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ABSTRACT: The present paper is devoted to the investigation of lossless transmission lines
terminated by a nonlinear Josephson junction circuit. Such lines are described by a first
order hyperbolic system of partial differential equations with sine-nonlinearity. We formulate
a mixed problem for this system with nonlinear boundary conditions generated by a
nonlinear resistive circuit. In contrast of our previous result [1] here we cannot reduce the
mixed problem to an initial value one on the boundary because the hyperbolic system is not
linear one. We extend results from [2] and present in an operator form the mixed problem in
question. Then we cut off the domain and show that operator defined is contractive one. Its
unique fixed point is an approximated solution of the mixed problem.

KEYWORDS: Transmission lines, Josephson junction, Superconductivity, Nonlinear
circuits, sine-Gordon equation.

INTRODUCTION

A lot of papers have been devoted to the investigation of lossless transmission lines
terminated by nonlinear loads and their applications to RF-circuits (cf. [3]-[14]). Here we
consider a lossless transmission line with Josephson junction (cf. [15]-[18]). We proceed
from a lossless transmission line system with sine-nonlinearity. Unlike [19] here we consider
a hyperbolic system with boundary conditions generated by Josephson junction with
nonlinear resistive element. It generates a nonlinear term of polynomial type in the operator
equation.

Here we do not follow the usually accepted approach based on the known sine-Gordon
equation (cf. [15]). So we start with a brief derivation of sine-Gordon equation. We proceed
from the system

ou(x,t) L oi(x,t)

oX ot
oi(x,t) _ ou(x,t) josinZL(X’t),
ox ot D,
S _yix,),
(1.1)

(x,t)ell= {(X,t)e R? :(X,t)e [O, A]x [O,T])}
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where u(x,t), i(x,t) and ®(x,t) are unknown functions — voltage, current and Josephson
flux, L and C are prescribed specific parameters of the line, A>0 is its length, j, is maximal

Josephson current per unit length and @, = 7/(2e)=2/10""W /m? is flux induction quant,
h is the Planck constant.

The commonly accepted approach to derive sine-Gordon equation is the following.
Beginning from (1.1) we obtain

2 2 . 3 2.
0"D(x,t) _ ou(x,t) - 0°D(x,1) :_Lal(x,t) - 0 CDgx,t) N La i(x,t) 0
oxot ot oxot ot ox“ot Otox

. 2 2: 3
oi(x,t) __C 0 d)(zx,t) ~j,sin 27D (X, 1) N La i(x,t) __LC 0 d)(;(,t) B Ljog sin 27D (X, )
X ot D, oxot ot ot D,

Therefore

—Lj. —
ox%ot ot® Jo ot

0

O*D(x,t) LC O3Dd(x,t) 0 (Sin 27z<1>(x,t)j o

or

2 2
0 (I)(th) _LC 0 d)(;(,t) —Lj,sin 220(x,t) _ 0.
OX ot D,

(1.2)

So we have showed that if (1.1) has a solution then (1.2) is satisfied. It is quite obvious that
the inverse assertion could not be proved without additional assumptions. That is why we
consider the original first order lossless transmission line system. Taking into account

Dd(x,1) =27zKJju(x,s)ds.
0

we obtain from (1.1) a nonlinear hyperbolic system with two unknown functions:

R - t
ou(x,t) 1 ai(xt) _ _hsin(ZﬂKJ Ju(x, S)dsj ,
ot C ox C 0

(1.3)

oi(x,1) +18u(x,t) 0
ot L ox

50
ISSN 2053-4108(Print), ISSN 2053-4116(Online)


http://www.eajournals.org/

International Research Journal of Natural Sciences
Vol.3, No.2, pp.49-66, June 2015

Published by European Centre for Research Training and Development UK (www.eajournals.orq)

The Josephson junction is described by a circuit at right-hand end (cf. Fig.1). Here
K, =1/®, is Josephson constant. In contrast of [19] as we have already mentioned the

transmission line is terminated by a circuit with nonlinear resistive element with polynomial

characteristic of the type i=> g™u".
n=1

Fig. 1. Lossless transmission line with Josephson circuit containing nonlinear resistive

element
— i(x,7)
R
¢ u(x,t) i=f(u) 508
E
.I.

| |
x
| |

0 A

For (1.3) one can formulate the following mixed (initial-boundary value) problem: to find the
unknown functions u(x,t) and i(x,t) in IT satisfying initial conditions and boundary

conditions
u(x,0) = u(x), i(x,0) =i, (x), xe[0,A]
(1.4)

du(A,t)

E(t) —u(0,t) - R,i(0,t) =0, , Co pm

(1.5)

—i(AD) = g™u"(AL), t[0,T].

