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ABSTRACT: The purpose of this paper was to find out the lightlike parallel vector field and 

Einstein’s equation of gravity, specifically a partial solution. The pseudo –Riemannian 

manifold and gravitational field through Einstein’s equation have been used , the curvature 

tensor in 4 dimensional space and the  Christoffel symbols in 3- dimensional are equal to 

Christoffel symbols in 4- dimensional space  by using contraction properties of  the tensors 

and as the results  the existence of lightlike parallel vector field implies that the space time is 

flat, this leads us to non-existence of  the lightlike parallel vector field in a non-trivial 

gravitational field.  
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INTRODUCTION 

The present  work deals with the existence of lightlike parallel vector fields on Riemannian 

manifolds describing gravitational fields.  In Euclidian geometry, we know what means 

parallel displacement . The concept of affine connection allows the definition of an 

infinitesimal parallel displacement of a vector at a point p of a manifold M. But generally, 

the process is not integral, this meaning that  parallel displacement   of a vector 𝑣𝑝⃗⃗⃗⃗  at a point 

p along two different curves joining p to the same point 𝑝′ does not yield necessary the 

same vector 𝑣𝑝⃗⃗⃗⃗  at 𝑝′. If there exists at p some vector 𝑣𝑝⃗⃗⃗⃗ , whose the displacement vector at 

any point 𝑝′ ∈ 𝑀.does not depend on the particular smooth curve joining p to 𝑝′, the 

process yields a vector field on the manifold M which we call a parallel vector field. 

Through previous research on the subject the existence of nontrivial 4 dimensional 

Riemannian manifolds, admitting parallel vector fields are easily proved. The present paper 

investigates the existence of lightlike parallel vector fields in a gravitational field governed 

by Einstein’s  equations of general relativity. 

Elements of differential geometry. 

Differential geometry is a mathematical displine that uses the methods of differential and 

integral calculus to study problem in geometry. In mathematics specifically differential 

geometry, the infinitesimal geometry concerned more generally with geometric structure on 

differential take manifold, it is closely related with differential topology and with the 

geometric aspects of the theory of differential equation (A .Mishechenko and et al. 1980). 

Vector field on a differentiable manifold 

A fundamental ingredient  in formulating , the notion of differential manifolds is that of 

homeomorphism. 
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Homeomorphism 

Let X and Y be two topological spaces and let h be a map: h→ 𝑋 → 𝑌. If h is one- to –one 

and if both h and its inverse h are continuous, then, we say that h is a homeomorphism (A 

.Mishechenko and et al. 1980). 

A topological manifold 

A topological manifold is a second countable, Hausdorff space  which is locally 

homeomorphism to Euclidean space, by a collection (called Atlas) of homeomorphisms 

called chart. The composition of one chart with the inverse of another chart is a function 

called a transition map, and defines a homeomorphisms of an open subset of Euclidean 

space onto another open subset of Euclidean space (Wolfgang Kühnel ,2002). 

Atlas and open charts 

In generally to know a differentiable manifold, we have to know the intuitive idea of an 

atlas of open charts suitable reformulated in mathematical terms, provide the very definition 

of a differentiable manifold. 

Atlas 

An atlas on a topological space X is a collection of pairs {(𝑈𝛼 , 𝜑𝛼)} called charts, where the 

𝑈𝛼 are open sets which cover X, and for each index 𝛼, 𝜑𝛼: 𝑈𝛼 → ℝ𝑛 is homeomorphism of 

𝑈𝛼 onto an open subset of n- dimensional Euclidean space. The transition maps of the atlas 

are the functions 𝜙𝛼𝛽 = 𝜙𝛼ο𝜙𝛽
−1/𝜙𝛽(𝑈𝛼 ∩ 𝑈𝛼) → 𝜙𝛽(𝑈𝛼 ∩

𝑈𝛼)(do Carmo,Manfredo Perdigao, 1994) . 

Differentiable structure 

Let M be a topological hausdorff space, A differentiable structure of dimension on M is an 

atlas X= 𝑢𝛼 ∈ (𝑢𝛼, 𝑢𝛼) open charts (𝑢𝛼, 𝑢𝛽), where 𝛼 ∈ 𝑥,  𝑢𝛼 ∈

𝑀  (Kreyszig, Erwin, 1991) . 

