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ABSTRACT: Explicit computational rewards were obtained for n- person cooperative games 
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cardinality-based listing structure of combined sets of winning coalitions. The results were 
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INTRODUCTION 

 

Winston (1994) pointed out that Shapley value could be used as a measure of the power of 

individual members of a political or business organization; it was indicated in Winston (1994) 

that using a 0-1 characteristic function, it could be shown that 98.15% of the power in the 

Security Council resided with the permanent members. Kerby and Gobeler (1996) validated the 

assertion in Winston (1994) and much more using a functional set-theoretic cardinality approach 

that was rather involved. Ukwu (2014) obtained independent and much less esoteric proofs of the 

relevant results in Kerby and Gobeler (1996) by constructing and deploying a cardinality-based 

listing structure of combined winning coalitions from the sets of permanent and nonpermanent 

members; Ukwu (2014) pointed out that the later approach held a lot of promise for enhanced 

appreciation and extensions of the results to more general coalitional structures. This paper 

translates the extension potential of Ukwu (2014) to reality. 

 

THEORETICAL UNDERPINNING 

 

We first consider the reward structure of a general class of cooperative games among n players in 

which there is only one major player; this player must obtain the cooperation of some other 

players to achieve a set target, while all the other players put together cannot achieve the target 

without the cooperation of the major player. Next, we extend the result to two major players 

requiring certain levels of cooperation from other players to achieve an objective. Finally, we 

perform in-depth analyses of the reward structure associated with n- person cooperative games 

incorporating two major players of different ranks whose only coalition is non-winning.  

 

The results have wide-ranging applications to resolution passing in meetings, distributions of 

political appointments, siting of projects and much more. 

 

METHODOLOGY 

 

Preliminaries 

Let  1, 2, ,N n  

 

Definition 

For each subset of S N , the characteristic function   gives the amount   S those members of 

S  can be sure of receiving if they act together and form a coalition.  

 

Shapley Value Theorem 

Given an n-person game with characteristic function v, there is a unique reward vector 

x x x xn ( , , , )1 2   satisfying axioms 1-4 stated below. The reward to the thi  player ( )xi  is 

given by 
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n 

 
  

                                                                                                                                                                                                                                                                                                                                         

and S    is the number of players in the coalition S. 

Axiom 1: Relabeling of players interchanges the players’ rewards. 

Axiom 2: x v Ni
i

n



 
1

( )  

Axiom 3: If v S i v S( { }) ( )   holds for all coalitions S, then the Shapley value has xi  0 . If 

player i adds no value to any coalition, player i receives a reward of zero from the Shapley value.  

Axiom 4: Let x be the Shapley value vector for game v and y the Shapley value vector of game 

v .  Then the Shapley value vector for game ( )v v  is the vector x + y.  

See Winston (1994) for the above theorem. 

 

RESULTS 

 

The first of the class of problems to be investigated can be couched in the following terms:  

 

Theorem on one major-player cooperative game 
Hypothesis: Consider an n - person cooperative game in which the winning coalitions are those 

coalitions involving one player and at least any  j other players, where 1 1j n   , with a 

winning coalition receiving a reward of 1. How should the rewards be distributed among the 

players? 

 Conclusion: Under the standing hypothesis the major player should receive a numeric reward of 

or 1 ,
n j j

n n


   while the other players should each receive the reward 

j

n n( )
.

1
  

Proof 

Without loss of generality designate player 1 as the major player and let xi  be the reward to  

 1Then we must prove thplayer , {1,2, , }. 1 and , {2,3, , }.a  
1)

t i

n j j j
i i n x x i n

n n n n


     



Let v denote the characteristic function of the game and S an existing coalition.  

Then 
1, if 1 and 1

( )
0, otherwise

S j S n
v S

   





 

Suppose that player i now joins the coalition. Then the remaining n S 1  players arrive 

(join the coalition) after player i.  Since the arrival process is random and there are n players 

involved, the probability of any order of arrival of the n players is 
1

n !
.  Denote this probability 

by Pn .  Then the contribution of player i  to the characteristic function of the coalition is 

v S i v S( { }) ( ).    Set N n { , , , }.1 2    Hence the reward to player i  is given by 

x P v S i v S
n

v S i v Si n
i S N i S N

     

   

 [ ( { } ( )]
!

