameter  �. The flow of the 
fluid is assumed to be laminar, two – dimensional, steady and fully developed.  The fluid is 
incompressible and the physical properties are constants. The walls are kept at uniform heat 
fluxes. A uniform magnetic field � is applied and is assumed undisturbed as the induced 
magnetic field is neglected by assuming small Reynolds number ��.The solutions of the velocity 
profiles ����� �� 

 and the temperature profiles ����� �� 
are obtained analytically. It is pointed 

out that the effect of MHD forced convection in a horizontal double – passage enhances the 
effect of flow at the passage 2 than passage 1. 
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INRODUCTION  
 
The Study of Magneto hydro dynamics forced convection in a horizontal double – passage with 
uniform wall heat flux has found in applications in several different systems such as the cooling 
of nuclear reactors, cooling of electronic devices, the solar energy collection, temperature 
plasmas etc. A comprehensive review of the study of MHD flows in relations to the applications 
to the above areas has been made by several authors. 
 
Tamad and Samad (2010) studied and analyzed the radiation and viscous dissipation effects on a 
steady two – dimensional magneto hydrodynamics free convection flow along a stretching sheet 
with heat generation. The non – linear ordinary differential equations governing the flow field 
under consideration have been transformed by a similarity transformation into a system of non – 
linear ordinary differential equations and then solved numerically by applying Nachtsheim – 
Swigert shooting iteration technique together with six order Runge – Kutta integration Scheme. 
Resulting non – dimensional velocity, temperature and concentration profiles are the presented 
graphically for different values of the parameters of physical engineering interest. 
 
Alim et al (2007) investigated the pressure work and viscous dissipation effects on MHD natural 
convection along a Sphere. The laminar natural convection flow from a sphere immersed in a 
viscous incompressible fluid in the presence of magnetic field has been considered in this 
investigation. 
 
The convective heat transfer may be enhanced in a horizontal channel by using rough surfaces, 
inserts, swirl flow device, turbulent promoter, etc. (1995). Unfortunately, most of these methods 
cause a considerable drop in the pressure. Guo et al. (1998) have suggested that the convective 
heat transfer could be enhanced by using special inserts. These inserts are designed to increase 
the included angle between the velocity vector and the temperature gradient vector, rather than to 
promote turbulence. So, the heat transfer is considerably enhanced with as little pressure drop as 
possible. 
 
Cheng et al. (1989) have studied the effect of plane baffle, which is used as an insert, on the fully 
developed laminar convection in a horizontal channel. The uthors have determined, in closed 
forms, the Nusselt number and temperature profiles for the channel under asymmetric heating. 
They have concluded that the presence of the baffle may lead to an enhancement of heat transfer 
between the walls and fluid, according to the baffle position. 
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Cheng et al. have neglected the heat transfer due to the energy generated by viscous dissipation. 
Although viscous dissipation is usually neglected in low – speed and low – viscosity flows 
through conventionally sized channels of short length-to-width ratio is large (1998). For double-
passage channels, the length-width ratio becomes large as the baffle becomes near the wall. So 
viscous dissipation may become important. 
 
Gau et al (1999) studied secondary flow and enhancement flow and enhancement in horizontal 
parallel – plate and convergent channels heating from below. Jin et al (1996) experimentally 
studied the unstable mixed convection of air in a bottom heated horizontal rectangular duct. 
Upstream migration of heat during combined convection in a horizontal parallel plate duct was 
investigated by Ingham et al (1996). 
 
Nyce et al (1992) studied mixed convection in a horizontal rectangular channel – experimental 
and numerical velocity distributions.  Transient analysis on the onset of thermal instability in the 
thermal entrance region of a horizontal parallel plate channel was studied by Lee and Hwang 
(1991). 
 
For the fully developed laminar duct flow, Guo et al (1998) observed that 	� for the case of 
isoflux thermal boundary condition is greater than  	� for the case of isothermal boundary 
condition. This can be explained based on the concept of included angle between the velocity 
and temperature gradients vectors. This angle is larger at isoflux thermal boundary condition 
than at isothermal boundary condition. Therefore, they stated that changing the thermal boundary 
condition could enhance the convective heat transfer.  
 