An open charts 

Let now M be a topological space, an open charts of M is a pair (U,𝜑), where U ∁𝑀 is an 

open subset of M and 𝜑 is a homeomorphism of U on an open subset ℝ𝑛  (do Carmo, 

Manfredo Perdigao, 1994) 

Differentiable manifold 

Differentiable manifold is a topological manifold equipped with an atlas whose transition  

maps are all differentiable.  More generally a 𝑐𝑘- manifold is a topological manifold with an 

atlas whose transition maps are all k-times continuously differentiable (do Carmo, 

Manfredo Perdigao 1994) 

A smooth manifold 

A smooth manifold or 𝑐∞- manifold is a differentiable for which all the transitions maps are 

smooth. That is the derivatives of all orders exist, so  it is a 𝑐𝑘 manifold for all k. 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.2, pp.14-22, April 2017 

Published by European Centre for Research Training and Development UK (www.eajournals.org) 

16 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

Covariant differentiation and parallel displacement 

In mathematics, the covariant derivative is a way of specifying a derivative along tangent 

vectors of a manifold. Alternatively , the covariant derivative is a way of introducing and 

working with a connection with the approach  given by a principal connection on the frame 

bundle. 

Equation of parallel displacement 

Comparison of tangent vectors at different points on a manifold is generally not a well 

defined process. An affine connection provides one way to remedy this using the notion of 

parallel transport, and indeed this can be used to give a definition of an affine connection. 

Let M be a manifold with an affine connection ∇, then a vector field X is said to be parallel 

if ∇𝑋 = 0, in the sense that for any vector field Y, ∇Y = 0, intuitively speaking parallel 

vectors have all their derivatives equal to zero and are therefore in some sense constant. 

The parallel displacement is performed a long curve 𝛾: [𝑎, 𝑏] → 𝑀𝑛. 

Let 𝑝 ∈ 𝑀𝑛𝑎𝑛𝑑 𝑄 ∈ 𝑀𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑀𝑛 is a smooth manifold p and Q are connected by a curve 

𝛾. Let us assume that 𝛾 ∈ 𝑀𝑛, is provided with an affine connection ∇= {∇𝑘} where o≤
𝑘 ≤ 1, covariant derivative of a tensor field 𝑇 = 𝑇𝛽

𝛼 a long 𝛾, ∇j= ξk∇𝑘, we say that the 

tensor field T is parallel along the curve 𝛾 𝑖𝑓 ∇j(T) ≡ 0, along 𝛾. Let 𝛾(𝑡) ⊆ 𝑀𝑛 be a 

smooth curve and let a field T={𝑇𝑖} be  given along this curve . This is said to be parallel 

along 𝛾(𝑡) relative to the connection ∇𝛾(𝑡)̇ = 0. 

The equation 
𝑑𝑇𝑖

𝑑𝑡
+ Γ𝑝𝑘

𝑖 𝑑𝑥𝑘

𝑑𝑡
𝑇𝑝 = 0, is called the equation of parallel displacement along a 

curve 𝛾(𝑡), for different curves 𝛾 we can obtain different equations of parallel displacement. 

Covariant differentiation 

Covariant ∇ is said to be defined on a smooth manifold 𝑀𝑛 if for each smooth atlas there is 

a given in each chart a set of smooth functions Γ𝛼𝛽
′𝑖 = ∑

𝜕𝑥𝑖

𝜕𝑦𝛼
𝑖,𝑗,𝑘

𝜕𝑥𝑗

𝜕𝑦𝛽

𝜕𝑥𝛾

𝜕𝑦𝑘
Γ𝑖𝑗

𝑘 + ∑
𝜕2𝑥𝑗

𝜕𝑦𝛼
𝑗

𝜕𝑥𝑗

𝜕𝑦𝛽

𝜕𝑦𝛾

𝜕𝑦𝑗
,                                

(1) then ∇ is given by the formula 

(∇T)j1….,jp,α

i1….,ik =
∂

∂xα (T)j1….,jp,

i1….,ik=q
+ ∑ (T)j1….,jp,

i1….,is=q
−k

s=1 ∑ (T)j1….,js=q,…,jp

i1….,ikp
s=1 Γ𝑗𝑠𝛼

𝑞       (2), covariant 

differentiation intuitively, by a parallel vector field, we mean a vector field with the propert 

that the vectors at different points are parallel . 