[ ( { } ( )]
1

  

In other words the reward to player i  is the sum of values added to all prior coalitions for which 

player i  is pivotal. Now, value is added by player 1 only if player 1 occupies position 

t j t n, ,  1  since player 1 needs the cooperation of at least j other players. If player 1 

occupies position t, then each of the remaining  1n  positions can be filled in exactly ( )!n 1  

ways. Hence for 1 1 1 1     S v S v S v S, ( { }) ( ) ( { })  in exactly ( )!n 1  places in each of 

the  t  positions  that  player  1  may  occupy,  for j t n  1 .  Hence 

x
n

n
n

n
n j

n j

n
t j

n

1
1

1
1

1
  


 



 


!

( )!
( )!

!
( ) ,  proving the first part. 

Note that the value added by any other player in any of the above possible positions for player 1 

is 0, since player 1 is a critical player. Now let i  1.  For player i  to add value, but  player  1 
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none, player i could not have arrived before player 1; moreover  player i  must appear in the 
st( 1)j   position;  needless to say that  player 1 must have appeared in any of the first  j positions 

before player i. Thereafter the remaining n – 2 other positions must be filled in (n – 2 )! ways. 

Hence x
n

n
n

n
j

j

n n
i

t

j

  








1

2
2

1
1

!
( )!

( )!

! ( )
,  proving the second part.   

Verification: x
n j

n
n

j

n n
i

i

n




 






 ( )
( )

,1
1

1

1

 as required. 

 

Alternative proof of theorem 1 

Value is added by player 1 only if it occupies position t, j t n  1 . That is, there must have 

been at least j other  players  prior  to  the  arrival  of  player  1.  Hence  

1 1 1

1

1
1

proving the first part.

1 1 1( 1 )! 1 ( 1 )!
( ) ! !

! ( 1)!

1 11
,

n n n

n

S j S j t j

n

t j

n n nn S n t
x P S S t

S S tn n n

n n n j

t tn n

  

  






          
       

    

    
   

  

  



 

For i  1 to add value, player i must arrive after player 1 and after the arrival of exactly j players. 

So, player i must be the st( 1)j  player to arrive, leading to the assertion that S j .  With 

player i  fixed in position  j  + 1 and player 1 in any of the previous  j  positions, the remaining 

1j    places for the other players may be selected in exactly 
n

j















2

1
ways. 

2 ( 2)! !( 1 )!
Hence for 1, ( )

1 ( 1 )!( 1)! !

( 2)! !
, as stated.

( 1)( 2)! ( 1)

j

i n

S j

n n j n j
i x P S

j n j j n

n j j

n n n n n



   
  

   


 

  

 
 
 


 

Verification: We need to show that 

1 1

Clealy Now as desired.( ). , ( ) 1. , ( 1) 1,
( 1)

n n

i i

i i

n j j
x v N v N x n

n n n 


     


   

Remarks: For  i  1, one could well have obtained xi  as follows: 

1 as desired.
1 1 1 1 ( )

(1 ) 1 ( ) ,
1 1 1 ( 1)

i

n n j j
x x n j

n n n n n n n

    
               

 

However, this would not help in error - checking our results, as xi
i

n




1

 would be equal to 1, 

automatically. 

In the ensuing result, the above theorem will be extended to two major players requiring certain 

levels of cooperation from other players to achieve an objective. The statement of the problem 

and its solutions are encapsulated in the following theorem. 

 

Theorem on n - person cooperative game with two major players 

Consider an n - person cooperative game in which the winning coalitions are those coalitions 

involving the following: 

 Player 1 and player 2 

 Player 1 with at least j other players, excluding player 2, where 1 2  j n , in a coalition 

of cardinality at most n - 1 

 Player 2 with  all the other n – 2  players excluding player 1 

Let N k k nk  { , , , }1  .   For 1, let ii N x  be the reward to player i  in all alliances 

involving player i. Then  
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2 2

1

2

2

2

3

1
[ 2 2 4 2]

2 ( 1)

1
[ 2]

2 ( 1)

1
[ 2 2 2 2 4], for .