Incropera et al (1998) studied the effects of wall heat flux distribution on laminar mixed 
convection in the entry region of a horizontal rectangular duct. Development of laminar mixed 
convection in a horizontal channel with uniform bottom heating was presented by Mahaney et al 
(1987). Also, Osborne and Incropera (1985) studied laminar mixed convection heat transfer for 
flow between horizontal parallel plates with asymmetric heating. 
 
Saleh and Hashim (2009) analysed flow reversal phenomena of the fully – developed laminar 
combined free and forced MHD convection in a vertical plate – channel where the effect of 
viscous dissipation is taken into account.   
 
Ingham et al (1995) studied the recirculating laminar mixed convection in a horizontal parallel 
plate duct. Kennedy and Zebib (1983) studied the combined free and forced convection between 
horizontal parallel plates. Vorticity – velocity method for Graetz problem with the effect of 
natural convection in a horizontal rectangular channel with uniform wall heat flux was studied by 
Chou and Hwang (1987) 
 
Ranuka et al (2009) studied the MHD effects of unsteady heat convective mass transfer flow past 
an infinite vertical porous plate with variable suction, where the plates temperatures oscillates 
with the same frequency as that of variable suction velocity with soret effects. The governing 
equations are solved numerically by using implicit finite difference method. 
 
Abou- Ellail and Morcos (1983) studied the buoyancy effects in the entrance region of horizontal 
rectangular channels. Buoyancy effects on laminar heat transfer in the entrance region of 
horizontal rectangular channels with uniform heat flux for large prandtl number fluids was 
investigated by Cheng et al (1972). 
 
Huang and Lin (1983) studied buoyancy induced flow transition in mixed flow of air through a 
bottom heated horizontal rectangular duct. Numerical solution for combined free and forced 
laminar convection in horizontal rectangular channels is investigated by Cheng et al (1969). 
Incropera and Schutt presented a numerical simulation of laminar mixed convection in the 
entrance region of horizontal rectangular ducts. 

 
Also, El-Din (2002) investigated the effect of viscous dissipation on fully developed laminar 
mixed convection in a horizontal double-passage analytically. The channel is divided into two 
passages by means of a thin, perfectly conductive plane baffle and the walls have different 
uniform heat fluxes. Velocity and temperature profiles and the Nusselt number on the hot wall 
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have been determined in closed forms. Results show that the Brinkman number has a significant 
effect on the dimensionless temperature, specially when the baffle is near to any channel’s walls. 
The variations of the Nusselt number on the hot wall with Brinkman number depends on the 
baffle position. 

Therefore, the present work is devoted to study, analytically, MHD forced convection in a 
horizontal double – passage with     uniform wall heat flux. 

 
1. Problem Formulation 

The geometry of the problem is shown in figure 1. The flow of the fluid is assumed to be 
laminar, two – dimensional, steady and fully developed.  The fluid is incompressible and the 
physical properties are constants. The walls are kept at uniform heat fluxes. A uniform 
magnetic field � is applied and is assumed undisturbed as the induced magnetic fiel is 
neglected by assuming small Reynolds number ��. 

                     With the above assumption, the momentum equation is given by 

            
   ����
��� − ��
�� + ��� =

�
�
���
�	                                                                                                              

(1) 
                Where 
 = 1 refers to stream 1 and 
 = 2 stream 2. 
                                                �
      
                  Passage 2                    
 
                                     baffle                                                       b            
         Y          passage 1                                                   b                                  
                                         ��               
           Figure 1. The schematic diagram of the horizontal double – passage channel.                                      
           The relevant boundary conditions are 
           � = 0,             �� = 0                                                                                                                         
           � = �∗,            �� = �� = 0                                                                                                             
           � = �,                    �� = 0                                                                                                                          
(2) 
          Introducing the following dimensionless quantities. 

                  � =
�

�� ,     � =

�

 ,    � =

�
�� , � =

�
����  , �� =

��

�    

           Where the reference velocity  �� is defined as 

            �� =
�

 � ���

�                                                                                                                                               

(3) 
           The boundary Momentum equation becomes 

           
����
��� − ��
�� + �� =

�
�
���
�	                                                                                                                            

(4) 
            The pressure gradient in equation (4) is assume to be constants, i.e. 