Riemannian Manifold 

In Riemannian  geometry, a Riemannian manifold (M, g) with Riemannian metric g is real 

differentiable manifold M in which each tangent space is equipped  with inner product g in 

a manner which varies smoothly from point to point. The metric g is a positive definite 

metric tensor. 

Tensor analysis on a Riemannian manifold 

In the mathematical field of differential geometry, a metric tensor is a type of function 

defined on a manifold which takes as input a pair of tangent vectors v and w and produces a 
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real number g (v, w) in a way that generalizes many of the familiar properties of  the dot 

product of vectors in Euclidean space. Tensor analysis is very important for mathematicians 

and physics (Theodore Frankel , 2004). 

The metric tensor 

The metric tensor is a central object in general relativity that describes the local geometry of 

space-time (as a result of solving the Einstein  field equation).  The metric is a symmetric 

tensor and is an important mathematical tool. As well as being used to raise and lower 

tensor indices, it also generates the connections which are used to construct the geodesic 

equations of motion and the Riemann curvature tensor. 

The Riemann  curvature tensor 

A useful way of measuring the curvature of a manifold is with an object called the Riemann 

curvature Tensor.  This tensor measures curvature by use of an affine connection by 

considering the effect of parallel transporting a vector between two points along two curves. 

The discrepancy between the results of these two parallel transport routes is essentially 

quantified by the Riemann tensor.  The curvature of Riemannian manifold can be described 

in various ways , the most standard one is the curvature tensor given in terms of a LEVI-

CIVITA connection or covariant differentiation ∇ and Lie bracket [*,*] by the following 

formula : 

R(u, v)w=∇𝑢∇𝑣𝑤 − ∇𝑣∇𝑣𝑤 − ∇[𝑢,𝑣]𝑤, here R(u,v) is a linear transformation of the tangent 

space of the manifold , it is linear in each argument. If 𝑢 =
𝜕

𝜕𝑥𝑖
, and 𝑣 =

𝜕

𝜕𝑥𝑗
 are coordinate 

vector fields. Then ∇[𝑢,𝑣]=0 and therefore , the formula simplifies to 

 R(u,v)w=∇𝑢∇𝑣𝑤 − ∇𝑣∇𝑣𝑤  (  Gray, Alfred, 1998). 

Symmetries and identities 

The curvature tensor has the following symmetries 

1. R(u, v) = −R(u, v) 

2. 〈R(u, v)w, z〉 = 〈−R(u, v)z, w〉, where 〈 〉 are scalar product 

3. 𝑅(𝑢, 𝑣)𝑤 + 𝑅(𝑢,𝑤)𝑢 + 𝑅(𝑤, 𝑢)𝑣=0 

The last identity was discovered by Ricci, but is often called the first Bianchi identity, just 

because it looks similar to Bianchi identity. Let  (M, g) be a Riemannian manifold, then an 

affine connection ∇ is called a Levi- Civita connection if : it preserves the metric for any 

vector field X,Y,Z we have X(g(Y,Z)) ≡g(∇𝑥𝑌, 𝑍)+ g(𝑌, ∇𝑥𝑍) where X(g(Y,Z))denotes the 

derivative of the function g(Y,Z)along  the vector field X. 

The Levi- Civita Connection 

If (M, g) is a Riemannian manifold then there is a unique affine connection ∇   on M with 

the following properties: the connection is torsion free ∇ is zero; the second condition 

means that the connection is a metric connection in the sense that the Riemannian metric g 

is parallel : ∇g=0. In local coordinates the components of the connection form are called 
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Christoffel symbols because of uniqueness of the Levi-Civita Connection, there is a formula 

for these components in terms of the components of g  ( Kreyszig, Erwin , 1991). 

