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ABSTRACT: For a steady flow, the rating curve is unique for a non-erodible section 

where the flow is uniform, but it is a loop for an erodible section when the flow is 

non-uniform. For an unsteady flow, the rating curve does exist, but it is more complicated, 

Relationships among water level, flow velocity, and discharge are all affected by flood 

hydrograph of upstream or tide from downstream. A more general relationship between 

water level and flow velocity (or discharge) with flood hydrograph from upstream and 

tide from downstream for time-dependent is derived analytically from diffusion equation 

and continuity equation. The upstream and downstream boundary conditions are 

expressed in terms of harmonic functions rather than a step function. The analytical 

solutions are compared with the numerical results obtained by using finite difference 

model with implicit scheme based on the complete Sanit-Venant equations for unsteady 

flow in open channel. It is found from the study that: the peak flow times at different 

locations are shifted due to the kinematic wave velocity; therefore, the rating curves at 

different locations are spread, not complete a loop like peacock tail feather.  

The rating curves for the subcritical flows are below the line of , and the 

supercritical flow rating curves are above . The dimensionless amplitude due to 

downstream tide is still a function of time not only function of position. The comparison 

between the analytical results and numerical results are in good agreement, not only for 

the weighting factor, Pt = 0.70, but also for Pt = 0.50. This analytical model can be used 

without any sophisticated computing machine; in fact, a simple desk calculator and a 

table of error function are sufficient in carrying out the computation based on the 

analytical solution.  

 

KEYWORDS: Diffusion Equation, Dimensionless Amplitude, Flood-Tide Interaction, 

Kinematic Wave Velocity, Loop Rating Curve, de Sanit-Venant Equations, and Tidal 

River.  
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INTRODUCTION 

  

Unsteady flows are found in estuaries due to ocean tides, and rivers due to floods, in the 

form of translatory wave motion. Translatory waves are gravity waves that propagate in 

the channel and result in appreciable longitudinal displacement of the water particles. The 

terms "unsteady flows" and "transient flows" are used interchangeably to denote both 

temporal and spatial variations in depth and in the velocities of the water particles. An 

accurate prediction of flood wave propagation in a natural river may be a difficult task, 

especially for engineers to predict levels and discharges for a variety of flows. Tides are 

created by astronomical forces. In rivers which are directly connected with an ocean, the 

variation of the water surface is considered not only a direct response to such forces, but 

also a succession of tides created at river mouth by the ocean and progressing upstream 

interaction with freshwater discharge from the catchment. It will result in a very 

complicated flow regime in estuaries due to the combined effects of tides and river flows. 

The occurence of high tides downstream will create high mean water level upstream as 

well. If a high discharge prevails during an interval of high tides, the risk of upstream 

flooding will be increased. 

 

The Chao Phraya River is the most important river in Thailand (Figures 1.1 and 1.2). 

There are so many people along the river, and the capital city of Thailand, Bangkok, is 

located on the bank of the river. It causes damage to properties of both public and private 

sectors in large amount of money at each flood time, such as the damage occurring in 

2011 as Figure 1.3 (Daisuke Komori et al, 2012 snd Graham Emde, 2012). It is obvious 

that the two main causes of flooding are the high discharge from the upstream and high 

tides in the Gulf of Thailand. The high tides make the flooding more severe since the 

freshwater discharge to the sea is substantially retarded causing amount of water to 

inundate the inland area especially in the region near Bangkok. 

 

Therefore, it is essential to investigate and evaluate quantitatively the interaction of tides 

and floods to get a better rating curve of depth and velocity or depth and discharge in 

order to make a good prediction of the flood and damage not only for the flood protection, 

but also for the social development and the life level arisen.The purpose of the study is to 

construct the rating curves for unsteady flows based on the basic continuity equation and 

equation of motion using tides as the downstream boundary condition, and flood wave as 
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the upstream condition. Steps of Establishing the Rating Curves for Combination of 

Upstream and Downstream Effects are as follows: 

 

(1) Constructing the phase of upstream effect by translating the depth y –time (t) into 

discharge q – time (t) relation curve to form a velocity-stage rating curve for each station. 

(2) Constructing the phase plane of downstream effect by translating the water surface  

elevationη– t and water particle velocity in river flow direction u – t curves intoη- u 

rating curve each station. 

(3) Combining the two phase planes together to form a useful and practical phase plane 

to  

be used to predict the tide and flood wave effects during the flood coming periods. 

Most of the results will be derived from analytical solutions which are applicable for 

simple geometry of river and estuary. Numerical results will be computed for some cases 

in order to verify the analytical solutions. 

 

Figure 1.1 Geographical Description  Figure 1.2 An Overview of the Gulf of Thailand 

of the Chao Phraya River Basin 
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Figure 1.3 Chao Praya River Basin Flood extents 2-11, 12-21 and 22-31 October 2011  

(Source: Darmouth Flood Observatory) 

 

LITERATURE REVIEW 

 

In many streams and rivers, flows can be accurately and economically determined using 

steady-flow concepts. However, hydraulic engineers frequently assume that the regulated 

flows occurring in some rivers and the quasiperiodic, unsteady flows prevailing in 

estuaries and pseudo-steady with time. While permitting simplifications which are 

conceptually and analytically appealing, such an assumption fails to provide a sound basis 

from which to fully analyze and accurately determine flows that are, in fact, transient in 

character. The increasing demands by modern -day society for accurate information on 

the unsteady flows occurring in rivers and observed in estuaries have focused attention on 

the need for thoroughly understanding the dynamics of unsteady flow (or transient flow) 

in such waterways. 

 

Because of the difficulty encountered in attempting to determine unsteady flows in rivers 

and estuaries, research into the dynamics of transient open channel flows is necessary. 

For this purpose, the first step we need is to thoroughly explore and understand the 

hydrodynamics of transient flows in rivers and estuaries, and then, to develop accurate, 

reliable, and economically practical techniques with which to devise the systematic 

approach for determining or predicting such flows based on tide as the downstream 
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boundary condition and flood wave as the upstream boundary condition. Up to now, even 

there have been several studies the relation of water depth (or elevation) and time or 

velocity of propagation with time, yet they were separately investigated. This study 

intends to make use of the availability of tide and flood wave as the boundary conditions 

to establish the phase plane or the unsteady rating curve. 

 

The partial differential equations describing open-channel unsteady flows are briefly 

review. It is assumed that the flow in the channel is of substantially homogeneous density, 

that the velocity is uniform over any cross section, and the hydrostatic pressure prevails at 

any point in the channel. The channel is assumed to be sufficiently straight; the reach 

geometry to be sufficiently simple; and the channel slope to be sufficiently mild and 

uniform throughout the reach. The friction-resistance coefficient that is used with 

unsteady flow is assumed to be the same as that for steady flow, and, hence, can be 

approximated from the  𝑒   s or 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 formula. 

 

The general open-channel transient flow equations, then, can be obtained by the use of the 

laws of continuity and momentum by considering an element of water that is boundary by 

two vertical cross sections.  

The equation of continuity may be obtained by considering the influx, efflux, and the 

accumulation of mass in the element. If the water surface elevation, z, and the discharge, 

Q, are used as two dependent variables, the equation of continuity can be written in the 

form: 

Continuity Equation 

 
  

 𝑡
 

  

  
 𝑞    …………………………………………………………. (2.1) 

in which B and 𝑞 , are the surface width and the lateral flow per unit length (positive 

for inflow, negative for outflow), respectively. The distance, x, in the longitudinal 

direction on a horizontal datum plane and the elapsed time, t, are used as two 

independent variables. 

Equation of Motion of One-Dimension 

Applying Newton's Law for momentum to one-dimension flow through the element of 

water, the equation of motion can be obtained as: 

 𝑢

  
 𝑢

 𝑢

  
 𝑔

  

  
 

𝑔𝑛 𝑢|𝑢|

   ⁄  
𝑞 𝑢

 
  ……………………………………….... (2.2) 

or 
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/   ………………………………… (2.3)       

in which g, A, and R are the acceleration of gravity, the cross sectional area, and the 

hydraulic radius, respectively; and n is the function of flow resistance coefficient, and the 

rating curve for unsteady flow without consideringω, kinematic wave velocity, andμ, 

dispersion parameter due to flood wave, could be presented as Figure 2.1. 

 

Figure. 2.1 The Loop-Rating Curve, Bird Feather Envelope, by JONES FORMULA 

 

Characteristics of Flood Wave 

First, let's consider the phenomena of flood wave moving from upstream to downstream 

in a river. From equation of continuity and equation of motion, by assuming the 

acceleration and added momentum terms to be negligible, we can obtain an equation with 

depth as the only dependent variable. Thus, an alternative routing procedure results from 

the recognition of the similarity of the flood wave profile to the transient concentration 

distribution curve for a mass of material diffusing in a streamflow . In its one dimensional 

form of the wave phenomena is described in term of flow depth by this equation: 

 y

  
 ω

 y

  
 μ

  y

 x   ………………………………………………………………………………………. (2.4). 

where y is the flow depth ; x and t are the respective distance and time co-ordinate ; ω 

andμ are dispersion parameters. 

In Eq. (2.4), the first important step we want to do is to determine the flood character and 
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river basin character, ωandμ, then to solve the equation by analytical or numerical 

method. 

HAYAMI (1951) was the first one to obtain a diffusion solution for turbulent flow in a 

prismatic rectangular channel with zero lateral flow. He found the disturbance on the flow 

caused by the channel irregularities damp away within a few kilometers and had certain 

limited heights and durations. He also introduced the effect of longitudinal diffusion 

caused by the mixing into the equation of continuity and assuming the mean flow taken 

over a suitable range to be steady and uniform. 

HENDERSON (1966) identified ω as the velocity of kinematic flood wave and μ as 

the diffusion coefficient which was a function of depth and gradient of the water surface. 

He stated that the parameters ωandμwould be better regarded as lumped measure of the 

convective and diffusive characteristics of a particular river reach.  

BALTZER, MOZAYENG (1969) presented the method of characteristics to solve the 

equations of continuity and momentum in a semi-infinite rectangular open channel to 

form the rating curve for unsteady flow at different locations due to sinusoidal stage 

change upstream. The peak stage and discharge were function of the flood amplitude, 

channel slope, 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠  friction coefficient, and the distance from the entrance 

section and formed as the exponential function. The linearity coefficients were identical 

and became constant for large distance. The results were compared with the numerical 

models. 

 

SUTHERLAND and BARNETT (1972) extended the diffusion solution given by 

HAYAMI to apply moderately irregular channels, which vary in width and slope, with 

lateral inflows. The extended solution predicted that at a given time from the initiation of 

such a disturbance, the change in stage at a given point in the channel would bear a 

constant ratio to the difference between the initial and the final steady stages at that point. 

Channel constants derived by means of a calibration flood wave were used to successfully 

predict the stage-time curve for a test flood below an artificial control in a natural 

channel. 

 

PRICE (1973) presented a method to calculate 00 accurately from the records of the 

speeds of previous flood peaks along the river. But the calculation of pi could be more 
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difficult. And ω and μ could vary with the magnitude of flood significantly. 

He suggested that it was preferable to define curves for ω and μ as function of 

discharge, which can be done by correlation values of o, u calculated for a number of 

recorded floods with the average peak discharge the reach in each case. Variable 

parameter diffusion (VPD) method was proposed by him to overcome the difficulty due 

to the uncertainty in the values of CO and Pl – VPD method was further stated that the 

linear diffusion model is as good as the VPD method except in predicting the shape of the 

hydrograph, where VPD method was found to be marginally more accurate. 

 

WILFRIED BRUTSAERT (1973) said that the solution of the linearized case of de Saint 

Venant equation was still of interest because it provided some insight into the coexistence 

and the nature of kinematic and dynamic waves. Moreover, a comparison of solution of 

dynamic system with that of the diffusion equation gave an indication of criteria for 

validity of diffusion approximation and the kinematic wave approximation. The modified 

Bessel function and the  𝑟𝑒𝑒𝑛 s function were suggested useful for deriving the input 

and output functions or spectra. 

 

KEEFER and McQUIVEY (1974) put forward to a multiple linearization technique 

which were used to overcome the limitations of single linearization models. Significant 

visual improvement in the timing of low flows were noticed. For most cases of practical 

interest the diffusion analogy worked well with multiple linearization.THOMAS N. and 

KEEFER A. M. (1974) obtained a multiple linearization technique to offer a useful and in 

expensive improvement over  𝑎𝑟𝑙𝑒  s linear channel response model to a single and 

rapid calibrated linearization technique in one-dimensional convolution flow routing. 

 

TINSANCHALI and MANANDHAR (1985) developed an analytical diffusion model for 

flood routing. The results obtained by applying the model to a hypothetical rectangular 

channel checked very well with those obtained by using finite difference model with 

implicit scheme based on the complete Saint-Venant equations for unsteady flow in open 

channel. The model developed provided a simple, rapid, and accurate means of tracing 

the course of flood waves resulting from the fluctuation in the stage at upstream, 

downstream ends, and the lateral discharge. Each of the effects of the upstream, the 

downstream, and the tributary inflow could be routed when any other two of them were 
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under the same boundary conditions. This diffusion model also could be routed by using 

the daily data, and used without any sophisticated computing machine. The model was 

also advantageous in that the computation time required was less than that required for 

the finite difference model. It was applicable for the river reach where there was moderate 

backwater effect. 

 

CHRISTINA W. and TSAI A. M. (2003) examined the applicability of the kinematic 

wave, non-inertia wave, and quasi-steady dynamic wave approximations to the full 

dynamic wave equations for unsteady flow routing by comparing the propagation 

characteristics of a sinusoidal perturbation to the steady gradually varying flow for 

different simplified wave models. Development of the applicability criteria provided a 

guideline for selecting an appropriate wave model for unsteady flow modeling, thus 

enabling an assessment of the capabilities and limitations of different simplified wave 

models. 

 

CEVZA MELEK KAZEZYILMAZ-ALHAN and MIGUEL A. MEDINA Jr. (2007) 

expressed MacCormack method a particularly well suited to approximate nonlinear 

differential equations. The analytical solutions provided the practicing engineer with 

computational speed in obtaining results for overland flow problems. For large scale 

catchment-stream problems, the verified numerical methods provided efficient and 

accurate algorithms to obtain solutions. Both the analytical approaches and the 

MacCorcack algorithm were used to solve the same synthetic examples 

 

Characteristics of Tide 

Now, let's review the propagation of tide in canal from river mouth to upstream with 

linear frictional force. From continuity equation and equation of motion, we can obtain: 

 0
2   𝑢

    
  𝑢

 𝑡 
 𝑔𝑀

 𝑢

 𝑡
………………………………………………………… (2-5) 

or 

 0
2   𝜂

    
  𝜂

 𝑡 
 𝑔𝑀

 𝜂

 𝑡
 ..................................................................................... (2-6) 

where C is the celerity of shallow water wave, 𝑀  8𝑢𝑚𝑎 /3𝜋 0
2𝑅, ηis the water 

surface elevation. Ce is the Chezy's coefficient. 