2 ( 1)( 2)
i

x n n j n j j
n n

x j j
n n

x n n j j j i N
n n n

     


  


     
 

 

Observe that 
1 2 2

2
.

1

n j
x x x

n

 
  


  Also, 

3 2

1 1
2

2 1
i

j
i N x x

n n


    

 

 
  

 

Proof  

Let v be the characteristic function of the game and let S  be a coalition of players. Then 

3 1
({ }) 0, , ({1, 2} ) 1, ( ) 1

0, if , or {1, 2}  or 2 and 1
( )

1 , if 1 and 1 or 1 and 2

v i i N v v N

S j S S n S
v S

j S n S S n S

    

    


      





 

We proceed by first computing the Shapley values to players 1 and 2. Let Ct  denote a coalition 

of  t  players, excluding players 1 and 2; let tC  be a coalition of size t from the set N3 , excluding 

one player from the set and let 
~
S t  be a relevant set of cardinality t.  

 The key to achieving the proof lies in laying out an appropriate tabular structure involving all 

coalitions S for which v S i v S( { }) ( )   1, the probability, P Sn ( )  of occurrence of S prior to 

the arrival of player i and the number of ways of selecting S , denoted by N S( )  

 

A tabular structure for computing player 1’s reward. 

             

S C C C C C

P S

N S

j j n n

n

: { } { } { }

( ):

( )

   1 2 1 32 2 2 

  

where  P S
S n S

n
N S

n

S
S

n

S
S

n ( )
! ( )!

!
; ( )

,

,


 











 













 













1

2
2

2

1
2

 

Therefore, 
32

1 1

1

32

1

2 2
( ) ( ) ({2})

2 2!( 1) ! ( 1) !( 2) ! ( 2) !

! ! !

nn

n n t n

S j t

nn

t j t

n n
x P S P S P

S t

n nt n t t t n t n

t tn n n





 



 

   
     

  

         
     

   

 

 

 


 












 




 






























    
n t

n n

t

n n n n

n t

n n

n t

n n

t

n n n n
t j

n

t

n

t

n

t

j

t

n1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

3

1

2

1

1

1

3

( ) ( ) ( ) ( ) ( ) ( ) ( )

 

2 2
as stated.

1 ( 1)( 2) ( 1)
( 1)( 2) ( 1)( 1)

( 1) 2 2

1
2 2 4 2 ,

2 ( 1)

n n j j
n n n j

n n

n n j n j j
n n

   
          

       

 

Player 2’s reward: The appropriate listing for S  is as displayed below.        

2 1 1
: , {1}, {1}, , {1}

n j
S C C C

 
                       

  Note that for j t n   2, Ct { }1 is a winning coalition, adding value only to player 1; so it 

had to be excluded in the listing for player 2’s reward. Hence  
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x
n

n

n

t
P S P C

n

n

n

n t t

t t n t

n n n

t

n n

n t
t

j

n n

t

j

t

j

2 1
1

1

2

1

1

1

1

2 2

2 2 2

2

1 2 2

1

1

1













 







 

  


























 

( ) !

!
(
~

) ( )

( ) !

!

( ) !

( ) ! !

( ) ! ( ) !

! ( ) ( )

 

 


 



















 










 






1

1
2 1

1

1
2

1

2
1

1

2 1
2

1

1
2

n n
t

n n

j j
j

n n
j j

t

j

( )
( )

( )

( )

( )
, as 

postulated. 