Properties of curvature tensor 

First the curvature tensor is antisymmetric on index 1 and m 𝑅𝑘𝑙𝑚
𝑖 = −𝑅𝑘𝑙𝑚

𝑖 ,                                                                         

(3) 

we verify the identities 𝑅𝑘𝑙𝑚
𝑖 + 𝑅𝑚𝑘𝑙

𝑖 +𝑅𝑙𝑚𝑘
𝑖 = 0, the mixt tensor 𝑅𝑘𝑙𝑚

𝑖  is used in covariant 

components 𝑅𝑖𝑘𝑙𝑚
𝑖 = 𝑔𝑖𝑛𝑅𝑘𝑙𝑚

𝑛                                                                        (4) 

By simple transformations we obtain 

𝑅𝑖𝑘𝑙𝑚
𝑖 =

1

2
(

𝜕2𝑔𝑖𝑚

𝜕𝑥𝑘𝜕𝑥𝑙
+

𝜕2𝑔𝑘𝑙

𝜕𝑥𝑖𝜕𝑥𝑚
−

𝜕2𝑔𝑖𝑙

𝜕𝑥𝑘𝜕𝑥𝑚
−

𝜕2𝑔𝑘𝑚

𝜕𝑥𝑖𝜕𝑥𝑙
+ 𝑔𝑛𝑝(Γ𝑘𝑙

𝑛Γ𝑖𝑚
𝑝 − Γ𝑘𝑚

𝑛 Γ𝑖𝑙
𝑝
)     (5) 

In calculations the last term of (5) it can be written as 

𝑔𝑛𝑝(Γ𝑛,𝑘𝑙Γ𝑝,𝑖𝑚 − Γ𝑛,𝑘𝑚Γ𝑝,𝑖𝑙) that  why we have the  following properties : 

R𝑖𝑘𝑙𝑚 = −R𝑘𝑖𝑙𝑚 = −R𝑖𝑘𝑙𝑚, R𝑖𝑘𝑙𝑚 = R𝑙𝑚𝑖𝑘, we define the Ricci Tensor as 

follows: R𝑖𝑘 = 𝑔𝑙𝑚R𝑙𝑖𝑚𝑘 = 𝑅𝑖𝑘𝑙
𝑙 , it is easy to check that 

R𝑖𝑘 =
𝜕Γ𝑖𝑘

𝑙

𝜕𝑥𝑙 −
𝜕Γ𝑖𝑙

𝑙

𝜕𝑥𝑘 + Γ𝑖𝑘
𝑙 Γ𝑙𝑚

𝑚 − Γ𝑖𝑙
𝑚Γ𝑘𝑙

𝑙                                                               

(6) 

Where Γ𝑗𝑘
𝑖 =

    𝑔𝑖𝛼

2
(
𝜕𝑔𝑘𝛼

𝜕𝑥𝑗 +
𝜕𝑔𝑗𝛼

𝜕𝑥𝑘 −
𝜕𝑔𝑖𝑘

𝜕𝑥𝛼                                                           

(7) 

The    Γ𝑗𝑘
𝑖   are called the Christoffel symbols, 

this tensor is symmetric: R𝑖𝑘 = R𝑘𝑖  , hence we obtain in contracting    

R𝑖𝑘  , we obtain 

R=  gikR𝑖𝑘=  gilgkmR𝑖𝑘𝑙𝑚                                                                       (8)    

which is the scalar curvature of the manifolds. 

Contravariant vector and covariant vector 

Contravariant vector t is the vector of quantities 𝑇𝑖    in which its coordinates change as the 

differential likes     𝑇𝑖    =
𝜕𝑥𝑖

𝜕𝑥′𝑘 𝑇′𝑘 

Covariant vector is the vector of quantities 𝑇𝑖  , which are transformed in the coordinates  

change like the derivative of scalar and it is written 𝑇𝑖 = 
𝜕𝑥𝑖

𝜕𝑥′𝑘 𝑇𝑘
′  . 

Einstein’s equations of Gravity 

The basis of Einstein’s general relativity is the idea that the space the space time is a 

pseudo- Riemannian manifold whose metrics tensor itself is a dynamical object. It can be 

shown from the principal of least action that Einstein’s equation of gravity read 𝑅𝑖𝑗 −
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1

2
𝑅𝑅𝑖𝑗 = 𝐾𝑇𝑖𝑗,     (9) where 𝑅𝑖𝑗 is the Ricci Tensor , 𝑇𝑖𝑗is Energy momentum tensor , K is 

Einstein constant gravitation, R is a scalar curvature tensor. 