"Green Law" was one of the earliest models to explain the origin of many of the most 
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striking distortions suffered by the tide as it propagated into shallow water. It related 

geometrical amplification to the conservation of wave energy flux in a non-dissipative 

system. 

 

EINSTEIN and FUCHS (1954–1955) made a survey of past and present calculation 

methods during World War II which were used for the prediction of tidal stages and 

flows in canals and estuaries. Main purpose of this study was the evaluation of the 

methods of calculation to various practical problems and the choice of one or more 

preferable calculation methods for various problems. Most solutions depended on the 

introduction of various simplifying assumptions which might or might not be 

permissible in any particular application. The various calculation methods referred to 

later were shown to describe only partially the complicated flows such as so called " 

Parsons' Harmonic Theory" : 

 (𝑢𝐻)

  
 

 𝐻

 𝑡
  ……………………………………………………………………………………... (2-7) 

 𝑢

 𝑡
 𝑢

 𝑢

  
  𝑔

 𝐻

 𝑡
 𝑓𝑢   ……………………………………………….….. (2-8) 

where f is the linear frictional coefficient which is in general a function of x but it 's often 

averaged over a given reach for convenience of calculation. Based on the fact that all the 

waves under cons deration are smooth and very long for their length, the result 

differential equations after simplification could be shown as (Figure 2-1).: 

  

 𝑡
 

  

  
  ........................................................................................................ (2-9) 

and 

 𝑢

 𝑡
 𝑢

 𝑢

  
 𝑔

 𝜂

  
 

𝑔𝑢|𝑢|

𝐶𝑐
  

  ........................................................................... (2-10) 

He also considered and sought solutions of these governing equations for different 

channel configurations, with and without frictional effect for channel of uniform depth 

varying breadth and uniform depth breadth but varying depth by keeping linear frictional 

coefficient f constant all the cases which was not always true since f varies with depth and 

may not be constant throughout the channel length. 

 

IPPEN (1966) considered tidal propagation into estuaries of rectangular sections. He 

derived tide phenomena for different situations of channel firstly without consideration of 

energy dissipation and proceeded to include frictional effects. From the basic wave 
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equation, be linearized them and assumed for small amplitude of the tidal waves. Hence,  

 

Figure. 2.1 Definition Sketch of an Element of River 

The two Eqs. (2-5) and (2-6) were obtained.  

 

The solutions were obtained in the simple mathematical forms by applying the water 

surface elevation, η , corresponding with the different configurations of channels. 

LeBLOND (1978) 2xamined the flow regime which was relevant to tidal propagation in 

shallow river from the scaled equations which derived from the hydrodynamic governing 
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equations by introducing scaling variables. He considered for one-dimension tidal 

propagation with narrow rectilinear channel of uniform depth and width, took into 

account the downstream freshwater discharge as well. After reexamination of the 

momentum balance in shallow rivers with scaling appropriate to the Saint Lawrence and 

the Fraser in the study, he found the frictional forces exceeded accelerations over most of 

the tidal cycle. Consequently, tidal propagation in shallow rivers is more properly 

envisaged as a diffusion phenomena than as a wave propagation phenomena. The long 

time lags associated with low Waters which were unexplainable in terms of a simple 

wave propagation model, were easily accounted for by an equally simple diffusion model. 

This simplification was not appropriate near high-water slack when the current and hence 

the friction forces vanished. 

 

GODIN (1982) studied the effect of an increased discharge on the propagation tides into a 

channel both on its amplitude and on its timing. He found the relation between the tide 

and the dis charge evidently, especially for the friction and the freshwater discharge 

intrinsically linked since friction is felt only when there are currents flowing. Under the 

theoretical considerations, using the hydrodynamic equations in one dimension form, he 

considered the current made up of a steady component created by freshwater discharge Uf 

and a time dependent component contributed by the tide, U(t). 

 

In the downstream region where the current alternates and where the tidal is considerably 

larger than freshwater discharge velocity, U(t) much greater than Uf , be neglected the 

convective term which is relatively unimportant compared with the friction term. While 

for the upstream region where the current no longer alternates and Uf much greater than U 

(t), he linearized the equations and solved a single tidal component only. Inference from 

his study are, for upstream region tidal range is reduced by an increased discharge, the 

time of arrival of low water is accelerated while high water is retarded, the changes in 

range and in time can be represented by simple regression relations; for downstream 

region 3 Il increased discharge causes a decrease in the effective friction during flood 

while increase during ebb, therefore low water is retarded but high eater is accelerated. 

And higher frequency components of tide will propagate upstream more rapidly than the 

lower ones. 

 

Studies of the Chao Phraya River 

The Chao Phraya River is the major river in Thailand. During the rainy season, the flood 
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superposes the tides in the lower Chao Phraya basin. The lower reach of the river is 

relatively flat to retain water for quite a long period. The duration of flood which will 

affect directly or indirectly the social activities as well as life and business and properties 

of the areas should neither be overlooked nor neglected. There are already several studies 

of this river which are reviewed as followed.TORRANIN (1969) had developed a tidal 

mathematical model by using the finite difference method of implicit scheme to study the 

flow in the Chao Phraya River. The results obtained from the study showed an acceptable 

agreement with the observed data. 

 

VATCHARASINTHU (1977) had furthered these studies to include flood protection. 

Several flood protective schemes were studied, such as dikes along the river banks, a 

diversion channel at Bangsai, and a tidal barrier at km 28. A mathematical model was 

developed in using the finite difference approximation developed by Rossiter, J. R. and 

Lonnon, G. W. (1965) to simulate the flow in the Chao Phraya River which could be used 

as a mean to forecast water elevations, discharge along the river so as to reduce the 

tangible and intangible losses due to flooding in the future. At the same time, he also 

investigated the reach of tidal effect to present the relations among the river discharge, 

water depth and velocity. They were strongly affected by the river discharge. These were 

useful for the design or management of engineering works. The transition flows on berms 

at some location before it was completely inundated was also studied by using dam break 

techniques and the duration of flood on the flood plains. By assuming that at some 

locations overflow and net inflows exist, De Marchi and Houma equations had been 

adopted to study the effect of these variations of flow which affected the flow in reach of 

river under consideration. From the results of this study, we notice that simple and 

uniform channel geometry of the river were recommended, and Manning 's roughness n 

had a little effect on calculation of water surface elevation due to the building, such as 

houses, roads, and the grown trees increasing the value of n . The initial conditions had no 

significant effect on the computation of stage and discharge hydrograph so long as they 

started with some reasonable initial values and an adequate run-in time was allowed to 

elapse before output was accepted. The reasonable initial values might be the initial 

stages obtained by consulting the tidal gauges along the length of the estuary and by 

interpolating the water surface elevations at the section. The initial discharges used were 

those which had been assumed to have a constant discharge at every grid point. This was 

very important from the practical point of view because flow conditions measured 

simultaneously did not exist. In the calculation of reach of tidal effect, it was founded that 
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in the low period of flow, tidal fluctuation could be observed as far upstream as 152 km 

from the river mouth. The head of the tide moved 3 downstream as the discharge 

increased. At a discharge of 4,000 cms no tidal influence could be observed beyond 56 

km. 

 

PHUC (1985) studied the interaction of tides and river flows in the estuary flow regime 

when tidal waves propagated into rivers. The interaction of each constituent with 

freshwater discharge was investigated, especially consideration for the lower reach of the 

Chao Phraya River. He applied the method of Harmonic Analysis to solve for the main 

constituents and analyzed the deformation of each constituent by the current. The result 

were then compared with the existing analytical solutions for interaction of wave and 

currents by Brevik and Aas (1980) . He found that the propagation and attenuation of tidal 

waves were affected by freshwater discharge evidently in flood season where the friction 

and water depth of river increase considerably and resulted in reduction of wave 

amplitudes associated with increasing of freshwater discharge due to more energy 

dissipation of tidal waves. The reduction of tidal amplitude in flood season still could not 

be formulated in a simple way by theories developed by Brevik and Aas (1980) due to 

many factors governing the phenomena. The friction of the river, geometrical changing of 

depth or width of the river, etc., still were not taken into account appropriately. Besides, 

he found that each constituent of tides was conserved and slowly attenuated when 

propagated upstream in dry season and had larger amplitude and propagation velocity 

than in flood season. While during flood, the amplitude of each component was quickly 

reduced. The diurnal tides were attenuated slower than the semi-diurnal tides but 

propagated upstream less rapidly. 

 

ROJ ANAKAMTHORN (1986) solved the governing equations by analytical 

approximation method of Perturbation to investigate the interaction of tide and freshwater 

discharge of the Chao Phraya River. . The convective and nonlinear friction terms were 

also included in the derivation. Harmonic Analysis was applied to de compose the 

complicated interaction of the freshwater discharge with various constituents of tides into 

its individual interaction with each constituent. Four main constituents, Ki , O4 , M ; , S2 , 

were included in this study. The relations of important dimensionless parameters of the 

tide, especially the dimensionless damping modulus, were then determined for each 

solution. The partial differential equations defining the problem were solved 

corresponding to each power of small perturbation parameter. They were considered into 
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three cases: firstly without friction and horizontal bed; secondly for linear friction; and 

finally for nonlinear friction. They results were obtained by straight-forward 

mathematical derivation. For the first case, it was shown that the solutions were diverged 

after a sufficient long time elapse when considered up to second order because the second 

order solution was a function of time. For linear friction, the solutions were expressed in 

Bessel function forms in which the initial amplitude of tide at river mouth was highly 

attenuated with time and the solutions did not show explicitly the individual interaction 

for each constituent of the tide with freshwater discharge. The relations of dimensionless 

parameters of damped tides were achieved associated with each assumed solution. It was 

seen from the expressions that propagation and attenuation of tides were affected 

evidently by freshwater discharge. The discharge caused the friction of the river and mean 

water level to increase considerably which resulted in more energy dissipation of tides. In 

other words, the amplitudes of tides were reduced following the increasing of freshwater 

discharge. For high discharge due to the weak point in approximation method of 

Perturbation, the obtained dimensionless damping modulus from analytical solutions were 

then modified. The results from short time duration analysis showed more accuracy in 

prediction of tides during high freshwater discharge fluctuation. 

 

Other Review 

GERFOV (1971) presented his studies which was about the determination of the loop 

discharge ration curve for flood wave propagation. The purpose of this article was to 

suggest a new method of determination of the loop discharge-rating curve by direct 

computation. An unsteady flow was usually studied as a process of flood wave 

propagation and its modification along rivers, but the studies differed from this by 

treating the changes of the hydraulic characteristics of the unsteady flow at a given point. 

There were some assumptions: 

 

(1) The water movement is two dimensional. 

(2) The hydraulic characteristics gradually variable with continuous derivatives along the 

river's reach. 

(3) The resistance forces are similar to those in a steady flow. 

(4) The morphometric characteristics of the river reach are almost permanent. 

The practical application of the result formula was by graphical differentiation of the 

flood wave hodograph in order to obtain the values of the termΔh / Δt . It was not very 
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difficult to plot the loop discharge-rating curve for a flood wave with a high degree of 

accuracy by means of the proposed method. It also resulted in a reduction in the amount 

of hydrometric discharge measurement required, especially during flood wave period. At 

the same time, the correct form of the upper part of the curve was determined. An article 

about the propagation of dynamic waves in open channel flow. The analysis that followed 

endeavors to apply the theory of linear stability to the sets of equations governing the 

motion in open channel flow. The conclusions relate to the celerity and attenuation 

functions of dynamic waves, expressed in terms of the Froude number of the steady 

uniform flow F = u /√gh, and a dimensionless wave number of the unsteady component 

of the motion. From equation of motion, 

𝑆𝑓  𝑆0  
1

𝑔

 𝑢

 𝑡
 

𝑢

𝑔

 𝑢

  
 

 

  
………………………………………………..… (2-11) 

the wave number spectrum was divided into three bands :(1) a gravity band 

corresponding to large wave number, where the wave celerity was the gravity wave 

celerity; (2) a kinematic band corresponding to a small wave number, where the wave 

was the kinematic wave celerity, Sf = S0. ; (3) a dynamic band corresponding to 

mid-spectrum values of the wave number, where the wave celerity fell between the 

gravity and kinematic celerity values,  

1

𝑔

 𝑢

 𝑡
 

𝑢

𝑔

 𝑢

  
 

 

  
 (𝑆𝑓  𝑆0)   ……………………………………………. (2-12) 

A significant conclusion regarding to dynamic wave propagation could be obtained from 

the following: for primary waves, F = 2 was the threshold dividing the attenuation F less 

than 2 and amplitude F great than 2 tendencies. For secondary wave, however, F = 1 was 

the threshold dividing the propagation upstream F less than 1 or downstream F great than 

1 for gravity waves. Thus, F =2 was verified to be as important a threshold value as F= 1 

in describing the dynamics of the unsteady flow phenomena. 

 

MATHEMATICAL DERIVATION AND COMPUTATION PROCEDURE 

Complete and Simplified Form of Diffusion Equation 

The differential equations governing flow in a wide rectangular channel with no lateral 

inflow may be written as: 

 𝑞

  
 

 𝑦

 𝑡
  ......................................................................................................... (3-1) 
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(𝑔 3  𝑞2)
 𝑦

  
 2 𝑞

 𝑞

  
  2  𝑞

 𝑡
 𝑔 3 .𝑆0  

𝑞 

𝐶𝑐
 𝑦 

/………………………….. (3-2) 

in which: 

X=distance along the channel, t=time, g=the acceleration of gravity, y=depth, 

q=discharge per unit width, S_0=the channel bed slope, Cc=the Chezy’s coefficient. 

By perturbation, q= qo +q’ and y= yo +y’ substituting into Eqs. (3-1) and (3-2): 

.
 𝑞 

  
 

 𝑦 

 𝑡
/  .

 𝑞 

  
 

 𝑦 

 𝑡
/   ………………………………………………….. (3-3) 

*𝑔( 0   ′)3  (𝑞′  𝑞0)
2+ ∙ .