Here i,(x), u,(x) are prescribed initial functions — the current and voltage at the initial
instant (cf. Fig.1), E(t) is a prescribed source function, R, is the resistance of the source, C,

is the capacity of the linear element, and i=> g™u" is the characteristic of the resistive
n=1
element.

Choosing a suitable function spaces and introducing suitable weighted metrics we prove
existence of generalized continuous solutions of (1.3)-(1.6) by fixed point method [21]. In
this way we demonstrate of how to overcome the difficulty caused by sine function. For our
fixed point method sine function is not a “bad” nonlinearity.
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Diagonalization of the hyperbolic system

Introducing denotations

ul au u | ou U, 0 1/C
U= —=U,= —=U,=| |, A= ,
L } ot " L[ } ox L} L/L 0

Jo o b
e —Esm(ZﬂKJ iu(x,s)dsj
0

we can rewrite (1.3) as

{Ut} {0 UCHUX} —hsin(ZﬂKJju(x,s)dsj
LT N ES C
I /L 0] i, 0

0
(2.1)
or

U +AU, =T.
(2.2)

0 1/C
The first step is to transform the matrixA:L/L O} in a diagonal form. We solve the

~4 1/C

L -4

vectors are solutions of the systems:

~uWCk®  +1ce? =0 U(VLCE® +1/CE? =0
1ULEY  —1(LC)P =0 1ULED  +1ICk? =0’

that s, the eigen-vectors are (£, )=(VC VL) (2,2 )=(-+C,VL).

NN
VN

characteristic equation: =0 whose roots are 4, =1/+LC, 4, =-1/+JLC . Eigen-

and

Denote by AHthe matrix formed by eigen-vectors H { } Its inverse one is

Lo _Lju¥Ce  -uyC
2l UL uWL

Introduce new variables

7 {V(X‘t)} U =F(X’t)}, Z=HU, (U=H"Z).
1(x,t) i1(x,t)

1/+JLC 0
. Then A®" = HAH * = .
0 —1/+4/LC
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In an explicit form they are

I\/(x,t):\/E u(x ) +/L i(xt) N Lt = f Vit)- f 'O0)
1(x,t) = —/C u(x,t) ++/L i(x,t) : _ 1
i(x,t) 2\/EV(X 1)+ \/_I(x b).

(2.3)

-1 -1
Substituting U = H'Z in (2.2) we obtain a(Hat Z)+ Aa(l_éx Z) =T". But H™ is a constant

matrix that implies HZ, + (AH *l)ZX =T". After multiplication from the left by H we obtain

Z,+A®Z, =HI.

(2.4)
Since
: _ o i K
HF:{ \/\/EE \\//_E} —%5|n(27ﬂ<J£U(x,s)dsj _ \/jasm(m\/? %(V(X RN s))ds]
- L _ Jo J
0 \/Esm(\/E {(V(x 's)— 1(x, s))dsj

then (2.4) can be rewritten as:

v [ 1 N T g 5 e

EJF N 0 | \/E (\/Ei(V(xs) I(xs))ds)
or

N \/l_c(j’)\x/__fsm( i(V(x,s)—l(x,s))dsj
%—%%——% n(\/_j(V(x s)—I(x, s))dsj

(2.5)

The new initial conditions become:
V (%,0) =+/C u(x,0) + /L i(x,0) =+/C u, (x) +~/L iy(X) =V, (X), (2.6)
1(x,0) = —/C u(x,0) + /L i(x,0) = —/Cu, (x) + /L i, (x) = 1,(x), x €[0, A].

53
ISSN 2053-4108(Print), ISSN 2053-4116(Online)


http://www.eajournals.org/

International Research Journal of Natural Sciences
Vol.3, No.2, pp.49-66, June 2015

Published by European Centre for Research Training and Development UK (www.eajournals.orq)

We have to obtain new boundary conditions substituting u(x,t) and i(x,t) from (2.3) into
(1.5).