For i N 3 , the relevant S sets for direct computation of xi  are 

1 3
: {1} and {2}

j n
S C C

 
  , noting that for j t n   2 , 

~
{ }Ct  1 is a winning coalition 

adding value only to player 1. Consequently 

x
n

S
P S

n

S
P Ci

S j

j

n
S n

n

n n












 













 

  



 
3

1

3

1
2

2

2

3( ) ( { })  
















 





 

 








 













n

j

j n j

n

n

n

j n j

n n n n n n n

j n j

n

3

1

1 2 1

1 2

1

1

1

2 1
2

2 1

2

!( )!

!

( )!

!

( )

( )( ) ( ) ( )

( )

 21
2 2 2 2 4 ,as required.

2 ( 1)( 2)
       

n j j j
n n n

 

 

DISCUSSION 

 

For practical purposes one needs to establish that all rewards are non-negative and sum to 1 by 

appropriate probability axioms.  

 

Feasibility and verification of results 

We need to show that the rewards are all nonnegative and sum to 1. 

 

Sum to 1 requirement 

x x x n x t Ni
i

n

t


     
1

1 2 32( ) ;  

 
      

 
  



 x x x n
n n n

n nj ji
i

n

1
1 2

22
1

2 1 2
2 4 2 2

( )
 

   


            
1

2 1
2 2 4 2 2 2 4 2 2 22 2 2 2

n n
n nj n j j j j n nj j j  

   


 
1

2 1
2 2 12

n n
n n ,  as desired. 

 

Non-negativity requirements on voting powers 

x
n n

n n j n j j1
2 21

2 1
2 2 4 2


    

( )
[ ]. 

2 2 4 2 2 2 2 42 2 2n n j n j j n n j j j           ( ) ,   since1 2  j n . 

Therefore x1 0 . Clearly x2 0 .  Now,  i N n  3 3 4, , ,  

x
n n n

n n j j ji 
 

   
1

2 1 2
2 2 2 2 42

( )( )
[ ].  

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies  

Vol.2, No.4, pp.14-22, September 2014 

             Published by European Centre for Research Training and Development UK (www.eajournals.org) 

19 

ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

 

   2 2 2 2 4 2 2 42n n j j j j n j n j         ( ) . Therefore, xi  0 . This implies that 

there are no dummies in the coalitional structure; needless to say: there are no dictators or veto 

players. 

Observations/Analysis 

  
x x

n j

n
x i N x

n
x

j

n n
i1 2 2 3 2

2

1

2

2

1

1 2
 

 


    






 
; .  

2 with equality iff, 1.ix x j   To see this note that 

  2 2 2

2

2

iff This is true iff 

Clearly, with equality iff

, 2 2 2 4 2 2 2 . 2 .

 ( 1) 2 , 1.

i
x x n j j n n j j j n j n j n j

n j n j n j j n j j

          

    

  
 

The reader can verify that at 
 2 and coincide with the common value

2
1,   

1
ij x x

n n



.  This is 

consistent with the hypothesis of the theorem which for 1j  , recognizes only player 1 as a major 

player; other players are given the same lower status. This case also coincides with theorem 1 

with  j  replaced by  j + 1  there, in line with the structure of theorem 2 which can only be 

compared with theorem 1 when  j  = 1. 

Also x1 and x2  coincide only for 2.j n   This should be expected since the hypothesis of 

theorem would accord the same status to players 1 and 2 when 2.j n   

Conclusion:    1 23, 4, ; 1, 2 .ii n x x x j n       

We will now extend above result to a situation where player 2 could benefit only in coalition 

with player 1 and k other players, where k <  j – 1. The problem is summarized in the ensuing 

theorem with accompanying proof.  

 

Theorem on an n - person cooperative games with power relaxation to two major players 

Consider an n – person cooperative game in which the winning coalitions are those coalitions 

involving the following: 

 Player 1 with at least  j  other players, excluding player 2, where 1 2  j n  

 Player 2 with player 1 and at least k other players, where 1 2  k j  

 Player 2 with  all the other n – 2  players excluding player 1 

Let N k k nk  { , , , }1  .   For 
1
, let 

i
i N x  be the reward to player i in all alliances involving 

player i. Then  

                          

x
n n

n n j n j j k k

x
n n

j j k k
n n

j k j k

x
n n n

n n j j j k k i Ni

1
2 2 2

2
2 2

2 2
3

1

2 1
2 2 4 2

1

2 1
2

1

2 1
1 2

1

2 1 2
2 2 2 2 4 2 2




      




    


   


 

      

( )
[ ]

( )
[ ]

( )
[ ]

( ) ( )
[ ], .for 

 

Observe that x x
n j

n
x1 2 2

2

1
 

 


 .   Also, i N x

n
x

j

n
i  


 











3 2

1

2
2

1

1
 

Therefore, the rewards maintain the same relationship structure as in theorem 2. 