 𝑦 

  
 

 𝑦 

  
/  2( 0   ′)(𝑞0  𝑞′) .

 𝑞 

  
 

 𝑞 

  
/  

( 0   ′)2 .
 𝑞 

 𝑡
 

 𝑞 

 𝑡
/＝𝑞( 0   ′)3 {𝑆0  

(𝑞 +𝑞 )
 

𝐶𝑐
 (𝑦 +𝑦 ) 

}……………………….. (3-4) 

(a): for 0th order: 

 𝑞 

  
 

 𝑦 

 𝑡
  ……………………………………………………………………. (3-5) 

(𝑔 0
3  𝑞0

2)
 𝑦 

  
 2 0𝑞0

 𝑞 

  
  0

2  𝑞 

 𝑡
 𝑔 0

3𝑆0－
𝑔𝑞 

 

𝐶𝑐
 ………………………….. (3-6) 

(b): for 1th order: 

 𝑞′

  
 

 𝑦′

 𝑡
  …………………………………………………………………….. (3-7) 

(3𝑔 0
2 ′  2𝑞0𝑞

′)
 𝑦 

  
 (𝑔 0

3  𝑞0
2)

 𝑦′

  
 2( 0𝑞

′   ′𝑞0)
 𝑞 

  
 2 0𝑞0

 𝑞 

  
 

2 0 
′  𝑞 

 𝑡
  0

2  𝑞 

 𝑡
 3𝑔 0

3 ′𝑆0  
2𝑔

𝐶𝑐
 𝑞0𝑞

′…………………………………….. (3-8) 

from the zeroth order, we can solve for q0 and y0, then for the first order: 

 𝑦 

  
  ;  

 𝑞 

  
    𝑎𝑛𝑑  

 𝑞 

 𝑡
  .  

Eq.(3-8) becomes: 

(𝑔 0
3  𝑞0

2)
 𝑦 

  
 2 0𝑞0

 𝑞 

  
  0

2  𝑞 

 𝑡
 3𝑔 0

2 ′𝑆0＋
2𝑔

𝐶𝑐
 𝑞0𝑞

′…….………… (3-9) 

By (𝑔 0
3  𝑞0

2)
 

  
(  (3  7))  

 

 𝑡
( 𝑞(3  9)): 

(𝑔 0
3  𝑞0

2)
  𝑞 

    2 0𝑞0
  𝑞 

   𝑡
  0

2   𝑞 

 𝑡 
 3𝑔 0

2𝑆0
 𝑦 

 𝑡
 

2𝑔

𝐶𝑐
 𝑞0

 𝑞 

 𝑡
………… (3-10) 

divided by  0
2: 
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(𝑔 0  𝑢0
2)

  𝑞 

   
 2𝑢0

  𝑞 

   𝑡
 

  𝑞 

 𝑡 
 3𝑔𝑆0

 𝑦 

 𝑡
 

2𝑔𝑆 

𝑢 
𝑞0

 𝑞 

 𝑡
……………….. (3-11) 

let 𝑢0
2   𝑐

2 0𝑆0 𝑜𝑟 
𝐶𝑐
 

𝑞 
 

𝑢 

𝑆 
 0

2 

it is then:  

.
𝑢 

2𝑔𝑆 
/ 2𝑔 0(1  𝐹0

2)
  𝑞 

   
 2𝑢0

  𝑞 

   𝑡
 

  𝑞 

 𝑡
3  

3

2
𝑢0

 𝑞 

  
 

 𝑞 

 𝑡
   

or .
𝑞 

2𝑆 
/ (1  𝐹0

2)
  𝑞 

   －
𝑦 𝐹 

 

𝑆 

  𝑞 

   𝑡
 

𝑢 

2𝑔𝑆 

  𝑞 

 𝑡 
 

3

2
𝑢0

 𝑞 

  
 

 𝑞 

 𝑡
………….……… (3-12) 

If we neglect the second and third terms of left-hand side, then:  

.
𝑞 

2𝑆 
/ (1  𝐹0

2)
  𝑞 

    
3

2
𝑢0

 𝑞 

  
 

 𝑞 

 𝑡
  

 𝑞 

 𝑡
 𝜇

  𝑞 

     0
 𝑞 

  
 …………………………………………………………………………….… (3-13) 

𝜇: a wave dispersion coefficient =
𝑞 

2𝑆 
(1  𝐹0

2) 

 0 : the wave celerity, or kinematic wave velocity =
3

2
𝑢0 

and Eq (3-12) is “complete form of diffusion equation for discharge”, Eq (3-13) is 

“simplified form of diffusion equation for discharge”. 

The same for constructing the diffusion for “y”, by ∂/∂t (Eq(3-7))-∂/∂x (Eq(3-9)), We 

have : 

.
𝑞 

2𝑆 
/ (1  𝐹0

2)
  𝑦 

   
 

𝑦 𝐹 
 

𝑆 

  𝑦 

   𝑡
 

𝑢 

2𝑔𝑆 

  𝑦 

 𝑡 
 

3

2
𝑢0

 𝑦 

  
 

 𝑦 

 𝑡
  …………….. (3-14) 

or 
 𝑦 

 𝑡
 𝜇

  𝑦 

   
  0

 𝑦 

  
     …………………………………………….. (3-15) 

Egs.(3-14) and (3-15) are “diffusion equation for depth”. 

 

Solution of Input Unit Step function from the Simplified Diffusion Equation   

Solving for water depth, y, we follow Hayami, the flood wave diffusion equation 

incorporation effects of channel irregularities and lateral flow can be expressed as: 

 𝑦

 𝑡
 

3

2
𝑢

 𝑦

  
 6𝑘  

𝑦𝑢

2.𝑠 −
𝜕𝑦

𝜕𝑥
/
7
  𝑦

    𝑄 (𝑥 𝑡) …………………………………………….... (3-16) 

In which: 

k: diffusivity due to channel irregularities; y: flow depth;  𝑐:  Chezy roughness 



International Journal of Engineering and Advanced Technology Studies 

Vol.4, No.5, pp.13-72, November 2016 

    Published by European Centre for Research Training and Development UK (www.eajournals.org) 

31 
 
ISSN 2053¬5783(Print), ISSN 2053¬5791(online) 
 
 

coefficient; u: velocity of flow   𝑐, (𝑆0  𝜕 𝜕𝑥⁄ )-1 2⁄ ; 𝑆0: bed slope; x: distance from 

upstream; t: time, and 𝑄 (𝑥 𝑡): lateral discharge per unit width of the tributary and per 

unit width of the main channel. The initial condition, i.e. y(x,o)=H0. The boundary 

conditions for t>0, are taken as y(o,t)= H0+U(t), and y(𝑙,t)= H0+D(t), in which U(t) and 

D(t) are the water level variations above the initial depth, H0, at the upstream and 

downstream ends; and  𝑙  is the length of the channel reach. The preceding nonlinear 

diffusion equation is linearized to obtain and analytical solution by perturbation series: 

y(x,t)= 0 ∈ ∅1  ∈2 ∅2  ⋯  ( 0  0) .1  
∅ 

(𝐻 + )
 

∅ 
 

(𝐻 + ) 
 ⋯/ …. (3-17) 

in which 0 is the average height of the water level above  0.   

Let ∅0(𝑥 𝑡)  ∅1(𝑥 𝑡)  ∅3(𝑥 𝑡) and we only take the first approximation solution: 

y(x,t)= ( 0  0)  ∅1(𝑥 𝑡)  ∅3(𝑥 𝑡)……………………………………………………….. (3-18) 

in which ∅1(𝑥 𝑡) is the solution of   

 ∅1

 𝑡
 𝜔

 ∅1

  
 𝜇

  ∅1

    ………………………………………………………………………………….. (3-19) 

with the boundary conditions and initial condition:  

∅1(𝑥 𝑡)   0 , x≧0 

∅1(𝑥 𝑡)  𝑈(𝑡)  0 , t≧0 

∅1(𝑙 𝑡)  𝐷(𝑡)  0 , t≧0………………………………………………………………………… (3-20) 

And ∅3(𝑥 𝑡) is the solution of the equation:  

 ∅ 

 𝑡
 𝜔

 ∅ 

  
 𝜇

  ∅ 

   
 𝑄 (𝑥 𝑡) ………………………………………………………………… (3-21) 

with the boundary conditions and initial condition:  

∅3(𝑥 𝑡)    , x≧0 

∅3(𝑥 𝑡)    , t≧0 

∅3(𝑙 𝑡)    , t≧0…………………………………………………………... (3-22) 

and  

𝜇  𝐾  ( 0  0)
𝑢0

2𝑆0
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𝜔  
3

2
𝑢0 

𝑢0   𝑐,( 0  0)𝑆0-
1 2⁄  

Let  ∅3(𝑥 𝑡)    with no lateral flow effect, and substituting the following equations 

into Eq.(3-18):  

∅1(𝑥 𝑡)  𝜏(𝑥 𝑡)𝑒𝑥𝑝 .
𝜔 

2𝜇
 

𝜔 𝑡

4𝜇
/  

 ∅1

 𝑡
 0

𝜏𝜔

2𝜇
 

 𝜏

  
1 𝑒𝑥𝑝 .

𝜔 

2𝜇
 

𝜔 𝑡

4𝜇
/  

  ∅1

    0
𝜔 𝜏

4𝜇  
𝜔

𝜇

 𝜏

  
 

  𝜏

   1 𝑒𝑥𝑝 .
𝜔 

2𝜇
 

𝜔 𝑡

4𝜇
/  

 ∅1

 𝑡
 0 

𝜏𝜔

2𝜇
 

 𝜏

  
1 𝑒𝑥𝑝 .

𝜔 

2𝜇
 

𝜔 𝑡

4𝜇
/  

we yield 

 𝜏

  
 𝜇

  𝜏

    ………………………………………………………………………………………………. (3-23) 

And the boundary conditions are transformed into: 

𝜏(𝑂 𝑡)  ,𝑈(𝑡)  0-𝑒𝑥𝑝 .
𝜔 𝑡

4𝜇
/  

𝜏(𝑙 𝑡)  ,𝐷(𝑡)  0-𝑒𝑥𝑝 .
𝜔 𝑡

4𝜇
 

𝜔𝑙

2𝜇
/  

𝜏(𝑥 𝑂)   0𝑒𝑥𝑝 . 
𝜔 

2𝜇
/ …………………………………………………………………….. (3-24) 

By using Laplace Transformation, if 𝐿(𝜏(𝑂 𝑡))   (𝑥 𝑠) and Eq. (3-23): 

𝐿 2
 𝜏

  
3  𝐿 2

  𝜏

   
3  

𝑆  𝜏(𝑥 𝑂)  𝜇
𝑑 𝜃

𝑑    

𝑑 𝜃

𝑑  
 

𝑠

𝜇
  

 

𝜇
𝑒
−

𝜔𝑥

 𝜇  ………………………………………………………………………………… (3-25) 

The characteristic equation of corresponding homogeneous equation is  

𝑚2  
𝑠

𝜇
    

𝑚  ±√
𝑠

𝜇
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 (𝑥 𝑠)   1𝑒
√

𝑠

𝜇
 
  2𝑒

−√
𝑠

𝜇
 

…………………………………………………………………… (3-26) 

For the particular solution, we assume 

 𝑝  𝛽𝑒
−

𝜔𝑥

 𝜇  …………………………………………………………………………………………….. (3-27) 

From Eq.(3-25), we get 

𝛽  
 

(
𝜔 

 𝜇
−𝑆)

 

 (𝑥 𝑠)   (𝑥 𝑠)   𝑝(𝑥 𝑠)   1𝑒
√

𝑠

𝜇
 
  2𝑒

−√
𝑠

𝜇
 
 

 𝑒
−
𝜔𝑥
 𝜇

(
𝜔 

 𝜇
−𝑆)

 ………………... (3-28) 

And the boundary conditions are also transformed into: 

 (𝑂 𝑠)  𝐿 8,𝑈(𝑡)  0-𝑒
𝜔 𝑡

 𝜇 9  𝑓 .𝑆  
𝜔 

4𝜇
/  

 

𝑆−
𝜔 

 𝜇

  

 (𝑙 𝑠)  𝐿 8,𝐷(𝑡)  0-𝑒
𝜔 𝑡

 𝜇 9  [𝑔 .𝑆  
𝜔 

4𝜇
/  

 

(𝑆−
𝜔 

 𝜇
)
] 𝑒

−
𝜔𝑥

 𝜇   

From Eq.(3-28): 

 (𝑂 𝑠)   1   2  
 

𝑆−
𝜔 

 𝜇

 𝑓 .𝑆  
𝜔 

4𝜇
/  

 

𝑆−
𝜔 

 𝜇

  

 1   2  𝑓 .𝑆  
𝜔 

4𝜇
/ …………………………………………………….. (3-29) 

 (𝑙 𝑠)   1𝑒
√

𝑠

𝜇
𝑙
  2𝑒

−√
𝑠

𝜇
𝑙
 0

𝑒
−
𝜔𝑡
 𝜇

𝑆−
𝜔 

 𝜇

 [𝑔 .𝑆  
𝜔 

4𝜇
/  

 

𝑆−
𝜔 

 𝜇

] 𝑒
−

𝜔𝑙

 𝜇  

 1𝑒
√

𝑠

𝜇
𝑙
  2𝑒

−√
𝑠

𝜇
𝑙
 𝑔 .𝑆  

𝜔 

4𝜇
/ 𝑒

−
𝜔𝑡

 𝜇 …………………………………………………….. (3-30)  

From Eqs.(3-29) and (3-30), we can obtain  1 and  2: 

 2  
𝑓(𝑆−

𝜔 

 𝜇
)−𝑒 𝑝(−

𝜔𝑙

 𝜇
−√

𝑠

𝜇
𝑙)𝑔(𝑆−

𝜔 

 𝜇
)

1−𝑒 𝑝(−2√
𝑠

𝜇
𝑙)

  

 1  

𝑔 (𝑆  
𝜔2

4𝜇) 𝑒𝑥𝑝 ( 
𝜔𝑙
4𝜇  √

𝑠
𝜇 𝑙)  𝑓 (𝑆  

𝜔2

4𝜇) 𝑒𝑥𝑝 ( 2√
𝑠
𝜇 𝑙)

1  𝑒𝑥𝑝 ( 2√
𝑠
𝜇 𝑙)
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 (𝑥 𝑠)  