Indeed, in view of

V(0,t) 1(0,t) V(AL (A1)
u(0,t) = — u(A,t) = -

2\i(—o 0 2IJ(Et)’ 3/(;0 2IJ(Et) and 2, =JL/C
0= 70 "o Y= o T
we have
V(0,t) = 22,\C E(t) + Zo =Ry 1(0,1),

O+O 0+O

dI(A,t)_dV(A,t)_V(A,t)+I(A,t)+2\/6i (n)(V(A - 1(A, t)j
dt  dt C,Z, C, =9 2./C

If we assume that the following condition is satisfied (cf. [2]):
V5(0) = 15(0) = I5(A) =V,(A) =0, E(0) =0
then the following conformity condition (CC) is fulfilled:

V(0,0) = ;Z \/R_ E(0) + Z EO 1(0,0);

0+0 O+O

1(A0) =V (A,0)— [ VA TAS) o Zrzgm)j(V(A 82)\/_|(A S)J

0 OZO 0 n=1 0

27, ﬂ:ZO—RO
Z,+R,’ Z,+R,

Introducing denotations o = we obtain the following boundary

conditions:

V(0,t) = a/CE(t) + B1(0,1),
2.7)

1t g LV (A,s) - I (A, s))
2 £(V(A,s)+I(A,s))js+ On_l j (2JE)“

(A1) =V (A1) -
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An operator formulation of the mixed problem

The mixed problem for the new variables is: to find a solution (V (x,t), I (x,t)) of the
following system

N, 1T N__ ]
+\/E8x \/_sm[ \/_j(V(x s)—1(x, s))dsJ (3.1
1)

ol 1 al

o . 7T
— = sin V(x,s)—1(x,s) s |.
RN ol RS (cpoﬁi(( a ))dj
satisfying initial conditions

V(x,0) =V, (x), 1(x,0)=1,(x),xe[0,A] (3.1-
2)

and boundary conditions

V(0,t) = a/CE(t)+ B1(0,t), x=0,t<[0,T];
(3.1-3)

1

LA =V (A — = [(V(A, ) + (A, S)Hs | UGDEIGT)

Co ”‘1 (2\/6) -

Prior to define an operator corresponding to the mixed problem we consider Cauchy problem
for the characteristics (cf. [2]) (v=1/VLC):

070

gé_ﬂv(x t)=v, &(t) =x foreach (x,t) ell = @, (7;X,t) =vr + X —Vt,
(3.2)
%zﬂ, (x,t) =—v, &(t) =x foreach (x,t) eIl = ¢, (7;X,t) =—Vz + X+ Vt.
T

(3.3)

Functions A, (x,t)=v>0 and A, (x,t) =—Vv <0 are continuous and imply a uniqueness to the
left from t, of the solution x =g, (t;X,,t,) for dx/dt=v; x(t,) = X, and respectively
X =@, (t;%,,1,) for dx/dt=—-v; x(t;) =X,.
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Denote by , (x,t) the smallest value of 7 such that the solution ¢, (z;x,t) =vz +Xx—vt of
(3.2) still belongs to II and respectively by y,(x;t) — for the solution
@, (7, X,1) ==z + X+Vt of (3.3). If x (x1)>0 then
o, (ry (0 x,1) =0 or @, (r, (X,1);x,t)=A and respectively if y (x,t)>0 then
o, (r, (x1);x,t)=0 or ¢, (x, (X1);x,t)=A. Inour case

X X—A
t—= for vi—x>0 t+—— for vi+x—A >0
Xv (x,t) = \Y; ; X (x,t) = v :
0 for vti—x <0 0 for vt+x—-A <0

Remark 3.1. We notice that y, (x,t) and y, (x,t) are retarded functions, that is,
0< p (Xt)<t, 0< p,(Xt)<t.

Itiseasy toseethat @, (7;X,t)=vr+x—-vt = @, (0;x,t)=x-Vvt and

o, (T xt)=—Vvr+x+vt = ¢, (0;x,t) =x+Vvt.