 

Proof  

We begin with the computation of player 1’s reward. 

The relevant      1 2 1 3
values are , , , , 2 , 2 , , 2 .

j j n k k n
S C C C C C C

   
    
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Hence,    

   

   
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n
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n
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n
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

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


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

1
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2
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1

2

3
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2
1

1

2
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n
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   1

2 1
2 2 4 22 2 2

n n
n j k n j n j k


       , as stated. 

 For player 2’s reward, the relevant S sets are      1 1 2
1 , 1 , , 1 , and ,

k k j n
C C C C

  
    noting 

that  Ct  1 is a winning coalition for t j .  Therefore, we must restrict the set of coalitions 

involving player 1 to  C k t jt    1 1, in order to add value to player 2. Hence 
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 
   

   1

1
1

1

2

1

2

1

2 1
22 2
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j k

j j k k

n n
j k j k


  












 


    ,as desired. 

For  i n 3 4, , , , the appropriate S sets for player i ’s reward are 

     1 3 1
1 , 2 , and 1, 2 .

j n k
C C C

  
   Hence 
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Observations/Analysis 

Observe that x x
n j

n
x1 2 2

2

1
 

 


 .   Also, i N x

n
x

j

n
i  


 











3 2

1

2
2

1

1
 

This preserves the reward structure of theorem 2.  Also note the following relationships among 

corresponding rewards in theorem 2 and 3: 

   
 

 

   
 

 

1 1

2 2

1
in theorem 3 in theorem 2

2 1

1
in theorem 3 in theorem 2

2 1

k k
x x

n n

k k
x x

n n


 




 



 

 x x1 2and lost the same value 
 
 

k k

n n





1

2 1
 . The fact that they lost some value is hardly 

surprising, since the powers they had in theorem 2 were diluted in theorem 3. What is quite 
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striking /exciting is the fact that they lost exactly the same value of magnitude
 
 

k k

n n





1

2 1
.  If 

there’s any justice in the world then for players  3, 4, ,i n , who acquired more powers in 

theorem 3, these xi ’s put together should gain the total value lost by players 1 and 2. In deed, 

   
 

  

 
 

  

 

 
1 2

2 1
in theorem 3 in theorem 2

2 1 2

2 1 1
Total gain by the ' 2 total loss by and .

2 1 2 1

i i

i

k k
x x

n n n

k k k k
x s n x x

n n n n n


 

 

 
   

  

 

This was exactly what we wished for.  

 

Illustrative examples 

(i) Suppose that decisions are made by majority rule in a body consisting of A, B, C, and D, who 

have 3, 2, 1, and 1 votes, respectively. The majority vote threshold is 4. Determine the rewards 

or voting powers of the players. 

Solution 

Theorem 4.2 is relevant, with A identified as player 1, B player 2; players C and D as players 3 

   

 

1 2

3 4

1 1 1 1
and 4. Therefore  4, 1 32 8 16 1 1 2 , 1 1 1 ,

8(3) 2 8(3) 6

1 1
8 8 2 2 4

8(3)(2) 6

n j x x

x x

             

      

  

Therefore A has 50 percent voting power; B, C and D each has a voting power of one-sixth or 

about 16.67 percent.  

 

(ii) On a college’s basketball team, the decision of whether a student is allowed to play is made 

by four people: the head coach and the three assistants. To be allowed to play, the student needs 

approval from the head coach and at least one assistant coach. Determine the rewards or 

decision-making powers of the head coach and the assistants. 