𝑓 .𝑆  
𝜔 

4𝜇
/

𝑒 𝑝(−√
𝑠

𝜇
𝑙)−𝑒 𝑝,−(2𝑙− )-√

𝑠

𝜇

1−𝑒 𝑝(−2√
𝑠

𝜇
𝑙)

 𝑔 .𝑆  
𝜔 

4𝜇
/

𝑒 𝑝[−(𝑙− )√
𝑠

𝜇
]−𝑒 𝑝[−(2𝑙− )√

𝑠

𝜇
]

1−𝑒 𝑝(−2√
𝑠

𝜇
𝑙)

𝑒
−

𝜔𝑡

 𝜇  

 𝑒
−
𝜔𝑥
 𝜇

(𝑆−
𝜔 

 𝜇
)
 ……………………………………… (3-31) 

By use inversion of Laplace Transformation to find the original solution forms: 

𝐿−1{𝑓(̅𝑠)}  𝐹(𝑡),  

𝐿−1 >
𝑒
−(𝐴−𝐵𝑥)√

𝑠
𝜇

1−𝑒
− √

𝑠
𝜇
𝑙
?  𝐿−1 6𝑒

−( −𝐵 )√
𝑠

𝜇 81  𝑒
−2√

𝑠

𝜇
𝑙
 𝑒

−4√
𝑠

𝜇
𝑙
 ⋯97  

𝐿−1 8𝑒
−( −𝐵 )√

𝑠

𝜇  𝑒
−( −𝐵 −2𝑙)√

𝑠

𝜇  𝑒
−( −𝐵 +4𝑙)√

𝑠

𝜇  ⋯9  𝐿−1 8∑ e
-(A-Bx-2nl)√

s

μ∞
n=0 9  

 ∑ 𝐿−1∞
𝑛=0 8𝑒

−( −𝐵 −2𝑛𝑙)√
𝑠

𝜇9  ∑
{
 −𝐵 −2𝑛𝑙

2√𝜋𝜇𝑡 
𝑒𝑥𝑝 0 

( −𝐵 −2𝑛𝑙) 

4𝜇𝑡
1}∞

𝑛=0   

 
1

2√𝜋𝜇𝑡 
∑

2(𝐴   𝑥  2𝑛𝑙)𝑒𝑥𝑝 0
−( −𝐵 −2𝑛𝑙) 

4𝜇𝑡
13∞

𝑛=0  ………………………………… (3-32) 

𝐿−1 2𝑓 .𝑆  
𝜔 

4𝜇
/3  𝑢(𝑡)𝑒

𝜔 𝑡

 𝜇  ……………………………………………………………………. (3-33) 

𝐿−1 {
 

𝑆−
𝜔 

 𝜇

}  0𝑒
𝜔 𝑡

 𝜇  …………………………………………………………………………………. (3-34) 

𝐿−1{𝑓(̅𝑠)�̅�(𝑠)}  ∫ 𝐹(𝑡  𝜏)
𝑡

0
 (𝜏)𝑑𝜏 ……………………………………………………… (3-35) 

By using Eqs. (3-32),(3-33),(3-34) and (3-35) in the inversion of Eq. (3-31), then 

𝜏(𝑥 𝑡)  
1

2√𝜋𝜇
∫ 𝑈(𝑡  𝜆)
𝑡

0

𝑒
𝜔 (𝑡−𝜆)

 𝜇

𝜆  ⁄
∑ 6(𝑥  2𝑛𝑙)𝑒

−
(𝑥+ 𝑛𝑙) (𝑡−𝜆)

 𝜇𝜆  ,2(𝑛  1)𝑙  ∞
𝑛=0

𝑥-𝑒
−

( (𝑛+1)𝑙−𝑥) 

 𝜇𝜆 7 𝑑𝜆  
𝑒
−
𝜔𝑡
 𝜇

2√𝜋𝜇
∫ 𝐷(𝑡  𝜆)
𝑡

0

𝑒
𝜔 (𝑡−𝜆)

 𝜇

𝜆  ⁄
∑ [,2(𝑛  1)𝑙  𝑥-𝑒

−
( (𝑛+1)𝑙−𝑥) 

 𝜇𝜆  ∞
𝑛=0



International Journal of Engineering and Advanced Technology Studies 

Vol.4, No.5, pp.13-72, November 2016 

    Published by European Centre for Research Training and Development UK (www.eajournals.org) 

35 
 
ISSN 2053¬5783(Print), ISSN 2053¬5791(online) 
 
 

,2(𝑛  1)𝑙  𝑥-𝑒
−

( (𝑛+1)𝑙−𝑥) 

 𝜇𝜆 ] 𝑑𝜆  0𝑒
−(

𝜔𝑥

 𝜇
−

𝜔 𝑡

 𝜇
)
 ………………………………….. (3-36) 

If we denote (𝑙-x) by x’, and substitute into Eq.(3-19) by all the above expression:  

𝜏(𝑥 𝑡)  
𝑒
𝜔𝑡
 𝜇

2√𝜋𝜇
∫ 𝑈(𝑡  𝜆)

𝑒
−
𝜔 𝑙
 𝜇

𝜆  ⁄

𝑡

0
∑ [,2𝑛𝑙  𝑥-𝑒

−
( 𝑛𝑙+𝑥) 

 𝜇𝜆  ,2(𝑛  1)𝑙  ∞
𝑛=0

𝑥-𝑒
−

( 𝑛+1)𝑙+𝑥 

 𝜇𝜆 ] 𝑑𝜆  
𝑒
−
𝜔𝑥
 𝜇

2√𝜋𝜇
∫ 𝐷(𝑡  𝜆)
𝑡

0

𝑒
𝜔 𝑙
 𝜇

𝜆  ⁄
∑ <,2𝑛𝑙  𝑥′-𝑒

−
( 𝑛𝑙+𝑥 )

 

 𝜇𝜆  ,2(𝑛  1)𝑙  ∞
𝑛=0

𝑥′-𝑒
−

( 𝑛+1)(−𝑥 )
 

 𝜇𝜆 = 𝑑𝜆………………………………………………………… (3-37) 

Substitute ∅1(𝑥 𝑡) into Eq. (3-2), and let ∅3(𝑥 𝑡)   : 

 (𝑥 𝑡)   0  
𝑒
𝜔𝑥

 𝜇

2√𝜋𝜇
∫ 𝑈(𝑡  𝜆)

𝑒
−
𝜔 𝜆
 𝜇

𝜆  ⁄

𝑡

0
∑ [,2𝑛𝑙  𝑥-𝑒

−
( 𝑛𝑙+𝑥) 

 𝜇𝜆  ,2(𝑛  1)𝑙  ∞
𝑛=0

𝑥-𝑒
−

,( 𝑛𝑙+1)𝑙−𝑥- 

 𝜇𝜆 ] 𝑑𝜆  
𝑒
−
𝜔𝑥 
 𝜇

2√𝜋𝜇
∫ 𝐷(𝑡  𝜆)
𝑡

0

𝑒
−
𝜔 𝜆
 𝜇

𝜆  ⁄
∑ [,2𝑛𝑙  𝑥′-𝑒

−
( 𝑛𝑙+𝑥 )

 

 𝜇𝜆  ∞
𝑛=0

,2(𝑛  1)𝑙  𝑥′-𝑒
−

.( 𝑛+1)𝑙−𝑥 /
 

 𝜇𝜆 ] 𝑑𝜆  𝐼1(𝑥 𝑡)  𝐼2(𝑥
′ 𝑡)  ∫ 𝑈(𝑡  𝜆)𝑥(𝜆 𝑥)

𝑡

0
𝑑𝑥  

∫ 𝐷(𝑡  𝜆)𝑥′(𝜆 𝑥′)
𝑡

0
𝑑𝜆 ………………………………………………………………………. (3-38) 

Now, let’s discuss about U(t ) and D (t), and if let u(t) is a discrete step function, as  

U(t)=f1 0<t≤1 

U(t)=f2 1<t≤2 

     . 

     . 

U(t)=fm m-1<t≤m 

𝐼1(𝑥 𝑡)  ∫ 𝑈(𝑡  𝜆)𝑥(𝜆 𝑥)
𝑡

0
𝑑𝑥  
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∫ 𝑓1𝑋(𝜆 𝑥)
𝑡

𝑡−1
𝑑𝜆  ∫ 𝑓2𝑋(𝑥 𝜆)

𝑡−1

𝑡−2
𝑑𝜆  ⋯ ∫ 𝑓𝑚−1𝑋(𝜆 𝑥)

𝑡−𝑚+2

𝑡−𝑚+1
𝑑𝜆  

∫ 𝑓𝑚𝑋(𝜆 𝑥)
𝑡−𝑚+1

0
𝑑𝜆  

 

𝑓1 ∫ 𝑋(𝜆 𝑥)
𝑡

0
𝑑𝜆  (𝑓2  𝑓1) ∫ 𝑋(𝑥 𝜆)

𝑡−1

0
𝑑𝜆  ⋯ 

(𝑓𝑚−1  𝑓𝑚−2) ∫ 𝑋(𝜆 𝑥)
𝑡−𝑚+2

0
𝑑𝜆  (𝑓𝑚  𝑓𝑚−1)  ∫ 𝑓𝑚𝑋(𝜆 𝑥)

𝑡−𝑚+1

0
𝑑𝜆  ……….. 

(3-39) 

If we define ∫ 𝑋(𝜆 𝑥)
𝑡

0
𝑑𝜆  𝑅1(𝑥 𝑡), then: 

𝐼1(𝑥 𝑡)  𝑓1𝑅1(𝑥 𝑡)  ∑ 𝑅1(𝑥 𝑡  𝑗),𝑓𝑙+1  𝑓𝑙-
𝑚1−1
𝑙=1  or 

𝐼1(𝑥 𝑡)  𝑓1𝑅1(1)  ∑ 𝑓1,𝑅1(𝑥 𝑡  𝑗  1)  𝑅(𝑥 𝑡  𝑗)-1
𝑙=𝑚1−1  ………… (3-40) 

If 𝑅1(𝑥 𝑡) tends to a constant value as t increases, i.e. the higher value of t, the effect of 

𝑓1 will be cancelled by that of 𝑓2 and so on. If let K is the time after which 𝑅1(𝑥 𝑡) 

remains constant, so: 

𝑅1(𝐾)  𝑅1(𝐾  1)  𝑅1(𝐾  2)  ⋯  𝑅1(𝑡  1)  𝑅1(𝑡); k<t  

Then we can rewrite Eq.(3-40) as:  

𝐼1(𝑥 𝑡)  𝑓𝑡𝑅1(𝑥 𝑡)  ∑ 𝑓1,𝑅1(𝑥 𝑡  𝑗  1)  𝑅(𝑥 𝑡  𝑗)-
𝑡−𝑘1+1
𝑙=𝑚1−1  ……….. (3-41) 

𝐼1(𝑥 𝑡)  𝑓1𝑅1(𝑥 𝑡)  ∑ 𝑅1(𝑥 𝑡  𝑗),𝑓𝑙+1  𝑓𝑙-
𝑚1−1
𝑙=𝑡−𝑘1+1  …………….………… (3-42) 

where: 

 𝑚1=t or flood period whichever is minimum. 

    𝑘1=t or k defined above, whichever is minimum. 

The same result:  

𝐼2(𝑥
′ 𝑡)  𝑔1𝑅2(𝑥

′ 𝑡)  ∑ 𝑅2(𝑥
′ 𝑡  𝑗),𝑔𝑙+1  𝑔𝑙-

𝑚 −1
𝑙=𝑡−𝑘 +1  ……………… (3-43) 

𝑅1(𝑥 𝑡)  

𝑒
𝜔𝑥

 𝜇 ∫
−

𝜔 𝜆

 𝜇

2√𝜋𝜇𝜆  ⁄

𝑡

0
∑ [,2𝑛𝑙  𝑥-𝑒

−
( 𝑛𝑙+𝑥) 

 𝜇𝜆  ,2(𝑛  1)𝑙  𝑥-𝑒
−

( (𝑛+1)𝑙−𝑥) 

 𝜇𝜆 ]∞
𝑛=0 𝑑𝜆  

𝑅2(𝑥
′ 𝑡)  
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𝑒
−

𝜔𝑥 

 𝜇 ∫
𝑒
−
𝜔 𝜆
 𝜇

2√𝜋𝜇𝜆  ⁄

𝑡

0
∑ <,2𝑛𝑙  𝑥′-𝑒

−
( 𝑛𝑙+𝑥 )

 

 𝜇𝜆  ,2(𝑛  1)𝑙  ∞
𝑛=0

𝑥′-𝑒
−

( (𝑛+1)𝑙−𝑥 )
 

 𝜇𝜆 = 𝑑𝜆 ……………………………………………………………………..…… (3-44) 

If we substitute   

λ  
x 

4μξ 
  

𝑅1(𝑥 𝑡)  
2

√𝜋
𝑒

𝜔𝑥

 𝜇 ∫ 𝑒
−

𝜔 𝑥 

16𝜇 𝜉 
∞
𝑥

 √𝜇𝑡

  

∑ 8.
2𝑛𝑙

 
 1/ 𝑒−.

 𝑛𝑙

𝑥
+1/

 
𝜉 

 0
2(𝑛+𝑙)𝑙

 
 11 𝑒−.

 (𝑛+1)𝑙

𝑥
−1/

 
𝜉9 𝑑𝜉∞

𝑛=0  ……… (3-45) 

∫ 𝑒
−  −

𝑎 

𝑥 
∞

0
𝑑𝑥  

𝑒− 𝑎√ 

2
 for 𝛼 ≥    …………………………………………… (3-46)     

Therefore 

 ∫ 𝑒
−𝑏 𝜉 −

𝑐 

𝜉 
∞

0
𝑑𝑥/𝑏  

𝑒− 𝑏𝑐√𝜋

2𝑏
 …………………………………………………….. (3-47) 

∫ 𝑒
−𝑏 𝜉 −

𝑐 

𝜉 
∞
𝑥

 √𝜇𝑡

𝑑𝜉  
𝑒− 𝑏𝑐√𝜋

2𝑏
 ∫ 𝑒

−𝑏 𝜉 −
𝑐 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉 ………………………... (3-48) 

And Eq. (3-45)  

𝑅1(𝑥 𝑡)  𝑒
𝜔𝑥

 𝜇 ∑ <>𝑒
−.