Fig. 2. Characteristics of the hyperbolic system

LA
A A
A_»(O, T) ) X+t :A X-vI :0 P AI(A~T)
, s - ,// )
fy Mgty e X k-
% "\\ > l - 7 ’ -
.\:\‘ ¢ " -
~ X /\\; > -
>~ )\ > ," X
x =0 r=A

Introduce the sets

I, ={(xt) eI1: g (x,t)=0}={(x,t) eT:x-vt>0},

I, , ={(xt) ell: g, (x,t)=0}={(x,t) eIT:x+Vt—A <0},
11

in,1 —

ov = 1D eIl x, (1) >0, @, (r (%1);xt)=v(vt—x)/v+x—vt=0},

I, ={(xt) ell: z,(xt)>0, ¢ (x (X1);xt)=—Vv(Vt+Xx—A)/V+x+Vt=0}=,
I, =6t ez, (1) >0, @, (x (% 1); %) ==v(vt—X)/v+x—vt=A}=D,
I, ={(xt) ell: z,(x1)>0, ¢ (x (Xx1);X1)=-v(Vt+Xx—A)/V+X+Vt=A}.
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Prior to present problem (3.1) in an operator form we introduce

o Nt — Vo(x=vt)), (x,t) eIT;,
AR )_{(Dov V.1 (D) (x 1) ey,
and
| (X+Vt)) (X t)El—llnl
CD|(\/,|)(X,'[){ @, (V, 1)z (1) (xt)ell,
or
o DO = Vo(x=vt), (x,t) eIl
v (VL DX )—{a\/EE(ZV)JFIm(o,ZV), (x,t) eIl,, '
@, (V,1)(xt)=
lo(x+Vv1)), (x,t) eIT,, ,
_ V(A,z.)—clz fv(A,s)ds—Clz jI(A s)ds + Zlg(”)f(V(A(S)J—IT(f’S)) ds, () €Iy

So we assign to the above mixed problem the following system of operator equations

V() =, (v, 1)(x, 1) — o j sin(ﬂ\/%

VaV; (xt)

f (V(x,s)—ux,s))dsjdr,

[(x,t) =D, (V, I)(x,t)—% j sin(ﬂ\/% j(V(x,s)— I (x,s))dsjdr

x| (x.t)
or in an explicit form

VO(X _Vt)! (X!t) € 1_Iin,v

ViD= a\/EE(;(V(X,t))+ﬂI(O,;(V(x,t))—jT } sm( C](V(x,s)—|(x,s,))o|s]o|r,(x,t)enoV
v (xt o 0
I, (x+Vt), (x,t) eIl
1(x,t) = V(A'l')_clz fV(A,s)ds—Clz jl(A Sds+ L Zlg(n)I(V(A<sz/_|T(_/1\,S)) o
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o E V- tmoms e woen,,

MAIN RESULT

To get a contractive operator we cut the domain IT= {(x,t) eR*:xe[0,A], te [O,T]} in the
following way I1, = {(x,t) eR*:xe[0,A-¢], te [O,T]} forevery O<e<A.

Introduce the sets

M, = eC(IT,) 1V (x )| <Uge“, (xt) eTT, }
M, = {l e (L) :|1(x,1)| < Jge, (x,t) eT1, },

where U,, J,, 1, & are positive constants chosen below.

It is easy to verify that M,, x M, turns out into a complete metric space with respect to the
metrics: p, ((V,1),(V, 1)) =max {p(V,V), p(1, 1)}, where

p(V,V) =ess sup{e"‘t[\/ () -V(xt):xe[0,A-¢] te [O,T]},
p(1,1) =ess sup{e"“l x-T(xb[:xe[0,A-¢], te [O,T]}.

Prior to introduce an operator formulation for the mixed problem we redefine all domains
1, I, 11, ,I1,, proceeding from IT, and reformulation of conformity conditions.

Now we define the operator B=(B,,B,):M,xM, —>M,xM,, where B, =B,(V,I),
B, =B,(V,) by the formulas

V, 1)) = {VO(X_W)’ (x8) eIy,
MDD o Ve (x) + 10,2 (x) -
_% j Sin[@%j(V(x,s)—I(x,s))dsjdr, (x,t) ey, ;
xy (xt) 0 0
B, (V, ) (x,t):=
lo(x+Vt), (x,t) eI,
= 1 Z| x| 1 m nZIVA, “I(A, n
VA1) Vs il(A,s)ds+C—0r§g(>£( ( (;)JE)F(l ) 45

_% ] sin(#j(wx, 5)—1(x, s))dstr,(X,t) ell,, .