                 
���
�	 = ��                                                                                                                                                      

(5) 
            The dimensionless boundary conditions are 
              � = 0,             �� = 0                                                                              
              � = �∗,            �� = �� = 0                                                                   
              � = 1,             �� = 0                                                                                                                                    
(6) 

2. Solution of the Problem 
                 Solving equation (4) for 
 = 1 subject to the boundary condition s in equation (6), we 
have 

           �� = � ���� + �� ��������∗����

����∗�����∗� −
������∗�����∗

����∗�����∗� − 1�                                                                                 

(7) 
           Similarly, for 
 = 2, the solution of equation subject to boundary conditions in equation 
(6)  is 

        �� = � ���� + ��� � �����∗��������

������∗����∗��� +
�������∗�����

������∗����∗����                                                                            

(8) 
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            Conservation of mass considered at any section of the channel passages gives 

            � ���� = �∗
�∗
�                                                                                                                                                   

(9) 
                And 

        � ���� = 1 − �∗
�
�                                                                                                                                               

(10) 
             Substituting equation (7) into equation (9), we obtain 

             �� = �� ���∗����∗�����∗����������∗�����∗������∗����∗�����∗��
�����∗ ����∗������∗����∗�����∗�   �                                                     

(11) 

              �� = �� ���!� ��"!���∗"������∗����∗������#������∗ ���∗�����$
�������∗ ���∗����� �!�∗��"������∗����∗��� �                                                    

(12) 
                Substituting equation (11) into equation (7), we have 

             �� =
%��∗	���∗�����∗
����	���∗�����∗
��
&��������∗�����������∗����������∗�����∗��

'����∗ ����∗������∗����∗�����∗�(����∗�����∗�                       

(13) 
  
            Substituting equation (12) into equation (8), we obtain the following velocity profile ��
=

�−2����∗ − 1�������∗ − ���∗��� + ������∗ + ���∗�� − 2� + ������∗ − 1�������∗ − ���∗��� − 4

������∗−������� + ���−����∗����� − ������∗−���∗��� 
���∗ − 1�������∗−���∗��� − 4�1 − �����∗��
�����∗−�����∗�
                                                                                                                                                                                      
(14)        
       The energy equation of the fully developed flow, taking into account the effect of viscous 
dissipation, is  

         ! )�*
)�� + " ������� = #$�� )*

)�                                                                                                                                

(15)                
      With boundary conditions  

          � = 0,     
�*
�� =

�+�
,                                                                                

          � = �∗,     %� = %�                                                                                

         � = �,     
)*
)� =

+�
,                                                                                                                                                 

(16) 
       Integration of equation (15) with respect to � in the interval 0 → �, using equation (3) yields 

        ! )*
)� |�-
 − ! )*

)� |�-� + " � ������� =


�  #$���� )*

)	                                                                                          

(17)   
        Using the boundary conditions in equation (16), equation (17) takes the following form 

          
)*
)� =

�
�
���
 &�
+�� + " � �)�)���


� ��'                                                                                                          

(18) 
          Substitution from equation (18) into equation (15) gives the energy equation, which can be 

written in the following dimensionless   form, 
          Where,     

               � =
*�*�
+�� ��

,    () =
����
+�
 ,     � =

+�
+� ,    

).
)� =

��
��+�� ��

,   � =
�
�� ,   

)�.
)�� =

���
���
+�� ��

,    
)�
)� =  

��
��
��   

           Therefore, the required result is 
 

             
)�.
)�� + () �)�)��� = *1 + �� + () � �)�)��� ���

� + � + ()�� � 
� + �����
� ��                                   

(19) 
  
             Where,     
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            () =
����
+�
 ,       1 =

�

� ,    �� =

+�

�+�   

          The reference temperature %� is defined as 

              %� =
�

 � %���
�                                                                                                                                              

(20) 
        The dimensionless boundary conditions are 

                 � = 0,     
).
)� = −1                                                                                     

                 � = �∗,     �� = ��                                                                                      

                  � = 1,     
).
)� = ��                                                                                                                                 

(21) 
     Differentiating and squaring of equations. (13) and (14) with respect to �, the terms 

� �)�)��� ���
�  and � 
� + �������

�  in equation (19) can be obtained and hence, the integration 

in the right – hand side can be evaluated. 