𝜔𝑥

 𝜇
/0

 𝑛𝑙

𝑥
+11

 
2

√𝜋
0
2𝑛𝑙

 
 11 ∫ 𝑒

−0
 𝑛𝑙

𝑥
+11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉?  ∞

𝑛=0

>𝑒
−

𝜔𝑥

 𝜇
0
 (𝑛+1)𝑙

𝑥
−11

 
2

√𝜋
0
2(𝑛+1)𝑙

 
 11 ∫ 𝑒

−0
 𝑛𝑙

𝑥
+11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉?= ……... (3-49) 

𝑅2(𝑥
′ 𝑡)  

𝑒
−

𝜔𝑥 

 𝜇 ∑ [>𝑒
−.

𝜔𝑥 

 𝜇
/0

 𝑛𝑙

𝑥
+11

 
2

√𝜋
0
2𝑛𝑙

   11 ∫ 𝑒
−0

 (𝑛+1)𝑙

𝑥 
−11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉?  ∞

𝑛=0

{𝑒
−

𝜔𝑥 

 𝜇
0
 (𝑛+1)𝑙

𝑥 
−11

 
2

√𝜋
0
2(𝑛+1)𝑙
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11 ∫ 𝑒
−0

 𝑛𝑙

𝑥 
+11

 
𝜉 −

6
𝜔𝑥 

 𝜇
7

 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉}] …………………………………………………………. (3-50) 

𝑅1(𝑥 𝑡)  𝑒
𝜔𝑥

 𝜇 (𝑥 𝑡) ……………………………………………………………………….. (3-51) 

𝑅2(𝑥
′ 𝑡)  𝑒

−
𝜔𝑥 

 𝜇  ( 𝑡) ………………………………………………………………….….. (3-52) 

𝛽(𝑝 𝑡)  ∑ 0𝑠 .𝑝 
2𝑛𝑙

𝑝
 1 𝑡/  𝑠 .𝑝 

2(𝑛+1)𝑙

𝑝
 1 𝑡/1∞

𝑛=0  ……………………..... (3-53) 

S(p,b.t)=𝑒
−

𝜔𝑝

 𝜇  
2𝑏

√𝜋
∫ 𝑒

−𝑏 𝜉 −
0
𝜔𝑝
 𝜇

1
 

𝜉 

𝑝

 √𝜇𝑡

0
𝑑𝜉 …………………………………………… (3-54) 

f1=fluctuation in depth at u/s end at time t=i over the initial uniform depth, H0 

g1=fluctuation in depth at downstream end at time t=i over the initial uniform depth, Hn 

p and b are dummy variable which take the values x and 𝑥′  and (2nl/p +1) or 

[2(n+1)1/p-1], respectively.  

Solving for R1(x,t) and R2(𝑥′ t), we based on an assumed rectangular channel, for which 

the diffusivity due to channel irregular is K=o, and 

𝜙𝑙(𝑥 𝑡)  𝛼𝑡.𝑙𝑅𝑡(𝑥 𝑡)  ∑ 𝑅𝑡(𝑥 𝑡  𝑗)(𝛼𝑡.𝑙+1  𝛼𝑡.𝑙)
𝑚𝑡−1
𝑙=1   

in which the subscript i=1.2 corresponds to upstream, and downstream effects, 

respectively with 𝛼1   𝑢𝑗(𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚) 𝛼2   𝑑𝑗(          ) and j=1,2,3,…,m-1. 

It’s also found that it’s already sufficient to take into account only the terms with n=0 in 

the converging series terms of Eqs. B (p,t) for the 1mm accuracy of the resulting water 

depth. 

∫ 𝑒
𝑠.2−

𝛿

 𝜆√𝑠
/
 

𝑑𝜆  
√𝜋

2√𝑠

∞

0
  and 𝜏  

𝑏

𝜆
 with 𝑑𝜆   

𝑏

𝜏 
𝑑𝜏 𝑏  

𝑞

2√𝑠
 , 

∫ 𝑒−𝑠.2−
𝑏

 
/
 

𝑑𝜆
∞

0
 ∫ 𝑒−𝑠.

𝑏

𝜏
−𝜏/

 

. 
𝑏

𝜏 
/𝑑

∞

0
𝜏  ∫ .

𝑏

𝜏 
/

0

∞
 𝑒−𝑠.

𝑏

𝜏
−𝜏/

 

𝑑𝜏  

 ∫ .
𝑏

𝜏 
/

0

∞
𝑒−.

𝑏

𝜏
−𝜏/

 

𝑑𝜏 ……………………………………………………………………..…. (3-55) 

That is: 2∫ 𝑒−𝑠.𝜆−
𝑏

𝜆
/
 

𝑑𝜆
∞

0
 ∫ .1  

𝑏

𝜏 
/

∞

0
𝑒−.𝜏−

𝑏

𝜏
/
 

𝑑𝜏  

Let 𝑥  √𝑠 .𝜏  
𝑏

𝜏
/𝑑𝑥  √𝑠 .1  

𝑏

𝜏 
/𝑑𝜏  
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2∫ 𝑒−𝑠.𝜆−
𝑏

𝜆
/
 

𝑑𝜆
∞

0
 ∫ .1  

𝑏

𝜏 
/

∞

−∞
𝑒−  1

√𝑠.1+
𝑏

𝜏 
/
𝑑𝑥  

 
√𝜋

√𝑠
.

1

√𝜋
∫ 𝑒−  ∞

−∞
𝑑𝑥/  

√𝜋

√𝑠
𝑒𝑟𝑓(∞)  

∫ 𝑒−𝑠.𝜆−
𝑏

𝜆
/
 

𝑑𝜆
∞

0
 

√𝜋

2√𝑠
 

1

2

√𝜋

√𝑠
𝑒𝑟𝑓(∞) , then 

∫ 𝑒
−  −

𝜋 

𝑥 𝑑𝑥  ∫ 𝑒
−. −

𝜋

𝜇
/
 
−2𝛼

𝑑𝑥  𝑒−2𝛼 ∫ 𝑒−. −
𝜋

𝑥
/
 

𝑑𝑥  𝑒−2𝛼 √𝜋

2

∞

0

∞

0

∞

0
    (3-56) 

and   

∫ 𝑒
−𝑏 𝜉 −

𝑐 

𝜉 
∞

0
𝑑𝜉  

𝑒− 𝑏𝑐

𝑏
∫ 𝑒−. −

𝑏𝑐

𝑥
/
 

𝑑𝑥  .
𝑒− 𝑏𝑐

𝑏

√𝜋

2
/

∞

0
4

2

√𝜋
∫ 𝑒

−. −
𝑏𝑐

𝜇
/
 

𝑑𝑥
∞

0
5   

 .
√𝜋

2𝑏
𝑒−2𝑏𝑐/ ………………………………………………………………..………………. (3-57) 

if ∫ 𝑒
−𝑏 𝜉 −

𝑐 

𝜉 
𝛼 

0
𝑑𝜉  ∫ 𝑒−. −

𝑏𝑐

𝑥
/
 
−2𝑏𝑐 1

𝑏
𝑑𝑥

𝛼 

0
 

=.
1

𝑏
𝑒−2𝑏𝑐/∫ 𝑒−. −

𝑏𝑐

𝑥
/
 

𝑑𝑥
𝛼 

0
 .

𝑒− 𝑏𝑐

𝑏
/ .

√𝜋

2
/4

2

√𝜋
∫ 𝑒−. −

𝑏𝑐

𝑥
/
 

𝑑𝑥
𝛼 

0
5 

=.
√𝜋𝑒− 𝑏𝑐

2𝑏
/ (𝑒𝑟𝑓(𝛼′)) …………………………………………………………………… (3-58) 

𝑅1(𝑥 𝑡)  𝑒
𝜔𝑥

 𝜇 ∑ <>𝑒
−.

𝜔𝑥

 𝜇
/0

 𝑛𝑙

𝑥
+11

 
2

√𝜋
0
2𝑛𝑙

 
 11 ∫ 𝑒

−0
 𝑛𝑙

𝑥
+11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉?  ∞

𝑛=0

𝑒
−

𝜔𝑥

 𝜇
0
 (𝑛+1)𝑙

𝑥
−11

 
2

√𝜋
0
2(𝑛+1)𝑙

 
 11 ∫ 𝑒

−0
 𝑛𝑙

𝑥
+11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉=  

𝑅2(𝑥
′ 𝑡)  

𝑒
−

𝜔𝑥

 𝜇 ∑ [{𝑒
−(

𝜔𝑥 

 𝜇
)0

 𝑛𝑙

𝑥
+11

 ∞
𝑛=0

2

√𝜋
0
2𝑛𝑙

   11 ∫ 𝑒
−0

 (𝑛+1)𝑙

𝑥 
−11

 
𝜉 −

0
𝜔𝑥
 𝜇

1
 

𝜉 

𝑥

 √𝜇𝑡

∞
𝑑𝜉 [𝑒

−
𝜔𝑥 

 𝜇
0
 (𝑛+1)𝑙

𝑥 
−11
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2

√𝜋
0
2(𝑛+1)𝑙

   11 ∫ 𝑒
−0

 𝑛𝑙

𝑥 
+11

 
𝜉 −

6
𝜔𝑥 

 𝜇
7

 

𝜉 

𝑥

 √𝜇𝑡

0
𝑑𝜉]}]  

If n=0, then  

𝑅1(𝑥 𝑡)  

𝑒
𝜔𝑥

 𝜇 [8𝑒
−

𝜔𝑥

 𝜇  
2

√𝜋
√𝜋

𝑒
−
𝜔𝑥
 𝜇

2
𝑒𝑟𝑓 .

 

2√𝜇𝑡
/9  

{𝑒
−𝜔

( 𝑙−𝑥)

 𝜇  
2

√𝜋
.
2𝑙

 
 1/√𝜋

𝑒
−𝜔

( 𝑙−𝑥)
 𝜇

2.
 𝑙

𝑥
−1/

𝑒𝑟𝑓 .
 

2√𝜇𝑡
/}]  [21  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3  {𝑒

𝜔(𝑥−𝑙)

𝜇  

𝑒
𝜔(𝑥−𝑙)

𝜇 𝑒𝑟𝑓 .
 

2√𝜇𝑡
/}]  21  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3  𝑒

−
𝜔𝑥 

𝜇 21  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/3  

01  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/1 61  𝑒

−
𝜔𝑥 

𝜇 7     (3-59) 

 𝑥′   

𝑅2(𝑥
′ 𝑡)  𝑒

−
𝜔𝑥 

 𝜇 68𝑒
−

𝜔𝑥 

 𝜇  
2

√𝜋

√𝜋

2
𝑒
−

𝜔𝑥 

 𝜇 𝑒𝑟𝑓 .
  

2√𝜇𝑡
/9  8𝑒

−
𝜔( 𝑙−𝑥 )

 𝜇  
2

√𝜋
.
2𝑙

   

1/
√𝜋

2.
 𝑙

𝑥 
−1/

𝑒
−𝜔

( 𝑙−𝑥 )

 𝜇 𝑒𝑟𝑓 .
  

2√𝜇𝑡
/97  

[{(𝑒
−

𝜔𝑥 

𝜇  𝑒
−

𝜔𝑥 

𝜇 𝑒𝑟𝑓 .
  

2√𝜇𝑡
/)  4𝑒

−
𝜔𝑙

𝜇  𝑒
−

𝜔𝑙

𝜇 𝑒𝑟𝑓 .
  

2√𝜇𝑡
/5}]  4𝑒

−
𝜔𝑥 

𝜇 541  

𝑒𝑟𝑓 .
  

2√𝜇𝑡
/5  (𝑒

−
𝜔𝑙

𝜇 ) 41  𝑒𝑟𝑓 .
  

2√𝜇𝑡
/5  4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 5 01  

𝑒𝑟𝑓 .
  

2√𝜇𝑡
/1 ……………………………..…….…. (3-60) 

the maximum values of 𝑅1(𝑥 𝑡) and 𝑅2(𝑥 𝑡) are: 

41  𝑒
−

𝜔𝑥 

𝜇 5 and 4𝑒
−

𝑥 𝜔

𝜇  𝑒
−

𝜔𝑙

𝜇 5   

41  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/5 =1 

Therefore, when t increases, 𝑅1(𝑥 𝑡) and 𝑅2(𝑥
′ 𝑡) approach to constants. 𝑅1(𝑥 𝑡  

𝑗)  and  2(𝑥
′ 𝑡  𝑗) are constants after the time increases to 𝐾1 and 𝐾2.  
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∑ 𝑅1(𝑥 𝑡  𝑗)(𝑓𝑙+1  𝑓𝑙)
𝑚1−𝑙
𝑙=𝑡−𝑘1+𝑙  𝑅𝑟(𝑥 𝑡  𝑗)∑ ,𝑓𝑙+1  𝑓𝑙-  𝑅1(𝑥 𝑡  

𝑚1−𝑙
𝑙=𝑡−𝑘 +𝑙

𝑗)(𝑓𝑚𝑙  𝑓𝑙) ………………………………………………………………...………... (3-61). 

∑ 𝑅2(𝑥
′ 𝑡  𝑗),𝑔𝑙+1  𝑔𝑙-

𝑚 −𝑙
𝑙=𝑡−𝑘 +𝑙  𝑅2(𝑥

′ 𝑡  𝑗)(𝑔𝑚2  𝑔𝑙) ………..…… (3-62) 

(𝑓𝑚𝑙  𝑓𝑙) and (𝑔𝑚2  𝑔𝑙) is very small, when it is symmetric hydrograph, the values of 

(𝑓𝑚𝑙  𝑓𝑙) and (𝑔𝑚2  𝑔𝑙) are zero. So, sometimes, we can neglect the two terms Eqs. 

(3-61) and (3-62). 

Solving for velocity u.(x,t ) from 

 𝑦

 𝑡
 

6𝑓𝑙 41  𝑒
−

𝜔𝑥 

𝜇 5
 

 𝑡
21  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3  

𝑔𝑙 4𝑒
−

𝑥 𝜔

𝜇  𝑒
−

𝜔𝑙

𝜇 5
 

 𝑡
21  𝑒𝑟𝑓 .

  

2√𝜇𝑡
/37 𝑒𝑟𝑓 .

 

2√𝜇𝑡
/  

2

√𝜋
∫ 𝑒−𝑢 

𝑥

 √𝜇𝑡

0
𝑑𝑢  

2

√𝜋
0𝑢  

1

3
𝑢3  

𝑢5

5 2!
 