X\ (x,t)
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Theorem 4.1. Let the following conditions be fulfilled:

[E()]| < Ey |[E'®)|<Eg, te[0TT Mo(X)]| <Uger [15(X)]| < g0, X €[0, Al

jorU, +J
max{)oo;a\/E E, +|:B|‘]o}+ Jotfzqo):é: O)S 01

max ‘]00; e%g UO +Uo +J 2\/_ z‘g( )‘ (n l)/l[TfsJ . jOﬂ-(lZJO +‘]0)£
HCZ, Co n-1 n,u(Z\/_T 12D ,C

Then there exists a unique generalized solution (V, 1) e C(I1,) of (3.1-1)-(3.1-3).

o

Proof: We establish that the operator B maps the set M,, x M, into itself. We notice that
B, (x,t) and B, (x,t) are continuously differentiable functions and we have to show that

B, (V. (x.8) Uy, [B, (v, (x.B] < Iy

Indeed

|(DV(V,|)(X,t)| {[VO(X Vt)|
JCIE(x (6 0)|+|BI[10, 2 (%, t))|

U Ugo .
S{a\/EEO+|ﬁ|JO S{a\/EEoJrIﬂIJO gmax{JOO,a\/EEO+|ﬂ|JO}.

Then

B, (v, D0 <@y (x 0]+ &

dr <

. %
r{q)o—\/fg(v (x,8) + 1 (x, s))dsJ

ZV (X t)

S‘(DV (x,t)‘+ Jo

[V (x,9)|+[1 () )dsdz <

2y (x) 0

‘d) (x, t)‘+ Joﬂ( )'t[j‘ #dsdr <
00

s(max{uoo; a~NC E, +|ﬂ|J0}+ %je“ <U.e”.
0
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Further on we have:

|(I),(V,I)(x,t)|£
|I0(x+vt))|
< Co A, S)|+[1(A,s
V(A )+ == [V (A, s)|ds+—j||(A S)ds + g/_z g™ j[[\’( )+ )|j
CoZy 0 -1 0 2\/_
1o (x+ V)| ol
V4 X 2\/_ U ‘ ! )7 y73
< Uge" ™ + jIUOe’ﬁds+ leoe"sds C, n:1(2J_)" J (s 300 s
COZO 0 040 O
1o (x+vt))| o
g U +J
< U ™ (X,t)+ U, ghA —:I.+ J, Y 22:/_2‘ ‘ \/_ ) je”"sds<
’ CZ, u CZ, u o ® o ffe)]
I, (X+Vt)) . "
< | ’ | Hn HY 2\/_ ‘ ()( +J ) 4 _1<
> U e/,z;(l (x,t) i UO e 1+ JO 1 + C - l (2\/_)_' nlLl <
’ Coly H CoZ H ’
1o (x+ V1)) WU+ 3T
< U el 4 et% 0 L™ Jy + 22:/— ‘ ( ) o
’ Lo HCZ, o (2\/_)‘ H
||0 (x+ Vt))| ™|U X-A
< y(uﬂ] #(Hﬂ) U ”(”ﬂj P L e (t+—) 2\/_ m ‘ ( +J ) (n Dﬂ[HTjg
Ue ' " +e’ "i—TTover T2 Co - % nu2JC |
1CZ, 1#CZ,
I,(x+Vt)) e N
< gt U|O”XVA Jlva . #% Jo 22:/_2‘ ( +J ) (n—l)#[ﬂTAjS
L v +e 7 +e .7, o nd nﬂ(zf)"
I,(x+vt)) . (n) .
<eH JOﬂATA | WU eh g e - AZ&/_Z‘ o+ 3o e 1)‘{“%)3
o® e HCoZ, HCZ, o nﬂ(ZJ_T
‘JOO
<et e%g U0+U°+‘J 2\/_2‘ g™|Uy+J,) (n—l)y[T—gj
HCZy  Cy ma n,u(Z\/—)1
and
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<

o | b ginl 7
|B.(V,I)(x,t)|s|<1>.(\/,l)(x,t)|+\/6Z“L’t)sm[q) =

Joo

SEﬂt e%s U0+Uo+\] Zri‘g( )‘ ) (n—l),u(T-%) +
HCoZy Gy m nﬂ(Zx/_ y

I(V (x,8)—1(x, S))dS]dT

Lo

Jc

<

( +J) (nl),u(Ti)J}_'_

HCyZ Co n,u(Z\/—)‘

j sin[q) T/E E(V(x, s)—I(x, s))is]dr

Z“ (x,1)

