STATISTICAL ANALYSIS WITH SISTERATION OF A CONTRACT OF A C

Peter James KPOLOVIE

BRIEF CONTENTS

1.	Fundamental concepts in inferential statistics	1
2.	Descriptive statistics	52
3.	Comparison of two means with z-test and t-test	117
4.	Comparison of means with analysis of variance (ANOVA)	164
5.	Comparison of means with two-way analysis of variance	199
6.	Hypothesis testing with analysis of covariance	229
7.	Correlation	247
8.	Simple regression	284
9.	Information and communication technology in data analyses: SPSS in action	300
10.	Correlation and regression analyses, using SPSS	354
11.	Execution of ANOVA, two-way ANOVA and ANCOVA	
	with SPSS	398
12.	Nonparametric statistics with SPSS	433

DETAILED CONTENTS

CHAPTER 1: FUNDAMENTAL CONCEPTS IN INFERENTIAL STATISTICS

Inferential Statistics	1
Population	4
Sample	5
Qualities of a good sample	6
Merits of sampling	7
Nature of population elements:	7
Cost reduction:	8
Accuracy of results:	8
Data collection speed:	8
Sampling Techniques	8
Probability sampling techniques	9
Simple Random Sampling Technique	9
Example of Simple Random Sampling	10
Stratified Random Sampling Technique	10
Advantages of stratified random sampling	11
Systematic Sampling Technique	12
Cluster Random Sampling Technique	13
Nonprobability Sampling Procedures	14
Convenience Sampling Technique	15
Purposive Judgment Sampling	15
Purposive Quota Sampling	16
Sample Size Suitability	16
Hypothesis	21
Uses of Hypothesis in Research	22
Characteristics of Hypothesis	26
Types of Hypothesis	30

The Research Hypothesis	30
The Null Hypothesis	31
Steps for Testing Hypothesis	33
Level of Significance	34
Decision Errors	37
Type I Error	39
Type II Error	40
Balancing of Type I error and Type II error	41
Central Limit Theorem	42
The Normal Curve	45
One-Tailed and Two-Tailed Tests	47
One-Tailed Test of Significance	48
Two-Tailed Test of Significance	49

CHAPTER 2: DESCRIPTIVE STATISTICS

Scales of Measurement	53
Nominal Scale	53
Ordinal Scale	54
Interval Scale	55
Ratio Scale	56
Organization of Research Data	57
Grouped frequency distribution	61
Organization of Nominal Scale Data	63
Graphic Presentation of Data	70
Histogram	71
Frequency polygon	72
Cumulative frequency curve	74
Characteristics of Distribution	75
Normal Curve	75

Positively Skewed Curve	75
Negatively Skewed Curve	76
Leptokurtic Curve	77
Platykurtic Curve	77
Bimodal Curve	78
Pie Chart	79
Bar Chart	80
Measures of Central Tendency	81
The Mean	82
Midpoint Method of Finding Mean	83
Assumed Mean Method of Finding Mean	84
The Mode	86
The Median	86
Measures of Variability	89
Standard Deviation	91
Raw Scores Method	91
Deviation from the Mean Method	95
Grouped Frequency Distribution Method	98
Variance	99
Range	102
Semi-Interquartile Range	103
Measures of Relative Position	106
The Z-score	107
T-Score	108
Stanine Scores	111
Percentile Ranks	113

CHAPTER 3: COMPARISON OF TWO MEANS WITH Z-TEST AND T-TEST

Distribution of means	117
The Z-Test for Difference Between One Sample Mean And	117
Population Mean When the Population Standard Deviation Is Known	121
The T-Test for Difference between One Sample Mean and Population Mean When the Population Standard Deviation is Unknown	125
The T-Test for Difference Between Means from Two Independent Samples	131
Corrected Sum of Squares Method for Computation of Two Independent Samples T-Test	138
Unbiased Variance Method for Computation of Two Independent Samples T-Test	140
Summary of Results for Research Articles	143
The Z-Test for Difference Between Two Independent Samples	144
The T-Test for Dependent Samples	150
Difference Scores Standard Deviation Method	152
Direct Difference Scores Method	156
Standard Error of the Difference Between Two Dependent Means Method	158

CHAPTER 4: COMPARISON OF MEANS WITH ANALYSIS OF VARIANCE (ANOVA)

Assumptions that Underlie ANOVA	165
Normal Distribution of the Population	165
Independence of Observations	165
Homoscedasticity	166
Example of ANOVA for Hypothesis Testing	166
Raw-Scores Method of ANOVA Computation	168
The F-Ratio	168
Mean square	168
Degrees of freedom	169
Sources of variation	170

Summary of ANOVA Equations	172
Sources of variation	173
Degrees of freedom	174
Mean squares	175
The F-ratio	175
Summary of ANOVA Results	175
Deviation from Grand Mean Method of Computing ANOVA	177
The F-ratio	177
Mean squares	177
Degrees of freedom	178
Sources of variation	178
Degrees of freedom	181
Mean squares	181
The F-ratio	182
Multiple Comparisons	183
Post Hoc or a Posteriori Tests	183
Fisher's Protected T-Tests (ť)	184
Fisher's LSD	185
Application of Fisher's LSD:	189
Scheffé's Test (Fs)	190
Tukey's HSD (q)	196

CHAPTER 5: COMPARISON OF MEANS WITH TWO-WAY ANALYSIS OF VARIANCE

Advantages of Two-Way ANOVA	199
Greater generalizability of results	200
Determination of Interaction Effect	200
Two-way ANOVA is more economical	201
Example of Two-Way ANOVA for Hypothesis Testing	201
Raw-Scores Method of Computing Two-Way ANOVA	204