𝑢7

7 3!
… 1 𝑙𝑢=

𝑥

 √𝜇𝑡

 
2

√𝜋
0

 

2√𝜇𝑡
 

  

6𝜇𝑡√𝜇𝑡
 

 5

20𝜇 𝑡 √𝜇𝑡
 

 7

84𝜇 𝑡 √𝜇𝑡
… 1 ……………………………………….. (3-63) 

and  

 

 𝑡
0𝑒𝑟𝑓 .

 

2√𝜇𝑡
/1  

2

√𝜋
0 

 

4𝜇1  ⁄ 𝑡  ⁄ 1 21  
  

1!𝜇𝑡
 

 5

2!(𝜇𝑡) 
 

 6

3!(𝜇𝑡) 
…3  

 
2

√𝜋
0 

 

4𝜇1  ⁄ 𝑡  ⁄ 1 {∑
(−1)𝑛

𝑛!
.
  

𝜇𝑡
/
𝑛

∞
𝑛=0 }  

𝑒−𝑢  1  𝑢  
𝑢 

2!
 

𝑢 

3!
 

𝑢 

4!
 ⋯ 

(−1)𝑛

𝑛!
 ⋯  

that is  

 

 𝑡
0𝑒𝑟𝑓 .

  

2√𝜇𝑡
/1  

2

√𝜋
0 

  

4𝜇1  ⁄ 𝑡  ⁄
1 𝑒

−
𝑥  

𝜇𝑡  ………………………………………………… (3-64) 

The same of  

 

 𝑡
0𝑒𝑟𝑓 .

  

2√𝜇𝑡
/1  

2

√𝜋
0 

  

4𝜇1  ⁄ 𝑡  ⁄
1 𝑒

−
𝑥  

𝜇𝑡  …………………………………….……….……… (3-65) 

 𝑦

 𝑡
 𝑓1 41  𝑒

−
𝜔𝑥 

𝜇 5
2

√𝜋
0

 

4𝜇1  ⁄ 𝑡  ⁄
1 𝑒

−
𝑥 

𝜇𝑡  𝑔1 4𝑒
−

𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 5
2

√𝜋
.

  

4𝜇1  ⁄ 𝑡  ⁄
/ 𝑒

−
𝑥 

 

𝜇𝑡   
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∫ .
 𝑦

 𝑡
/ 𝑑𝑥  

2

√𝜋
𝑓1 .

1

4𝜇1  ⁄ 𝑡  ⁄ /∫41  𝑒
−

𝜔𝑥 

𝜇 54𝑥𝑒
−

𝑥 

𝜇 5𝑑𝑥  𝑔1
2

√𝜋
.

1

4𝜇1  ⁄ 𝑡  ⁄ / 4𝑒
−

𝜔𝑥 

𝜇  

𝑒
−

𝜔𝑙

𝜇 5 𝑥′𝑒
−

𝑥 
 

𝜇𝑡 𝑑𝑥′   

 

∫𝑥𝑒
−

𝑥 

𝜇𝑡𝑑𝑥  . 
1

2
/ 𝑢𝑡 ∫ 𝑒

−
𝑥 

𝜇𝑡 𝑑 . 
  

𝜇𝑡
/  

 . 
𝜇𝑡

2
/ 𝑒

−
𝑥 

𝜇𝑡 ∫4𝑒
−

𝜔𝑥 

𝜇 54𝑥𝑒
−

𝑥 

𝜇𝑡5𝑑𝑥  

. 
𝜇𝑡

2
/ 𝑒

−
𝑥 

𝜇𝑡𝑒
−

𝜔𝑥 

𝜇  
𝜔𝑡

2 √𝜇𝑡𝑒
 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 √
𝜋

2
2

2

√𝜋
∫ 𝑒−𝑢 𝑢 

 

𝑢1
 𝑑𝑢3  . 

𝜇𝑡

2
/ 4𝑒

−
𝑥 +𝜔𝑥 𝑡

𝜇𝑡 5  

𝜔𝑡√𝜋𝜇𝑡

4
𝑒
−

 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 2𝑒𝑟𝑓 .
2𝑙− 

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3  

Where: 

𝑡∗  
 

𝜔
 𝑢1

′   
𝜔𝑡 

2√𝜇𝑡
;  𝑢2

′  
2𝑙−𝜔𝑡 

2√𝜇𝑡
;  

∫
2

√𝜋
𝑓1

1

4𝜇1  ⁄ 𝑡  ⁄ 41  𝑒
−

𝜔𝑥 

𝜇 5𝑥𝑒
−

𝑥 

𝜇𝑡𝑑𝑥 

 {. √𝜇

4√𝜋𝑡
/ 𝑓1 41  𝑒

−
𝜔𝑥 

𝜇 5 𝑒
−

𝑥 

𝜇𝑡  
𝜔

8
𝑓1𝑒

−
 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 2𝑒𝑟𝑓 .
2𝑙− 

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3}  

…………………………………………………………………………………………………………. (3-66) 

and  

∫
2

√𝜋
𝑔1

1

4𝜇1  ⁄ 𝑡  ⁄ 4𝑒
−

𝜔𝑥 

𝜇  𝑒
−

−𝜔𝑙

𝜇 5 𝑥′𝑒
−

𝑥  

𝜇𝑡 𝑑𝑥 

 {. √𝜇

4√𝜋𝑡
/ 𝑓1 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

−𝜔𝑙

𝜇 5𝑒
−

𝑥 

𝜇𝑡  
𝜔

8
𝑓1𝑒

−
 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 2𝑒𝑟𝑓 .
2𝑙+  

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 ′

2√𝜇𝑡
/3}  

……………………………………………………………………………… (3-67) 

From continuity equation: 

 𝑦

 𝑡
  

 𝑢

  
 𝑢

 𝑦

  
    

𝑢(𝑥 𝑡)  . 
1

𝑦
/∫

 𝑦

 𝑡
𝑑𝑥  𝑢0  .

1

𝑦
/∫ . 

 𝑦

 𝑡
/𝑑𝑥   𝑐( 0  0)

1 2⁄ 𝑆0
1 2⁄   

and  ≒  0  𝑓1𝑅1(𝑥 𝑡)  𝑔1𝑅2(𝑥
′ 𝑡)   
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𝑢(𝑥 𝑡)  

1

𝑦
{. √𝜇

4√𝜋𝑡
/ 𝑓1 41  𝑒

−
𝜔𝑥 

𝜇 5 𝑒
−

𝑥 

𝜇𝑡  
𝜔

8
𝑓1𝑒

−
 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 2𝑒𝑟𝑓 .
2𝑙− 

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/3  

.
√𝑢

4√𝜋𝑡
/𝑔1 (𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑡

𝜇 𝑒
𝑥 

 

𝜇  
𝜔

8
𝑔1𝑒

−
 𝜔𝑥−𝜔 𝑡 

 𝜇𝑡 ) 2𝑒𝑟𝑓 .
2𝑙+  

2√𝜇𝑡
/  𝑒𝑟𝑓 .𝑥′ 1

2√𝜇𝑡
/3  

 𝑐( 0  0)
1 2⁄ 𝑆0

1 2⁄ } ……………………………………. (3-68) 

Solutions of Input Sine or Cosine Function from the Simplified Diffusion Equation 

Let’s talk about a little complicated condition with the upstream and downstream 

boundaries as Figure 3.1, if we set,  

𝑓1    .1     
2𝜋𝑡

 1
/ ;  𝑔1   𝑠 .1     

2𝜋𝑡

  
/   

then: 
 y

  
 .𝑓1

  1(  𝑡)

 𝑡
 𝑔1

   ( 
  𝑡)

 𝑡
 𝑅1(𝑥 𝑡)

 𝑓1

 𝑡
 𝑅2(𝑥

′ 𝑡)
 𝑔𝑖

 𝑡
/………….. (3-69) 

We can directly use Eq.(3-63) with  ∫.
 y

  
/  x   (  . (3  66)    . (3  67)),  

and  

𝑅1(𝑥 𝑡)
 𝑓1

 𝑡
 41  𝑒

−
𝜔𝑥 

𝜇 5 01  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/1

2𝜋𝑦𝑝

 1
𝑠𝑖𝑛

2𝜋𝑡

 1
  

𝑅2(𝑥
′ 𝑡)

 𝑔1

 𝑡
 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 5 01  𝑒𝑟𝑓 .
  

2√𝜇𝑡
/1

2𝜋𝑦𝛿

  
𝑠𝑖𝑛 .

2𝜋𝑡

  
/  

𝑒𝑟𝑓 (
𝑥

2√𝜇𝑡
) 𝑑𝑥  

2

√𝜋
2√𝜇𝑡∫:𝑣  

1

3
𝑣3  

𝑣5

5 × 2！
 

𝑣7

7 × 3！
 ⋯;𝑑𝑣 

 
4√𝜇𝑡

√𝜋
∑ <

(−1)𝑛(
𝑥 

 𝜇𝑡
)
𝑛−1

(2𝑛+1)(2𝑛+2)𝑛！
=∞

𝑛=0  ……………………………………………………..…..……. (3-70) 

let 𝑣  
 

2√𝜇𝑡
 , and the example of calculation 𝑅1(𝑥 𝑡) , as Figure 3.2,  if n=0, 

∫ .𝑅1(𝑥 𝑡)
 𝑓1

 𝑡
/  x      
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    .
2𝜋𝑦𝑝

 1
/ 𝑠𝑖𝑛 .

2𝜋𝑡

 1
/>𝑥 :1  √𝜇𝑒

−
𝜔𝑥 

𝜇

𝜔(√𝜋𝑡)
;  𝑒

−
𝜔𝑥 

𝜇
𝜇

𝜔
.1  

𝜇

𝜔√𝜋𝜇𝑡
/  

  

2√𝜋𝜇𝑡
? …. (3-71) 

𝑅2(𝑥
′ 𝑡)

 𝑔1

 𝑡
 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 541  𝑒𝑟𝑓 .
  

2√𝜇𝑡
/5

2𝜋𝑦𝛿

  
𝑠𝑖𝑛 .

2𝜋𝑡

  
/……………. (3-72) 

∫ .𝑅2(𝑥
′ 𝑡)

 𝑔1

 𝑡
/𝑑𝑥   ∫.𝑅2(𝑥

′ 𝑡)
 𝑔1

 𝑡
/𝑑𝑥′ ……………………………………… (3-73) 

if n=0, then 

∫ .𝑅2(𝑥
′ 𝑡)

 𝑔1

 𝑡
/  𝑑𝑥     

. 
2𝜋𝑦𝛿

  
/ . i 

2𝜋𝑡

  
/ 8(𝑥′)2 .

1

2√𝜋𝜇𝑡
/ 𝑒

−
𝜔𝑙

𝜇  (𝑥′) 4
𝜇

𝜔√𝜋𝜇𝑡
𝑒
−

𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 5  

           .
𝜇

𝜔
/ (

𝑒−𝜔𝑥 

𝜇
) .

𝜇

𝜔√𝜋𝜇𝑡
 1/9 ………………………………………………………………. (3-74) 

Therefore the complete solutions for both water depth and flow velocity are,  

  (𝑥 𝑡)   0   𝑝 .1     
2𝜋𝑡

 1
/ 41  𝑒

−
𝜔𝑥 

𝜇 541  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/5   𝑠 .1  

   
2𝜋𝑡

  
/ 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑡

𝜇 541  𝑒𝑟𝑓 .
  

2√𝜇𝑡
/5   ……………………………………….. (3-75.1) 

𝑢 (𝑥 𝑡)  

1

𝑦 
>. √𝜇

4√𝜋𝑡
/  𝑝 .1     

2𝜋𝑡

 1
/ 41  𝑒

−
𝜔𝑥 

𝜇 54𝑒
−

𝑥 

𝜇𝑡5  

𝜔

8
 𝑝 .1     

2𝜋𝑡

 1
/ 4𝑒

−
 𝑙𝜔𝑡−𝜔 𝑡 

 𝜇𝑡 5 0𝑒𝑟𝑓 .
2𝑙− 

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/1  

.
2𝜋𝑦𝑝

 1
/ 𝑠𝑖𝑛 .

2𝜋𝑡

 1
/ <𝑥 :1  √𝜇𝑒

−
𝜔𝑥 

𝜇

𝜔√𝜋𝑡
;  

  

2√𝜋𝜇𝑡
 .

𝜇

𝜔
/ 4𝑒

−
𝜔𝑥 

𝜇 5 .1  
𝜇

𝜔√𝜋𝜇𝑡
/=  

. √𝜇

4√𝜋𝑡
/   .1     

2𝜋𝑡

  
/ 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑡

𝜇 5(𝑒
−

𝑥 
 

𝜇𝑡 )  

𝜔

8
  .1     

2𝜋𝑡

  
/ 4𝑒

−
 𝑙𝜔𝑡−𝜔 𝑡 

 𝜇𝑡 5 0𝑒𝑟𝑓 .
2𝑙+  

2√𝜇𝑡
/  𝑒𝑟𝑓 .

  

2√𝜇𝑡
/1  
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.
2𝜋𝑦𝛿

  
/ 𝑠𝑖𝑛 .

2𝜋𝑡

  
/? 8(𝑥′)2 .

1

2√𝜋𝜇𝑡
/ 𝑒

−
𝜔𝑙

𝜇  (𝑥′) .
𝜇

2√𝜋𝜇𝑡
/ 4𝑒

−
𝜔𝑥 

𝜇  𝑒
−

𝜔𝑙

𝜇 5  

.
𝜇

𝜔
/ 4𝑒

−
𝜔𝑥 

𝜇 5 .
𝜇

𝜔√𝜋𝜇𝑡
 1/9  𝑢0 ……………………………………….. (3-75.2) 

if we only consider the upstream control for  𝑠=0, 

 𝑢(𝑥 𝑡)   0   𝑝 .1     
2𝜋𝑡

 1
/ 41  𝑒

−
𝜔𝑥 

𝜇 5 01  𝑒𝑟𝑓 .
 

2√𝜇𝑡
/1 …………..... (3-76) 

𝑢𝑢(𝑥 𝑡)  

1

𝑦
8. √𝜇

4√𝜋𝑡
/  𝑝 .1     

2𝜋𝑡

 1
/ 41  𝑒

−
𝜔𝑥 

𝜇 54𝑒
−

𝑥 

𝜇𝑡59  

𝜔

8
 𝑝 .1     

2𝜋𝑡

 1
/ 4𝑒

−
 𝑙𝜔𝑡−𝜔 𝑡 

 𝜇𝑡 5 0𝑒𝑟𝑓 .
2𝑙− 

2√𝜇𝑡
/  𝑒𝑟𝑓 .