—ue m (n)
(UO+UO+J N—Z‘

<eH max{JOO; ev

T

L t T
+x/6d)O\/EZ“{x,t){([\/(X’S)|+|I(X’S)deTS

2y L Uerdy 20C 2 ]9 U+ 3] wanfr-;)
<eutmax{J00,e [U0+ ;zOCOZ . nz_l ny(Z\/_T +

+M j je“sdsdrs
DC 0

e g™
(UO+UO+J zfz\

<et max{]oo; eV

( +J) (n_l)#[T_sj +jo”(go+‘]o) SGMJO.
HCyZ Co na rl,u(Z\/—)1 1 ®,C

It remains to show that (B,, B, ) is contractive operator.
For the first component B, (V, 1) we have

B, (v, D(xt)~ B, (V, (D) < [, (V. 1)(x,8) ~ @, (7, (x| +

j07Z
DC 4, txt)

dr <

(I V (x,8) -V (x, s)\ds) [Hl(x,s)—l_(x,s)‘ds]

<[A10 2 (x ) = T, (x )+ ((VV)+p(l N) [ Jerdsdr<

2, (D0
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<|Blp(1, 1)e™ +e ooV, ;;)Ep(l |))

<. e LD <er{e s zgjc]m(v,l),(r,v‘))-

It follows

—ue

p(B, (V. 1),B,(V, |))<[e "1+ ZJ"” Jp,,((\/ D.(V. D =K,p, (V. 1).(V,I).

For the second component B, (V, 1) we have

B, (v, )(x,H) =B, (V, )(x, ) <[, (V, )(x,t) =D, V', D)(x,t)|+

Jo
vl ]
\/E;(I (x,t)

dr <

sin(q)OL\/Ei(V (x,8) - 1 (x, s))is} —sin(q):f/E i(\T(x, s)—1(x, s))jsJ

<V (A7) -V (A 2, )\+é 5 V(A,) —V(A,s)‘ds+i g' 1(A, )= T(A,5)ds +

2\/_ m n‘g("U +J,) 7
R e

f (n—l)ﬂs(l\/(A s)-V (A, s)\ ‘I (A,8)— (A, S)Dds+

\/_ Co \/_;(l(xt)(”v(x 5=V (x, S)|dS+.|'||(X s)—I(x, S)|d3jdr<

v e+ LU PN e POV 01,1 217 Uo + 302

2z, | C. > (2\/_)n £ e™eds +
I ADEY () I S
q)oc 2 (x)0
P PV L pV )+ (D) 2 Mg U+ 3]
<pV,V)e" + Cz. £ ds + C. 21 (ZJ_T {e ds +
L AoV )+ p(LD) gy <
@,C 700

B _ _ . ()U+J)n1(n1)/uq
oy et s PV P(LT) iy POV (1T 20
IO(\/ )e + /ICOZO e /[CO Z_;. (2\/—)7—1

+

62
ISSN 2053-4108(Print), ISSN 2053-4116(Online)


http://www.eajournals.org/

International Research Journal of Natural Sciences
Vol.3, No.2, pp.49-66, June 2015

Published by European Centre for Research Training and Development UK (www.eajournals.orq)

ooV V) + p(1,1)

+eH ]
uo,.C
(n-ufT-5
—pe —pe —pe m (n) U.+J n-1 ( V] . o
<eleV +eV +eV 2 2‘9 Lo+ 35 + 2210” ACARADE
HCZ, HCy 2 (ZJET pD,C

=e“K,p,((V.1),(V, 1))

or

p(B,(V,1),B,(V, 1) <K, p,((V,1),(V,T).

Consequently

p.((B, V,1),B,(V, 1)), (B, (V,1),B,(V, 1)) < Kp, ((V,1),(V, 1)),

where K =max{K,,K,}<1 for sufficiently large x. Consequently the operator B is
contractive one. Its fixed point is a generalized continuous solution (V,,1,) of the mixed
problem (3.1).