Gravitation fields in classical physics 

At the base of the classical physics is the notion that a body’s motion can be described as a 

combination of free motion, and deviations from its free motion such deviation are caused 

by external forces acting on a body in coordance with Newton’s second law of motion 

which state that the net forces acting on a body is equal to that body’s mass multiplied by its 

acceleration. According to Newton’s law of gravity and independent verified by 

experiments there is a universality of free fall, known as weak equivalence principle or the 

universal equality of inertial and passive gravitational mass. The trajectory of a test body in 

free fall dependents only on its position and inertial speed but not on any of its material 

properties. 

Gravitational fields in relativistic physics 

According to general relativity , the observed gravitational attraction between masses results 

from the warping of space and time those masses. General relativity or the general theory of 

relativity is the geometric theory of gravitation published by Einstein. It is the current 

description of gravitation in modern physics. It unifies special relativity and Newton’s law 

of universal gravitation and describes gravity as a geometry property of space and time , or 

space-time (Theodore Frankel, 2004). 

Lightlike Parallel vector fields in gravitational fields 

Parallelism 

The vector field X is said to be parallel if it is parallel along any smooth curve, this implies 

that if its covariant derivative are equal to zero in any coordinate system.  

  Consider          
𝜕𝑋𝑖

𝜕𝑥𝑘 + Γ𝑗𝑘
𝑗
𝑋𝑗 = 0 ⟺

𝜕𝑋𝑖

𝜕𝑥𝑘 = −Γ𝑗𝑘
𝑗
𝑋𝑗     (10)   

      𝜕𝑋𝑖

𝜕𝑥𝑙
+ Γ𝑗𝑘

𝑖 𝑋𝑗 = 0 ⟺
𝜕𝑋𝑖

𝜕𝑥𝑙
= −Γ𝑗𝑘

𝑖 𝑋𝑗                 (11) 

𝜕

𝜕𝑥𝑙
(
𝜕𝑋𝑖

𝜕𝑥𝑘
) = −

𝜕

𝜕𝑥𝑙
(Γ𝑗𝑘

𝑖 𝑋𝑗)        (12) 

𝜕

𝜕𝑥𝑘
(
𝜕𝑋𝑖

𝜕𝑥𝑙
) = −

𝜕

𝜕𝑥𝑘
(Γ𝑗𝑘

𝑖 𝑋𝑗)        (13) 

𝜕

𝜕𝑥𝑘
(
𝜕𝑋𝑖

𝜕𝑥𝑙
) −

𝜕

𝜕𝑥𝑙
(
𝜕𝑋𝑖

𝜕𝑥𝑘
) = 0    (14) 

𝜕

𝜕𝑥𝑘
(Γ𝑗𝑙

𝑖 𝑋𝑗) −
𝜕

𝜕𝑥𝑙
(Γ𝑗𝑘

𝑖 𝑋𝑗) = 0    (15)     

𝜕Γ𝑗𝑙
𝑖

𝜕𝑥𝑘
(𝑋𝑗) + Γ𝑗𝑙

𝑖 𝜕𝑋𝑗

𝜕𝑥𝑘
−

𝜕Γ𝑗𝑘
𝑖

𝜕𝑥𝑘
(𝑋𝑗) − Γ𝑗𝑘

𝑖 𝜕𝑋𝑗

𝜕𝑥𝑙
= 0  (16)  
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The equation  (16) can be written as 

       (
𝜕Γ𝑗𝑙

𝑖

𝜕𝑥𝑘 −
𝜕Γ𝑗𝑘

𝑖

𝜕𝑥𝑘 )𝑋𝑗 + Γ𝑗𝑙
𝑖 𝜕𝑋𝑗

𝜕𝑥𝑘 − Γ𝑗𝑘
𝑖 𝜕𝑋𝑗

𝜕𝑥𝑙 = 0   (17) 

𝜕𝑋𝑗

𝜕𝑥𝑘
+ Γ𝑘𝑚

𝑗
𝑋𝑚 = 0,⟺

𝜕𝑋𝑗

𝜕𝑥𝑘
= −Γ𝑘𝑚

𝑗
𝑋𝑚,   (18) 