 

2√𝜇𝑡
/1  

.
2𝜋𝑦𝑝

 1
/ 𝑠𝑖𝑛 .

2𝜋𝑡

 1
/ <𝑥 :1  

√𝑢𝑒
−
𝜔𝑥 

𝜇

𝜔√𝜋𝑡
;  

  

2√𝜋𝜇𝑡
 .

𝜇

𝜔
/4𝑒

−
𝜔𝑥 

𝜇 5 .1  
𝜇

𝜔√𝜋𝜇𝑡
/  

𝑢0= ………………………….……… (3-77) 

 

Figure 3.1 Boundary Conditions Considered in the Study  

Numerical Solution Methods of the St Venant Equations 

One-dimensional differential equations of gradually varied unsteady flow have been used 

in the following from: 
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Figure 3.2 The U/S Effect, R1 (x,t) for ω= 0.788 m/s, μ= 10,000 m3/s 

  

  
  

 𝑍

 𝑡
   ……………………………………………………………………………………….……. (3-78) 

 𝑦

  
 𝑆𝑓  

1

𝑔
0
 

 𝑡
.
 

 
/  

 

 

 

  
.
 

 
/1  𝑆0 …………………………………………………..………. (3-79) 

A solution of the above equations attains when it is possible to determine the values of the 

unknowns y(x ,t) and Q(x , t), delimited by the horizontal line of the initial conditions, at 

t=t0, and the two vertical lines of the boundary conditions at the extreme sections. 

 

1. Direct Difference Methods:  

Direct difference methods are based on replacing the partial derivatives, can be written as: 

𝑄 ≅ 𝑃𝑠𝑃𝑡𝑄𝑙
𝑘+1  (1  𝑃𝑠)𝑃𝑡𝑄𝑙

𝑘+1  𝑃𝑠(1  𝑃𝑠)𝑄𝑙+1
𝑘  (1  𝑃𝑡)(1  𝑃𝑡)𝑄𝑙

𝑘 … (3-80) 

  

  
≅

 𝑡

∆𝑡
(𝑄𝑙−1

𝑘+1  𝑄𝑙
𝑘+1)  

1− 𝑡

∆ 
(𝑄𝑙+1

𝑘+1  𝑄𝑙
𝑘) ……………………………………………….. (3-81) 

  

 𝑡
≅

 𝑆

∆𝑡
(𝑄𝑙−1

𝑘+1  𝑄𝑙+1
𝑘 )  

1− 𝑡

∆ 
(𝑄𝑙

𝑘+1  𝑄𝑙
𝑘) ……………………………………………….. (3-82) 

in which the upper index, k, refers to time and the lower, 𝑙, refers to space. In these 

formulae 𝑃𝑡 and 𝑃𝑆 are suitable weighting coefficient between 0 and 1 with which the 

different variables and their derivatives are averaged in relation to space (𝑃𝑆) and time 

(𝑃𝑡). 

 

2. Stability Analysis of the Adopting Numerical Scheme 

The St Venant equations can be rewritten as following forms: 
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 𝑡
 𝑀𝐽……………………………………………………………………………………………………….. (3-83) 

the two-dimensional vector J and the 2×2 matrix M are then expressed as: 

𝐽  (𝑦
𝑢
) 𝑀  (

−𝑢
𝜕

𝜕𝑥
−

𝑞

𝐵𝑦

−𝑔(
𝜕

𝜕𝑥
+

𝑆 −𝑆𝑓

𝑦
)

−
𝐴

𝐵

𝜕

𝜕𝑥
−

1

𝐵

𝜕𝐴

𝜕𝑥

−𝑢
𝜕

𝜕𝑥

)…………………………………………………….…. (3-84) 

if we simplify the matrix M as the following: 

𝑀1  4
−𝑢

𝜕

𝜕𝑥

−𝑔.
𝜕

𝜕𝑥
/

−
𝐴

𝐵

𝜕

𝜕𝑥

−𝑢
𝜕

𝜕𝑥

5 …………………………………………………………….……………………. (3-85) 

then Eq.(3-82) becomes  

  

 𝑡
 𝑀1𝐽 ……………………………………………………………………………………………..……. (3-86) 

Using the finite difference approximation: 

 (𝑥)
𝑛+1− (𝑥)

𝑛

∆𝑡
 𝐿∗[𝜂∗𝐽( )

𝑛+1  (1  𝜂∗)𝐽( )
𝑛 ] ……………………………………………………….. (3-87) 

𝜂∗ :the time weighting factor, and 𝐿∗ a space differential operator. After some 

transformations, Eq.(3-87) can be written: 

𝐽( )
𝑛+1   𝐽( )

𝑛  …………………………………………………………………………………………….. (3-88) 

Following the Von Neumann: 

𝐽(𝑘)
𝑛+1   𝐽(𝑘)

𝑛  ……………………………………………………………………………………….……. (3-89) 

where G deduced from C, and amplification matrix, and 

| |   h        i   i    f M   ix  ≤ 1  𝑓𝑜𝑟 ∀𝐾 . Assuming Ps=0.5, for simplicity, Eq. 

(3-80), (3-81) and (3-82) can be analyzed if Pt=0.5, Eq.(3-87) and matrix G can be 

obtained: 

  (
𝑏1𝑐 −𝑐1𝑏 
𝑎1𝑏 −𝑎 𝑏1
𝑐1𝑎 −𝑐 𝑎1
𝑎1𝑏 −𝑎 𝑏1

𝑏1𝑑 −𝑏 𝑑1
𝑎1𝑏 −𝑎 𝑏1
𝑑1𝑎1−𝑑 𝑎1
𝑎1𝑏 −𝑎 𝑏1

) ………………………………………………………………………… (3-90) 

𝑎1  1  𝑝𝑡𝑢𝑟;    𝑎2  𝑝𝑡𝑔𝑟; 

𝑏1  𝑝𝑡 𝑟;    𝑏2  1  𝑝𝑡𝑢𝑟; 

𝑐1   1  (1  𝑝𝑡)𝑢𝑟;    𝑐2  (1  𝑝𝑡)𝑔𝑟;  

𝑑1  (1  𝑝𝑡) 𝑟;    𝑑2   1  (1  𝑝𝑡)𝑢𝑟;    

𝑟  𝑖
2∆𝑡

∆ 
𝑡𝑔

∆ 

2
……………………………………………………………………………..……….…… (3-91) 

the two eigen-values of matrix G are: 
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λ  
1+(1−𝑝𝑡)𝑝𝑡𝑟

 (𝑔𝑦−𝑢 )−𝑢𝑟+2𝑝𝑡𝑢𝑟±𝑟√𝑔𝑦

1+𝑝𝑡
 𝑟 (𝑔𝑦−𝑢 )−2𝑝𝑡𝑢𝑟

 ………………………………………….……….. (3-92) 

λ  
1  (1  𝑝𝑡)𝑝𝑡𝑟

2(𝑔  𝑢2)  𝑢𝑟  2𝑝𝑡𝑢𝑟 ± 𝑟√𝑔 

1  𝑝𝑡
2𝑟2(𝑔  𝑢2)  2𝑝𝑡𝑢𝑟

 

(a):  𝑝𝑡    (𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑐𝑒𝑚𝑒): λ  1    (𝑢 ∓ √𝑔 ) 

    |𝜆| < 1  𝑠𝑡𝑎𝑏𝑙𝑒:  |𝜆| ≥ 1  𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

(b):  𝑝𝑡  1 (𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑐𝑒𝑚𝑒): λ  
1

1+r (𝑢∓√𝑔𝑦)
 

    |𝜆| ≤ 1  𝑓𝑜𝑟 𝑎𝑛  𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑖𝑡′𝑠 𝑠𝑡𝑎𝑏𝑙𝑒. 

(c):  𝑝𝑡   .5 (𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝑠𝑐𝑒𝑚𝑒): λ  
1+

r 

 
(𝑔𝑦−𝑢 )±𝑟√𝑔𝑦

1−
r 

 
(𝑔𝑦−𝑢 )+𝑟𝑢

 

                                       ……………………………..…..….. (3-93) 

for which: r is a purely imaginary quantities, it is easy to see that |𝜆|  1 for any value 

of quantity.  

The one-dimensional differential equation of gradually varied unsteady flow including the 

lateral inflows or outflows is: 

  

  
 

  

 𝑡
 𝑞   

𝑆�̅�  
 𝑦

  
 

1

𝑔
0
 

 𝑡
.
 

 
/  

 

 

 

  
.
 

 
/1  𝑆0  

𝑞 .
𝑄

𝐴
−𝑢∗/

𝑔 
  

 𝑞 : lateral inflow per unit length 

𝑈  .
 

 
 𝑢∗/: relative velocity component for lateral inflow  

 𝑢∗: the stream-wise velocity component of the lateral inflow  

The numerical solutions for the completely form of the St Venant Equation are: 

(
𝐵𝑡

𝑘+𝑡+𝐵𝑡+1
𝑘+1

2
) .

∆ 𝑡

∆𝑡
/ {𝑝𝑠(𝑍𝑡+1

𝑘+1  𝑍𝑡+1
𝑘 )  (1  𝑝𝑠)(𝑍𝑡

𝑘+1  𝑍𝑡
𝑘)}  {𝑝𝑡(𝑄𝑡+1

𝑘+1  

𝑄𝑡
𝑘+1)  (1  𝑝𝑡)(𝑄𝑡+1

𝑘  𝑄𝑡
𝑘)}  𝑞  ………………………………………….………… (3-94) 

.
∆ 𝑡

2𝐶𝑐
 / 8

( 𝑡
𝑘+1)

 

(𝑦𝑡
𝑘+1)( 𝑡

𝑘+1)
  

( 𝑡+1
𝑘+1)

 

(𝑦𝑡+1
𝑘+1)( 𝑡+1

𝑘+1)
 9  𝑆0∆𝑥  {𝑝𝑡( 𝑡+1

𝑘+1   𝑡
𝑘+1)  (1  𝑝𝑡)( 𝑡+1

𝑘  

 𝑡
𝑘)}  

∆ 𝑡

𝑔∆𝑡
{𝑝𝑠 (

 𝑡+1
𝑘+1

𝑦𝑡+1
𝑘+1𝐵𝑡+1

𝑘+1  
 𝑡+1

𝑘

𝑦𝑡+1
𝑘 𝐵𝑡+1

𝑘 )  (1  𝑝𝑠) (
 𝑡

𝑘+1

𝑦𝑡
𝑘+1𝐵𝑡

𝑘+1  
 𝑡

𝑘

𝑦𝑡
𝑘𝐵𝑡

𝑘)}  
1

2𝑔
{

 𝑡+1
𝑘+1

𝑦𝑡+1
𝑘+1𝐵𝑡+1

𝑘+1  

 𝑡
𝑘+1

𝑦𝑡
𝑘+1𝐵𝑡

𝑘+1 [𝑝𝑡 (
 𝑡+1

𝑘+1

𝑦𝑡+1
𝑘+1𝐵𝑡+1

𝑘+1  
 𝑡

𝑘+1

𝑦𝑡
𝑘+1𝐵𝑡

𝑘+1)]  (1  𝑝𝑡) (
 𝑡+1

𝑘

𝑦𝑡+1
𝑘 𝐵𝑡+1

𝑘  
 𝑡

𝑘

𝑦𝑡
𝑘𝐵𝑡

𝑘)}  
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𝑞 4
𝑄𝑡+1
𝑘+1

𝑦𝑡+1
𝑘+1𝐵𝑡+1

𝑘+1−
𝑄𝑡
𝑘+1

𝑦𝑡
𝑘+1𝐵𝑡

𝑘+1−2𝑢∗5

𝑔(𝑦𝑡+1
𝑘+1𝐵𝑡+1

𝑘+1+𝑦𝑡
𝑘+1𝐵𝑡

𝑘+1)
…………………………………………………………………………. (3-95) 

if there are no lateral inflow and B=constant, then Eqs.(3-94) and (3-95) become to: 

∆ 𝑡

∆𝑡
{𝑝𝑠(𝑍𝑡+1

𝑘+1 𝑍𝑡+1
𝑘 )  (1  𝑝𝑠)(𝑍𝑡

𝑘+1 𝑍𝑡
𝑘)}  

{𝑝𝑡(𝑞𝑡+1
𝑘+1 𝑞𝑡

𝑘+1)  (1  𝑝𝑡)(𝑞𝑡+1
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  ………………………………………………………………….…………… (3-96) 
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𝑘)} …………………………………………………………………………….. (3-97) 

COMPUTATION RESULTS AND COMPARISONS 

COMPUTATION RESULTS 

 

A. The properties of the Discharge Parameter,    of the Input (upstream control) 

For the following set of equations:  
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for x=0  
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𝑞(𝑂 𝑡)−𝑞 
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where  
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Now we can group the dimensionless parameters: 
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the computation results of Eqs. (4-8) and (4-9) are shown in Figures 4.1 and 4.2 
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Fig. 4.1 Relationship between the Analytical Results of the Dimensionless Upstream 

Input Discharge and Dimensionless Period for Different  and Periods 15 days 

if x=0, then: π3=0; we can obtain that  

𝑦(𝑂 𝑡)−𝑦 

𝑦𝑝
 .1  𝑐𝑜𝑠
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1

𝜋1
/3 with 𝑒𝑥𝑝 .

𝜋 
 −4𝜋 

4𝜋1
 / ≤ 1 .. (4-10) 

In order to determine the limit time of upstream to downstream effect, 

if 𝜋1 ≤ 2. , when 𝜋2 ⇢ 4. , then 𝛼𝑞 ≒  .14  

if 𝜋1 > 2. ,when 𝜋2 ⇢ 4. , then 𝛼𝑞  𝛼𝑚𝑖𝑛 ……………………………………… (4-11) 

the computation results of Eq. (4-10) and (4-9) are presented in Figures 4.3  
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Fig. 4.2 Relationship between the Analytical Results of the Dimensionless Upstream  

Input Discharge and Dimensionless Period for Different  and Period 60 days 



International Journal of Engineering and Advanced Technology Studies 

Vol.4, No.5, pp.13-72, November 2016 

    Published by European Centre for Research Training and Development UK (www.eajournals.org) 

53 
 
ISSN 2053¬5783(Print), ISSN 2053¬5791(online) 
 
 

 

Fig. 4.3 Relationship between the Input Station Discharge Coefficient q, and  

Non-dimensional Parameter,  1( 
√μ 

 
)  and  2(   / ) 

B. The properties of the Amplitude Parameter,  , of the Downstream Control 
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The result between𝜇𝜔
∗∗ and 𝑌∗∗ could be expressed as following Figure 4.4, 
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Fig. 4.4 Relationship between the Dimensionless Amplitude, Y**, and  

Dimensionless dispersion Parameter, μ** 

 

C. Results of Relationship between the Analytical Results of Depth or Velocity with 

given Bed Slope, Dispersion Parameter and Time Period 

The calculation results with Eqs. (3-76) and (3-77) with different bed slopes, dispersion 

parameter and time periods are presented as the following Figures 4.5 and 4.6.  