Theorem 4.1 is thus proved.

CONCLUSION REMARKS

1)  We have obtained a family of approximated solutions | J(V.,1,). But in general the

>0

limit Ijrrg(vg, IS) may not exist. Then we can proceed as in [20] to choose a convergent

subsequence whose limit we can call a generalized solution of the above mixed
problem.

2)  Here we collect all inequalities from the proof of the last theorem. We would like to
point out that all conditions of the main theorem are applicable to real problems.

Indeed in view for sufficiently small U,, J,, we have:

Jo”(U +‘Jo) .

CE, Jo+ 12— <U;
a/C +|ﬂ| ,U(Doc <U,
.2 m g™ Jo) u7-E '
o v UO+UO+J 2\/_ z‘ ( + ) e( l),u[T vj + JOﬂ(lZJO+JO)£‘]O;

HCZy  Cy naa n,u(Z\/—)1 He,LC

—ps

K, =e " |A]+ 22(11()’”(: <1
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4 oenaT-£]
THE —HE U J nle Vi R
K, =e"' +e 2 LoV ( ot o) 2],

HCoZ, HC, ”Zi (2\/6)n71 " H®,C )

—ue —ue —ue 2 m ‘g(n)

1.

Let us consider a Josephson transmission line (cf. [16]-[19]) with L =2,6.10"°H/m,
C=1210°F/m, length A=10"m. Then

JLC =4/31,2.10% ~59.10° = v=1/LC ~18.10", T =(10°)/(18.107)~55.10** sec,

Z,=+VL/IC =4/21,6.10" ~4,65.10°Q, ®,=2.10"W/m?; j, =19A/m.

Let us take C,=5.10"°F ,R,=2Z,=4,65.10°Q ,C,Z, =5.10"°4,65.10° ~ 2,325.10 "
Then a=2Z,/(Z,+R,)=18=(Z,-R,)/(Z, +R,)=0.

Let us choose =10 and & =10"*. Then /C =4/1,2.10° =11.103,
®,C=2.107512.10° ~ 24107 1D,C =10"2.107510° ~ 2,10 j,r~6:
e 1021074

o _ @D A® _ A1 e v _a 1810 _ A-55.
gv =012, g“ =0, g =-01;,e "' =e ~e
1 41 104 1
Ar-¢ 1ot {5,5.10 7] (5‘5_ 7]
e ( V) =e 1,8.10 ~e 1,8. ~ e4,94 =140.

Then the above inequalities become:

19U, +J,) <u,
10%*2,4.107%

e-sf{uﬁ Uo+dy , Ug+J, [0'12+o,1(u0+30)21402B+ 19U, + o) _

11.10° E, +

50.4,65.10* 10'.5.107° 14,4.10°° 10724102 "0
338
Y 102,410
2 2
K, —e55|1+ 2 - 2 0’12+o,1(u0+\10_)614o L 38 4
50.4,65.10°  5.10 4,8.10 2.10

or

11.10° E, +7,92.10*(U, + J,)<U,;
4.10°U, +2,5216.10%(U, + J,)+10,88.10* U, + J, )’ <J;

K, =159.107 <1;
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K, =4.10°(1,865+16,3.10°(U, + J, )’ }+ 019 <1.

It should be noted that the actual physical quantities (voltage and current) should be
calculated by the formulas

u(xt) =V (1) /(291 )+ 1(x 1) A2V )
()= V(x)/(2JC)-1(x1)/24C)

Since L=2,6.10°= /L = +/0,26.10® ~0,5.10™* we have

V(x,t) N I(x,1)

2L 2JL

Therefore to obtain voltage of order u(x,t) ~10° we have to take U, +J, ~107*.

u(x,t) = ~(V (x,t) + 1(x,1))10* .

Consequently in view of E, ~U, ~10™*the above inequalities become
11.10°.10* +7,92.10° <10 < 11.10° +7,92.10™* <1;

4.10°10™ +2,5216.10°.10* +10,88.10° (10‘4 )3 <10 < 4.10°+2,5216.10° +10,88.10° <1

K, =0,00159 <1;

K, =4.10°(1865+16,3.10°10 f )+ 019 0198112 <1.
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