Solution 

1 2 3 4

Apply theorem 4.1, with 4, together with the following identifications: the head coach player 1,

4 1 3 1 1
the assistants players 2,3 and 4; 1. Therefore  , .

4 4 4(3) 12

n

n j
j x x x x

n

 

 
        

 

Therefore the head coach has 75 percent of the powers, leaving each of the assistants with about 

8.33 percent decision-making powers. 

 

(iii) An executive board consists of a president (P) and three vice-presidents  1 2 3V ,V ,V .  For a 

motion to pass it must have three yes votes, one of which must be the president’s. Determine the 

voting rights of the four stake-holders. 

Solution 

Theorem 4.1 is relevant, with the president identified as player 1 and the three vice-presidents as 

players 2, 3 and 4. 
1 2 3 4

4 2 1 1
players 2, 3 and 4. Therefore  4, 2 , .

4 2 6

n j
n j x x x x

n

 
           

Therefore the president has 50 percent voting power; each of the three vice-presidents has a 

voting power of one-sixth or about 16.67 percent.  

 

(iv)  In a corporation, the shareholders receive 1 vote for each share of stock they hold, which is 

usually based on the amount of money they invested in the company. Suppose a small 

corporation has six people who invested $40,000, $35,000, $25,000, $20,000, $15,000, $15,000. 

 If they receive one share of stock for each $1000 invested, and any decisions require two-third 

votes cast, set up a weighted voting system to represent the corporation’s shareholder votes and 

hence determine the voting powers of the shareholders. 
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Solution  

 1 2
The voting system has the representation ; , , 100;40,35, 25, 20,15,15 , noting 6 

and that a two-third majority threshold vote or quota,  is 100. Apply theorem 5.3, with 6,  3 :

n
q w w w n

q n j

 

 

    

    

2 2 2

1

2 2

2

2 2

3

3 1

1 1 2
[2 2 4 2 ] [72 36 24 9 3 2 1 1]

2 ( 1) 60 5

1 1 1 1
[ 2 ] [ 1 2] 2(5) 2

2 ( 1) 60 60 5

1 1 1
[2 2 2 2 4 2 2 ] [12 36 18 6 4 2 2] ,

2 ( 1) ( 2) 240 10

for 

i

j k

x n n j n j j k k
n n

x j j k k j k j k
n n

x n n j j j k k
n n n

i N

   

                


            


              
 

   3, 4,5,6 .

 

Therefore the highest investor has 40 percent voting power, followed by the next highest 

investor, with 20 percent voting power; each of the other four investors has a voting power of 10 

percent.  

 

IMPLICATIONS TO RESEARCH AND PRACTICE 

 

The established results have wide-ranging implications and applications to resolution passing in 

meetings, distributions of political appointments, executive and parliamentary decisions, siting of 

projects, contract negotiations, and sporting team compositions, to mention just a few. 

 

CONCLUSION 

 

This paper deployed cardinality dependent sequential coalitional structures to perform in-depth 

analyses of the reward structures of three n - person cooperative games with specified winning 

coalitions involving at least one major player, for various quota configurations, based on the 

Shapley Value reward concept.The reward expressions in all three problems are found to be 

consistent, with clearly determined relationships and structures and satisfy implicit, probabilistic 

and practical feasibility conditions. The results may be appropriated to give prescriptions for 

equitable allocations and distribution of political appointments, siting of projects and voting 

rights for resolution passing in public or corporate meetings. In a follow- up paper the method 

developed here will be exploited and extended to derive reward structures for players in more 

general cooperative game settings. 

 

FUTURE RESEARCH 

 

Further research interest and extensions of this article will include the following investigations:  

(i)   Reward structure of finite - person cooperative games with a lone player category and two 

other categories of players subject to specified winning coalitions. 

 

(ii)  Reward structure of finite - person cooperative games with three broad categories of players 

subject to specified       winning coalitions. 

 

(iii) Analyses of three - category, finite - person cooperative games with relaxation in winning 

coalitions. 
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