 

D. Results of Rating Curves for the Analytical Results between Depth, velocity and 

the Discharge per Unit width with different Bed Slope, Dispersion Parameter and 

Time Period 

The calculations results of combining Eqs. (3-76) and (3-77) for the given with bed slopes, 

dispersion parameter, and time periods are expressed in Figures 4.7 and 4.8. 
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Fig. 4.5 Relationship between the Analytical Results of Depth, Velocity and Time  

for = 241,500 m2/s Periods 15 days and S0=10-5 

E. Results of Rating Curves for the Analytical Results between the Dimensionless 

Depth and the Dimensionless Discharge for different Bed Slope, Dispersion 

Parameter and Time Period  

The calculations results of combining Eqs. (4-8) and (4-9) for the given bed slopes, 

diffusion coefficient, and time periods are expressed in Figures 4.9 and 4.14. Obviously 

seeing, the influences of different bed slope, dispersion parameter and time period on the 
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shape of the rating curves between dimensionless depth and dimensionless discharge are 

really important.  

 

Fig. 4.6 Relationship between the Analytical Results of Depth, Velocity and Time for = 
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10,000 m2/s Periods 15 days and S0=1.5510-3 

 

Fig. 4.7 Rating Curves of the Analytical Results between Depth, Velocity and 

Discharge per Unit Width for = 241,500 m2/s Periods 15 days and S0=10-5 
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F. Results from Hydrodynamic, Analytical Model: Water Level and Horizontal Velocity 

at a Given Station with Different Fresh Water Discharges from Upstream and with 

Varied Downstream Water Level 

 

Fig. 4.8 Rating Curves of the Analytical Results between Depth, Velocity and Discharge 

per Unit width for = 10,000 m2/s Periods 15 days and S0=1.5510-3 
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Fig. 4.9 Rating Curves of the Analytical Results between the Dimensionless Depth and 

the Dimensionless Discharge for = 241,500 m2/s Periods 15 days and S0=10-5 
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Fig. 4.10 Rating Curves of the Analytical Results between the Dimensionless Depth and 

the Dimension less Discharge for = 241,500 m2/s Periods 30 days and S0=10-5 

 

Fig. 4.11 Rating Curves for the Analytical Results between the Dimensionless Depth  

and the Dimensionless Discharge for = 241,500 m2/s Periods 60 days and S0=10-5 
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Fig. 4.12 Rating Curves of the Analytical Results between the Dimensionless Depth and 

the Dimensionless Discharge for = 10,000 m2/s Periods 15 days and S0=1.5510-3 

 

Fig. 4.13 Rating Curves of the Analytical Results between the Dimensionless Depth and 

the Dimensionless Discharge for = 10,000 m2/s Periods 30 days and S0=1.5510-3 
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Fig. 4.14 Rating Curves of the Analytical Results between the Dimensionless Depth and 

the Dimensionless Discharge for = 10,000 m2/s Periods 60 days and S0=1.5510-3 

 
Fig. 4.15 Results from Hydrodynamic, Analytical Model: Water Depth and Horizontal 

          Velocity at Station 24 Km with Different Fresh Water Discharges 
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Comparisons the Results between Analytical and Numerical Modellings 

A. The Depth-Time for a given station and Time Period with Different Bed Slopes and 

Weighting Factors on the upstream discharge with a given downstream water level 

The comparisons are given in Figures 4.16 and 4.17. 

 

Fig. 4.16 Comparison of Analytical and Numerical Results at the Station X=60km, 

S0=10-5, T=60 days Pt=0.70 and Pt=0.50 

 

Fig. 4.17 Comparison of Analytical and Numerical Results at the X=60km,  

S0=10-3, T=60 days Pt=0.70 and Pt=0.50 
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B. The Discharge-Time for a given station and Time Period with Different Bed 

Slopes and Weighting Factors on the upstream discharge with a given downstream 

water level control 

The comparing results are presented in Figures 4.18 and 4.19. 

 

Fig. 4.18 Comparison of the Discharge between the Analytical and Numerical Results 

  at X=60km, for different time Weighting Factor and S0=10-5 

 

Fig. 4.19 Comparison of the Discharge between the Analytical and Numerical Results  

at X=60km, S0=1.5510-3 for different Weighting Factor   

C. Comparison of Analytical and Numerical Results between Depth and Discharge 

for a given station, Time Period and Weighting Factor with Different Bed Slopes on 

the upstream discharge with a given downstream water level 

The combinations of the analytical and numerical results the given station X=60 km at the 
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same period T= 60 days, and same weighting factor, 0.7, with different bed slope, are 

given in Figures 4.20 and 4.21. 

 

D. Comparison of Analytical and Numerical Results (Pt = 0.7) between Water Depth 

and Horizontal Velocity at a Given Station with Different Upstream Fresh Water 

Discharges and Varied Downstream Water Depth 

The comparisons of Water Depth and Horizontal Velocity with Time between the 

analytical and numerical results, weighting factor, 0.7, for the given station X=60 km 

with Different Upstream Fresh Water Discharges and Varied Downstream Water Depth 

are given in Figures 4.22. 

 

Fig. 4.20 Comparison of Analytical and Numerical Results between Depth and Discharge 

at X=60km, S0=10-5, T=60 days, Weighting Factor, Pt=0.70  

 

Fig. 4.21 Comparison of Analytical and Numerical Results between Depth and Discharge 
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at X=60km, S0=1.5510-3, T=60 days. Weighting Factor, Pt=0.70 

 

 

Fig. 4.22 Comparisons of Analytical and Numerical (Pt = 0.7) Results: Water Depth and 

Horizontal Velocity at Station 60Km with Different Upstream Fresh Water Discharges 

and Varied Downstream Water Depth 
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DISCUSSION AND CONCLUSIONS 

 

Discussion 

The expression R1 (x, t) represents the upstream effect. It is dimensionless and is a 

function of ω, μ, t and x only, where ωand μ are functions of stage hydrograph. In 

other words, it represents the fluctuation in depth at a given station or location x 

corresponding to the fluctuation represented by a series unit rise or a sine or cosine 

hydrograph in the depth at the upstream end x = 0, when there is no lateral inflow and 

when uniform condition exists at the downstream end. For a given ω and μ, R1 (t) at 

any station x, tends to be a constant with t increasing. The same for R2 (x', t), for a given  

ω and μ, R2 (t) at any station x' (= 1-x) , tends to be a constant as t increases. And R2 (x', 

t) represents the effect from the downstream end of the reach. It represents the fluctuation 

in depth at a given location x' corresponding to a fluctuation represented a hydrograph in 

depth, when there exists uniform condition at the upstream end, and when there is no 

lateral inflow. If we only consider the upstream flood hydrograph then  𝑠 can be set 

equal to zero. The same for  𝑝 equal to zero with downstream tide control only. 

By Janes formula (RATKY, et al 2001) , 
Q

Q 
 √1  

1

S 

 y

 x
  or 

 

  
 √1  

1

𝑆 𝜔

 𝑦

 𝑡
  the 

rating curve of q - y ( ZHENG, et al 2012) can be constructed by the two methods, 

however there are some differences: 

(1) The dispersion parameter, μ, is not considered in Janes formula. 

(2) The time of peak flow for each station x, will occur at the same time which is not 

reasonable. The time of peak flow for each different location must be shifting due to 

the wave propagation or kinematic wave velocity, and the property can be expressed 

by this analytical method. 

(3) By using Janes formula, the rating curves of q - y for different locations will 

complete a loop. It looks like peacock tail feather. In fact, when we consider ω and 

μ, the rating curves will shift and they will not complete an enveloped loop, and the 

results of the rating curves look like the spreading fingers. 
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(4) The exact peak flow time can be solved by tp= T/2 + x/ω with tp, time of peak flow 

for station x and T, period of flood wave. The simplified form of diffusion equation in 

which dispersion parameter is function of bed slope, mean velocity, water depth, and 

Chezy roughness coefficient. It is obvious that μ increases with slope decreasing and ω

decreasing for a given water depth and Chezy roughness coefficient; on the other hand, 

when bed slope increases, then kinematic wave velocity increases, and they should result 

in the decreasing ofμ. After getting the exact peak flow time and substituting it, the exact 

peak flow discharge and depth can be obtained. 

(5) When slope increases, then q = qo by using Janes formula, it is also not reasonable. 

Even for a steep slope, the discharge will not be the same. By using the analytical method 

of this study, we can find that it is more beneficial than the Janes formula. 

(6) Certain procedure for the channel schematization of this study could be developed a 

little for the flood routing of the irregular channels in the natural river. And further 

modifications might have to be carried out if multiple linearization is to be replaced single 

linearization. 

(7) Application of the models to the single flood have been studied. The ability of the 

model to route flood sequences is of prime importance in river and reservoir regulation 

scheme as well as in flood peak production of the discharge calculations. 

(8) For numerical model, the time increment, in the approximation of the input 

hydrographs (RODNEY, 2001) by a series of rectangles for regular flood waves or 

irregular or discrete flood waves, must be short enough so that this approximation does 

not cause significant errors. The program can be modified to include a means of altering 

the time increment to suit the requirements of the problem. 

(9) Basing on certain procedure in mathematical derivation of solutions from wave 

hydrodynamic equations, an appropriate model representing the propagation of tidal 

waves, or say downstream control, for the irregular channels should be developed, taking 

into account the changing of width of the so that the analytical models will become a 

much more powerful tools to do researches on estuarine problems, such as: 

   (a) Unsteady salinity intrusion in estuaries of variable cross-section.  

(b) Suspended sediment modelling in estuaries with unsteady flow characteristics. 

(c) Pollution in estuary with complicated pattern of waste load from the factories. 
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CONCLUSIONS 

 

(A) Upstream Control (Flood Wave) 

1. The model developed provided a simple, rapid and accurate means of tracing the 

course of flood wave resulting from the variation in the stage at upstream, and even 

though at downstream the model first computed the coefficient of upstream effect R1 (x, t) 

and downstream effect R2 (x', t) . These coefficients were then multiplied by the 

representative hydrograph ordinates and the simple addition of these lead to the overall 

effect. And R1 (x, t) or R2 (x', t) approached to a constant as time increased to t is greater 

or equal to 4l/ω. 

2. For a given bed slope, So, Chezy's roughness coefficient, CC, and normal depth, yo, 

thenω and μ could be calculated. The steeper the bed slope, the larger ω,the kinematic 

wave velocity, and the smaller the dispersion parameter, μ. If the channel could not be 

schematized to have only one value of bed slope, and Chezy's roughness coefficient, then 

the calibration was required for both ω and μ. 

3. The water depth, y, would be distorted due to the complementary error function, 

which was included in R1 (x, t) or R2 (x', t). For the sameμ at the same dimensionless 

period t/T, the shorter the period, the more the distortion of the depth. Meanwhile, for the 

same t, the steeper the bed slope, the more the distortion of the depth. 

4. There are several new interesting phenomena for the rating curves : 

(1) The loop was wider for the milder bed slope and it was narrow for the steeper bed 

slope. Even though for the same bed slope, the shorter the flood period, the bigger the 

rating curve. 

(2) The peak flow time at the different locations would be shifted a little due to the 

kinematic wave velocity, and when the dispersion parameter was considered, the rating 

curves for different stations would spread as the fingers, not complete a loop like peacock 

tail feather. 

(3) The dispersion parameter,μ, would be equal to zero for the supercritical flow; it 

existed only for subcritical flow. The rating curves would be below the line of y∗= 𝑞∗ for 
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the subcritical flow and they would be above the line of y∗=q* when the flow condition 

was supercritical flow. 

(B) Downstream Control (Tide) 

   The majority of this present study for tide involved with the mathematical derivation 

of solutions from wave hydrodynamic equations. The tidal mathematical models 

describing the propagation of tides into a shallow river were appropriately developed by 

considering the effect of freshwater discharge, interaction. The general conclusion could 

be drawn: 

(1) With the inclusion of convective and nonlinear terms in the governing equations, the 

equations were then solved by introducing an approximation method of perturbation. The 

linear friction which was achieved by linearizing the friction term in the unsteady flow 

equations. 

  (2) The assumed solutions were developed by including the effect of freshwater 

discharge velocity in consistent with the solutions from straight-forward mathematical 

derivation. The relations of dimensionless parameters of damped tides were achieved. It 

was seen from the expressions that propagation and attenuation were affected evidently 

by freshwater discharge. The discharge caused the friction of the river and mean water 

level to increase considerably which resulted in more energy dissipation. 

  (3) The interaction of flood wave and tide could be directly obtained or it also could  

be done by combining Eqs. (3-75.1) and (3-75.2). 

(C) Numerical Solutions 

  (1) Comparison between the analytical model and the finite difference model with an 

 implicit scheme showed beyond doubt that the analytical model could be applied in the  

river reach where there was moderate backwater effect. Even though the time weighting  

factor pt = 0. 5 and 0. 7, the results were quite good. 

(2) By using the depths as the boundary conditions, the results of the depths for the other 

 stations were in good agreement, even if pt = 0. 7; for pt = 0.5, there was a small 

deviation  

of the results of the discharge. Because the difference of the results of the discharge was 

small for pt- 0.5, if we took the smaller time interval,Δt, then the fluctuation was reduced, 

and the smooth results could be obtained. 

(D) Application of Analytical Model 

(1) The analytical results and numerical results are in good agreement, not only for the 

 weighting factor, pt = 0.7 but also for pt = 0.5. The results of discharge for pt = 0.5 from  
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numerical solution by using the depth being a boundary condition is a little fluctuation,  

but when the time interval reducing, the fluctuation is also reducing. The results for the  

numerical solution for pt = 0.7 and pt = 0.5 are practically the same, the percentage error 

 of the depth and discharge between the analytical and numerical results is less than 5%. 

  (2) This analytical model could be used without any sophisticated computing machine. 

 In fact, a simple desk calculator and a table of error function were sufficient in carrying 

out the computation. 
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