� �)�)��� �� +
�
� � 
� + �������

� = ,�����1 + ����∗������∗ − 1� + �1 − ���∗��1 − �����∗� +

4��−��∗−���∗�∗+�22�2���∗−�−��2�−�2��∗−��−���∗�−2��∗−�−2�−4���

−��∗+���∗−��∗−1+�322��2��∗−1+�422�1−�−2��∗+�6����∗−1+�7�1−�−
��∗+�922��2�−�2��∗+�1022��−2��∗−�−2�+�12���−���∗+�13��−��∗−�
−�+�8−�14�∗               (22)    

           Where, ,� =
/����∗���!����∗"� ��������∗�0

!�����∗"����∗ ����∗�  

               

,� =
#���!�∗��"������∗����∗��� ������∗ ���∗����� �����!�∗��"������∗����∗�����������∗����$

'�!�∗��"������∗����∗�������������∗�(������∗����∗���    

                ,1 = ,��1 + ����∗�  
                ,� = ,��1 − ����∗�  
                ,2 = �� − ,�����∗ + ����∗�  
                 ,3 = 2,1,2  
                 ,4 = 2,�,2  
                 ,5 = ,2� − 2,1,�  
                 ,6 = ,������∗ + ����  
                ,�� = ,���� − ���∗�  
                ,�� = �� − ,�������∗ + ���∗���  
                 ,�� = 2,6,�� 
                 ,�1 = 2,��,��  
                ,�� = ,��� − 2,6,�� 
                                              
              Equation (19) can be rewritten as  

                  
)�.
)�� + () �)�)��� + ()��
� + ���� = �-                                                                                             

(23) 
             Where, - =

1 + . +,���()��1 + ����∗������∗ − 1� + �1 − ���∗��1 − �����∗� + 4������∗−���∗��∗ +

(),�� ��

� �����∗−��������−����∗� − ���−���∗�������∗−����� − 4�������∗ +

���∗−��∗−1+�322��2��∗−1+�422�1−�−2��∗+�6����∗−1+�7�1−�−��∗+�9

22��2�−�2��∗+�1022��−2��∗−�−2�+�12���−���∗+�13��−��∗−�−�+�8−
�14�∗                                                                                                                                                  
(24) 

        Integrating equation (23) twice with respect to � for the two passages of the channel, using 
equation (21), gives 
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�� = ,�- ��� ����∗����

�� −
������∗�

�� −
����∗�������

� � + /�� + /� −  (),���� ��� ����∗����

��� +

�−��∗−���∗�2+1−���∗�−2��4�2−���2�32���4�2+�42�−2��4�2+�62����

2−�7�2+�8�22                                                                                                      (25)                                                                               

 

�� = - &7����

�� +
7������∗

�� +
7����
� ' + 0� + 0� − (),���� ������∗���������

��� − ������∗ −

���∗−�−2�2+��−���∗�−2��4�2−���2�92�2��4�2+�102�−2��4�2+�12���

�2+�13�−���2+�14�22                                                                                         (26) 

       The constant 0 is given by  

0 = � − - 17���� −
7�����
� + ,��2 + (),���� ������∗�����

�� − 2������∗ − ���∗�� − 2� −

��−���∗�−2�2�+ ���2�92�2�2�−�102�−2�2�+�12���−�13�−��+�14                                                                                                                 
(27) 

     Substitution from equations (25) and (26) into equation (21) gives the following relation. 
        0� = 0� + /�                                                                                                                                                          

(28) 
        Where,  
 0� =

,�- ��� ����∗����∗

�� −
������∗�����∗

�� −
����∗ �����∗�

� � + /��∗ − (),���� ��� ����∗�����∗

��� +

�−��∗−���∗�∗2+1−���∗�−2��∗4�2−���2�3�2��∗24�2+�4�−2��∗24�2+�6�

��∗2�2−�7�2+�8�∗22−��9���∗�2+�10�−��∗�2+�11�∗22−��∗+���22�2�−
��∗−�−��2��4�2−��−��∗+���∗−�−2�∗2+��−���∗�−2��∗4�2+���2�92�2

��∗4�2+�102�−2��∗4�2+�12���∗�2+�13�−��∗�2+�14�∗22    (29) 

   The constant /� can be obtained by use of equation (20). Introducing the dimensionless 
parameters into equation (20) gives 

        � ��� = 0
�
�                                                                                                                                                              

(30)  
        Thus, 

       � ���� +
�∗
� � ���� = 0

�
�∗                                                                                                                                       

(31) 
          Integration of equation (25) with respect to � in the interval 0 → �∗gives 