                
𝜕𝑋𝑗

𝜕𝑥𝑙 + Γ𝑙𝑚
𝑗

𝑋𝑚 = 0, ⟺
𝜕𝑋𝑗

𝜕𝑥𝑙 = −Γ𝑙𝑚
𝑗

𝑋𝑚  , (19)     , replacing (18)  

and (19 ) into (17)  we obtain 

 (
𝜕Γ𝑗𝑙

𝑖

𝜕𝑥𝑘
−

𝜕Γ𝑗𝑘
𝑖

𝜕𝑥𝑘
)𝑋𝑗 + Γ𝑗𝑙

𝑖 (−Γ𝑘𝑚
𝑗

𝑋𝑚) − Γ𝑗𝑘
𝑖 (−Γ𝑙𝑚

𝑗
𝑋𝑚) = 0  (20), 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 equivalent to  

(
𝜕Γ𝑚𝑙

𝑖

𝜕𝑥𝑘 −
𝜕Γ𝑘𝑚

𝑖

𝜕𝑥𝑙 + Γ𝑗𝑘
𝑖 Γ𝑙𝑚

𝑗
− Γ𝑗𝑙

𝑖 Γ𝑚𝑘
𝑖 )𝑋𝑚 = 0     (21),  this equation can be written as  

𝑅𝑙𝑘𝑚
𝑖 𝑋𝑚 = 0, where 𝑅𝑙𝑘𝑚

𝑖   is the Riemanian curvature tensor. As the consequence we have 

𝑅𝑖𝑗𝑋
𝑗 = 0,  with 𝑅𝑖𝑗  the Ricci Tensor. 

Special case 

Let us assume that X  is a lightlike parallel vector field, then g(X,X)=0,  since  X is a 

regular at any point, we can take  

𝑋 =
𝜕

𝜕𝑥0 and we will get g(
𝜕

𝜕𝑥0 ,
𝜕

𝜕𝑥0)≡ 𝑔𝑜𝑜 = 0, it will be easy to show that 
𝜕𝑔𝑖𝑗

𝜕𝑥0 = 0. Let us 

consider the particular case where 𝑔00 ≠ 0, then we can defined the 3 dimensional metric  

as 𝛾𝛼𝛽 = 𝑔𝛼𝛽 −
𝑔0𝛼𝑔0𝛽

𝑔00 .  Let us consider the Einstein’s equations 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 =

𝜅𝑇𝑖𝑗    (22),   

where 𝑇𝑖𝑗=(p+𝜀)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗   for macroscopic bodies, with 𝜀 is energy density.  

Hence 𝑔𝑖𝑗𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗𝑔

𝑖𝑗 = 𝜅[(p + 𝜀)𝑢𝑖𝑢𝑗𝑔
𝑖𝑗 − 𝑝𝑔𝑖𝑗𝑔𝑖𝑗] and , since we have 𝑔𝑖𝑗𝑔

𝑖𝑗 = 4 

and 𝑢𝑖𝑢
𝑖 = 1, we  get  

R-2R= 𝜅[(p + 𝜀)𝑢𝑖𝑢𝑗 − 4𝑝] = 𝜅[(p + 𝜀) − 4𝑝] with R=𝑔𝑖𝑗𝑅𝑖𝑗, Ttherefore, R= 𝜅[(3p − 𝜀). 

We know that 𝜅 is a constant, 𝜅 ≠ 0, −3p − 𝜀 = 0 and since ≥ 0, 𝑝 ≥ 0, we get 𝜀 = 0, 𝑝 =
0, and of course R=0. Thus 𝑅𝑖𝑗 = 0. The curvature tensor for the 3 dimensional space is 

given by 

 𝑃𝛼𝛽𝛾𝛿 =
1

2
(

𝜕2𝛾𝛼𝛿

𝜕𝑥𝛽𝜕𝑥𝛾 +
𝜕2𝛾𝛽𝛾

𝜕𝑥𝛼𝜕𝑥𝛿 −
𝜕2𝛾𝛼𝛾

𝜕𝑥𝛽𝜕𝑥𝛿 −
𝜕2𝛾𝛽𝛿

𝜕𝑥𝛼𝜕𝑥𝛾) + 𝛾𝑛𝑝(Λ𝛼𝛿
𝑛 Λ𝛽𝛾

𝑃 − Λ𝛼𝛾
𝑛 Λ𝛽𝛿

𝑃 )                                                                              