The F ratios in two-way ANOVA	204
Mean squares in two-way ANOVA	206
Degrees of freedom in two-way ANOVA	208
Sources of variation in two-way ANOVA	208
Summary of two-way ANOVA equations	212
Calculation of Sources of Variation in Two-Way ANOVA with Raw-Scores Method	213
Calculation of degrees of freedom in Two-Way ANOVA	216
Calculation of Two-way ANOVA Mean Squares	216
Calculation of F ratios in two-way ANOVA	217
Deviation from Grand Mean Method of Calculating Two-Way ANOVA	220
The F ratios	221
Sources of variation	221
The mean squares	222
Degrees of freedom	223

CHAPTER 6: HYPOTHESIS TESTING WITH ANALYSIS OF COVARIANCE

Uses of Analysis of Covariance	229
Determination of change	230
Elimination of nuisance variables effects	230
ANCOVA reduces the error term	230
ANCOVA adjusts the group means	231
ANCOVA uses randomization	231
Assumptions that Underlie ANCOVA	232
Valid and reliable measurement of the covariate	232
Linearity of the dependent variable and covariate relationship	
Homogeneity of regression	233
Example of Analysis of Covariance	233
The F ratio of ANCOVA	236
Adjusted mean squares	236

236
237
238
240
241

CHAPTER 7: CORRELATION

Facts about Correlation	248
Tests of Relationships and Tests of Differences	250
Correlation Statistical Techniques	251
Pearson Product Moment Correlation Coefficient	252
Standard Scores Method	252
Example of Correlation, Using Standard Scores Method	253
Testing Significance of Correlation Coefficient with t Distribution	256
Sum of Squared Deviations Method of Calculating Correlation	258
Raw Scores Method of Calculating Correlation	260
Population Standard Deviation Method	264
Scatterplot	267
Partial Correlation	271
Partial Correlation as Coefficient of Correlation between Residuals of Variables X and Y on a Third Variable	271
Conventional Technique for Computation of Partial Correlation	275
Multiple Correlation Coefficient	276
Multiple Correlation and Hypothesis Testing	279
Importance of Multiple Correlation	281

CHAPTER 8: SIMPLE REGRESSION

Regression and Correlation Compared	284
Raw Scores Regression Coefficient Method	285
Example of Regression	286

Regression Slope and Regression Intercept	289	
Standardized Regression Coefficient	291	
Regression Analysis in Hypothesis Testing	295	

CHAPTER 9: INFORMATION AND COMMUNICATION TECHNOLOGY IN DATA ANALYSES: SPSS IN ACTION

Execution of Descriptive Statistics with SPSS	307
T-Test Analyses with SPSS	328
Execution of Independent Samples T-Test, Using SPSS	328
Application of SPSS in Correlated-Samples T Test	341
Single Sample T Test with SPSS	349

CHAPTER 10: CORRELATION AND REGRESSION ANALYSES, USING SPSS

Execution of Pearson Product Moment Correlation, Using SPSS	355
Partial Correlation with the Use of SPSS	364
Multiple Correlation Execution with SPSS	373
Execution of Simple Regression with SPSS	378
Multiple Regression Execution with SPSS	386
Enter Method of Executing Multiple Regression with SPSS	387
Stepwise Method of Executing Multiple Regression with SPSS	392

CHAPTER 11: EXECUTION OF ANOVA, TWO-WAY ANOVA AND ANCOVA WITH SPSS

Application of SPSS in Independent Samples ANOVA	399
Application of SPSS in Repeated Measures ANOVA	406
Two-Way ANOVA Execution with SPSS	415
Execution of ANCOVA with SPSS	424

CHAPTER 12: NONPARAMETRIC STATISTICS WITH SPSS

Wilcoxon Test for Two Related Samples	434
Sign Test for Two Related Samples	437
Mann-Whitney U-Test	439
Kruskal-Wallis K Independent Samples Test	443
Friedman K Related Samples Test	447
Spearman Correlation Coefficient with SPSS	450
Chi-Square, Using SPSS	458

ABOUT THE BOOK

This ground-breaking book is an indispensable practical guide to the successful execution of research with particular attention to data analysis to arrive at indisputable findings, conclusions, and generalizations. Studying this book endows you with the requisite mastery knowledge for personally applying the most appropriate statistical tests accurately, swiftly, effortlessly and pleasurably in situations of data analysis. It is a most clearly written modern and practical book with simple, direct, easy-to-understand and highly motivating information. It presents a fresh approach to the teaching, learning and application of statistics as an exciting field that has very central and robust place in research in particular, and in virtually all spheres of human endeavor. Every user of this book can personally apply IBM SPSS[®] Statistics skilfully and correctly in analysing different sorts of research data. Get a copy of the book straightaway.

ABOUT THE AUTHOR

The author, Peter James Kpolovie, is a professor of Educational Measurement and Evaluation at the University of Port Harcourt. He is the current Director of Academic Planning, Research and Control; and the former Head of Department of Educational Psychology, Guidance and Counselling at the University. He has

authored other innovative books that include, *Excellent Research Methods* (2016); *Handbook of Research on Enhancing Teacher Education with Advanced Instructional Technologies* (2015); and *Educational Management in Developing Economies* (2012) which are readily available online. His other great books are *The Making of the United States of America: Lessons for Nigeria* (2013); *Test, Measurement and Evaluation in Education* (2014); *Educational Reforms without Evaluation Designs: Nigeria at risk* (2012); *Statistical Techniques for Advanced Research* (2011); and *Advanced Research Methods* (2010). He has published over 150 journal articles. He may be reached with the number, +2348137158851 or via E-mail, kpolovie@gmail.com

ECRTD PUBLICATION LONDON •LUTON •KENT www.ecrtd.org