       � ���� = /��∗+/1�∗
�                                                                                                                                                 

(32) 
         Where,  
     

/1 = ,�- ��� ����∗�����∗���
�� −

������∗������∗���
�� −

����∗ �����∗�
3 � +

8��∗�
� −

(),���� ��� ����∗������∗���
5�� + �����∗ − ���∗��∗1 +

������∗�������∗���
5�� � −

()�� �7�������∗���
5�� +

7��������∗���
5�� +

7������∗���
�� −

7��∗
�� +

7��∗�
5 �                                                    

(33) 
                                                                                                                                                                                                       
          Integration of equation (26) with respect to � in the interval �∗ → 1 gives 

            � ���� = /��1 − �∗� + 0��
�∗                                                                                                                                 

(34) 
          Where 
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   0� =

- �7��������∗�
�� −

7�����������∗�
�� +

7������∗��
3 � +

9����∗��
� −

(),���� ������∗��������������∗�
5�� −

������∗ ���∗���������∗��
1 −

�������∗������������∗�
5�� � −

()�� �7�����������∗�
5�� −

7��� �����������∗�
5�� +

7���������∗�
�� −

7�����������∗�
�� +

7���∗�
3 �           (35) 

                                                                                                                                                                                               
                 Adding equations (32) to equations (34) gives the constants /� 
                /� = −�/�+0��                                                                                                                                                                        
(36)  
                The Nusselt number for the hot wall is        

                 	�� =
�

.��.��                                                                                                                                                                          

(37) 
                 The dimensionless bulk temperature for passage 1 is defined as 

         �
� =
� �������∗
� � �����∗

�
3 = � ���� �∗⁄�∗

�                                                                                                                             

(38) 
 
 
DISCUSSION OF RESULTS 
To study the effect of MHD forced convection in a double – passage, the velocity and the 
temperatures profiles at the passages 1 and 2 are depicted graphically for different values of the 
magnetic parameter � with the help of MATLAB. 
Figures 1 and 2 demonstrate the variations of the velocities �� ��� �� at the passages 1 and 2 
respectively for different values of  � with small Reynolds number �� = 1 and small Brinkman 
number  () = 1. Figures 3 and 4 also show the variations of temperatures �� ��� �� at the 
passages 1 and 2 respectively for different values of �. 
It is observed from figure 1 that that the velocity �� decreases with decrease in the magnetic 
parameter while figure 2 shows that the velocity �� increases with increase in the magnetic 
parameter. In figure 3, it is seen that the temperature decreases uniformly with decrease in 
particular values of �  i.e.  when   � = 0.12,0.14,0.16 ��� 0.18. But there is deflection when  � = 0.2, 0.22,0.24, 0.26, 0.28 ��� 0.3 , that is due to increase in the magnetic parameter . 
Figure 4 shows that the temperature �� increases with decrease in the magnetic parameter.  
To this effect of the magnetic parameter on the velocity and temperatures profiles, it is pointed 
out that the effect of MHD forced convection in a horizontal double – passage enhances the 
effect of flow at the passage 2 than passage  
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Figure 1: Effect of � on velocity profile �� 

 
                                                                             
       
                           
                            

 
                                            Figure 2 : Effect of � on the Velocity profile ��        
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                                     Figure3: Effect of � on the Temperature �� profile. 
    
                                     

  
                                 Figure 4. Effect of � on the Temperature profile��. 
 
 
    SUMMARY AND CONCLUSION 
 
    The MHD forced convection in a horizontal double – passage with uniform wall heat flux has 

been studied by taking into account the effect of magnetic parameter �. The flow of the fluid 
is assumed to be laminar, two – dimensional, steady and fully developed.  The fluid is 
incompressible and the physical properties are constants. The walls are kept at uniform heat 
fluxes. A uniform magnetic field � is applied and is assumed undisturbed as the induced 
magnetic field is neglected by assuming small Reynolds number ��. 
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   The governing equations (momentum and energy equations) have been written in a 

dimensionless form. The solutions of the velocity profiles ����� ��  and the temperature 
profiles ����� �� are obtained analytically. It is pointed out that the effect of MHD forced 
convection in a horizontal double – passage enhances the effect of flow at the passage 2 than  
passage 1. 

    
  This study is expected is to be useful in understanding the influence magnetic field and heat 

flux on horizontal double – Passage. This enhanced oil recovery and filtration systems and 
several applications as mentioned in the introduction.  
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