(23) 

𝑎𝑛𝑑      since 𝛾𝛼𝛾 = 𝑔𝛽𝛾,  

this tensor becomes 

 𝑃𝛼𝛽𝛾𝛿 =
1

2
(

𝜕2𝑔𝛼𝛿

𝜕𝑥𝛽𝜕𝑥𝛾 +
𝜕2𝑔𝛽𝛾

𝜕𝑥𝛼𝜕𝑥𝛿 −
𝜕2𝑔𝛼𝛾

𝜕𝑥𝛽𝜕𝑥𝛿 −
𝜕2𝑔𝛽𝛿

𝜕𝑥𝛼𝜕𝑥𝛾) + 𝑔𝑛𝑝(Λ𝛼𝛿
𝑛 Λ𝛽𝛾

𝑃 − Λ𝛼𝛾
𝑛 Λ𝛽𝛿

𝑃 )                                                                             
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This tensor  will be equal to the curvature tensor in 4 dimensional space iff the Christoffel 

symbols in 3- dimensional are equal to Christoffel symbols in 4- dimensional space  

Λ𝛽𝛾
𝛼 =

1

2
𝛾𝛼⋋ (

𝜕𝑔𝛽⋋

𝜕𝑥𝛾
+

𝜕𝑔𝛾⋋

𝜕𝑥𝛽
−

𝜕𝑔𝛽𝛾

𝜕𝑥⋋
)

=
1

2
(𝑔𝛼⋋ −

𝑔0𝛼𝑔0⋋

𝑔00
)(

𝜕𝑔𝛽⋋

𝜕𝑥𝛾
+

𝜕𝑔𝛾⋋

𝜕𝑥𝛽
−

𝜕𝑔𝛽𝛾

𝜕𝑥⋋
) (24) 

Λ𝛽𝛾
𝛼 =

1

2
𝑔𝛼⋋ (

𝜕𝑔𝛽⋋

𝜕𝑥𝛾
+

𝜕𝑔𝛾⋋

𝜕𝑥𝛽
−

𝜕𝑔𝛽𝛾

𝜕𝑥⋋
) −

1

2

𝑔0𝛼𝑔0⋋

𝑔00
(
𝜕𝑔𝛽⋋

𝜕𝑥𝛾
+

𝜕𝑔𝛾⋋

𝜕𝑥𝛽
−

𝜕𝑔𝛽𝛾

𝜕𝑥⋋
) 

Λ𝛽𝛾
𝛼 = Γ𝛽𝛾

𝛼 1

2

𝑔0𝛼𝑔0⋋

𝑔00
(
𝜕𝑔𝛽⋋

𝜕𝑥𝛾
+

𝜕𝑔𝛾⋋

𝜕𝑥𝛽
−

𝜕𝑔𝛽𝛾

𝜕𝑥⋋
) (25) 

Λ𝛽𝛾
𝛼 = Γ𝛽𝛾

𝛼 −
𝑔0𝛼

𝑔00 Γ𝛽𝛾
0 , as we have 

1

𝑔00 = 𝑔00, 
𝑔0𝛼

𝑔00 = 𝑔00𝑔
0𝛼 = 𝛿0

𝛼 = 0. 

Λ𝛽𝛾
𝛼 = Γ𝛽𝛾

𝛼 − 𝛿0
𝛼Γ𝛽𝛾

0 , and 𝛿0
𝛼 = 0,  for (𝛼 = 1,2,3)  (26), which implies that   Λ𝛽𝛾

𝛼 = Γ𝛽𝛾
𝛼 . 

Thus the equation (23) is equal to 𝑅𝛼𝛽𝛾𝛿 ,  where  

 𝑅𝛼𝛽𝛾𝛿 =
1

2
(

𝜕2𝑔𝛼𝛿

𝜕𝑥𝛽𝜕𝑥𝛾 +
𝜕2𝑔𝛽𝛾

𝜕𝑥𝛼𝜕𝑥𝛿 −
𝜕2𝑔𝛼𝛾

𝜕𝑥𝛽𝜕𝑥𝛿 −
𝜕2𝑔𝛽𝛿

𝜕𝑥𝛼𝜕𝑥𝛾) + 𝑔𝑛𝑝(Γ𝛽𝛾
𝑛 Γ𝛼𝛾

𝑃 − Γ𝛼𝛽
𝑛 Γ𝛾𝛿

𝑃 )      (27) 

Since 𝛾𝛼𝛾 = 𝑔𝛽𝛾       , thus 𝑃𝛼𝛽𝛾𝛿 = 𝑅𝛼𝛽𝛾𝛿    , we find that the curvature  𝑃𝛼𝛽𝛾𝛿  

Corresponding to    𝛾𝛼𝛾  is equal to the curvature 𝑅𝛼𝛽𝛾𝛿 Corresponding to 𝑔𝑖𝑗,  which is the 

metric tensor for the four dimensional space. 

The Ricci Tensor in three dimensional space 

𝑃𝛼𝛽=𝛾𝛾𝛿  𝑃𝛾𝛼𝛿𝛽    and  𝑔𝛾⋋𝛾𝛾𝛿 = 𝛿⋋
𝛿  multiply    𝑃𝛼𝛽=𝛾𝛾𝛿  𝑃𝛾𝛼𝛿𝛽      

by    𝑔𝛾⋋ then we obtain     𝑔𝛾⋋ 𝑃𝛼𝛽=  𝑔𝛾⋋ 𝛾𝛾𝛿  𝑃𝛾𝛼𝛿𝛽 = 𝛿⋋
𝛿 , 

     𝑔𝛾𝛿𝑔
𝛾𝜏𝑃𝛼𝛽 = 𝑔𝛾𝜏𝑅, for R=P, 𝛿𝛿

𝜏𝑃𝛼𝛽 = 𝑔𝛾𝜏𝑅, 𝛿𝛿
𝜏 =

{
1, 𝑖𝑓 𝜏 = 𝛿
0, 𝑖𝑓 𝜏 ≠ 𝛿

, 

𝑃𝛼𝛽=   𝑔𝛾𝛿  𝑃𝛾𝛼𝛿𝛽𝑅𝛼𝛽, The Ricci tensor in three dimensional 

space is equal to the Ricci tensor in four dimensional space, 

from the contraction of the Einstein’s equation of gravity R=0 

which implies that 𝑅𝛼𝛽 = 0 ⟹ 𝑃𝛼𝛽 = 0 ⟹  𝑃𝛾𝛼𝛿𝛽 = 0    and 

since  𝑃𝛾𝛼𝛿𝛽 = 𝑅𝛾𝛼𝛿𝛽  ,then   𝑅𝛼𝛽𝛾𝛿 = 0.    

 

CONCLUDING REMARKS 

It has been shown that, in pseudo –Riemannian manifold describing a gravitational field 

through Einstein’s equation, the existence of lightlike parallel vector field implies that the 

space time is flat, this meaning that there does not exist any lightlike parallel vector field in 

a non trivial gravitational field. 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.2, pp.14-22, April 2017 

Published by European Centre for Research Training and Development UK (www.eajournals.org) 

22 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

REFERENCES  

Theodore Frankel (2004). The geometry of physics: an introduction (2nd ed.).  

Spivak, Michael (1999). A Comprehensive Introduction to Differential Geometry (5 Volumes) 

(3rd ed.).  

do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. Classical 

geometric approach to differential geometry without tensor analysis.  

  Kreyszig, Erwin (1991). Differential Geometry. Good classical geometric approach to 

differential geometry with tensor machinery.  

do Carmo, Manfredo Perdigao (1994). Riemannian Geometry.  

Mc Cleary, John (1994). Geometry from a Differentiable Viewpoint.  

Bloch, Ethan D. (1996).  A First Course in Geometric Topology and Differential Geometry.  

  Gray, 

(A .Mishechenko and et al. 1980), course of differential Geometry and topology, Edition Mir 

Moskow.  

Alfred (1998). Modern Differential Geometry of Curves and Surfaces with Mathematica (2nd 

ed.).  

  Burke, William L. (1985). Applied Differential Geometry 

(Marcel Berger, 2002) A Panoramic View of Riemannian  Geometry, Springer 

(C.T.J. Dodson T. Poston)  Tensor Geometry The Geometric Viewpoint and its Uses  

Second Edition, Springer-Verlag. 

 

 

 

 

http://www.eajournals.org/

