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ABSTRACT: In this study we examine the implication of natural logarithm transformation on 

the two most popular distributions (Gamma and Weibull) of the error component of the 

multiplicative error model. The kth moment ( k =1, 2, 3, …) of the logarithm transformed Gamma 

distribution was established while that of the log-transformed Weibull distribution was found not 

to be solvable in its closed form and therefore further investigations were limited to the Gamma 

distributed error component. The mean of the log-transformed Gamma distribution as required in 

statistical modeling was found to exist for 1    while its variance exits for 0.49   . 

However using simulations the region for successful application of log-transformed distribution 

was found to be  0 0.48    . Furthermore, it was discovered that the log-transform led to a 

significant reduction of the variance of the distribution, however the expected zero-mean 

assumption after linearing a multiplicative model with a logarithm transformation is not met even 

though there were decreases in the mean values after the transformation. Finally as a result of the 

findings of this study, we recommend in statistical modeling, that natural logarithm transformation 

is not appropriate in a multiplicative error model (with a unit mean error component) for either 

linearizing or stabilizing the variance of the model or both since it leads to a distribution whose 

kth moment ( k = 1, 2, 3, . .) is not solvable in a closed form (for the Weibull distribution) or whose 

mean is not zero (for the Gamma) as required after transformation.  

KEYWORDS: Multiplicative Error Model; Logarithm Transformation; Gamma Distribution; 

Weibull Distribution; Moments 

 

INTRODUCTION 

Multiplicative error model (MEM) are generally used for modeling non-negative valued discrete  

time stochastic processes. Brownlees et al., (2011) specified a MEM as 

 ,    t t N t t tX X                          (1) 
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where ,t t NX  is a real-valued, discrete time stochastic process defined on [0, + ∞), t , defined 

conditionally on  1 1,    t t  is a positive quantity that evolves deterministically according 

to the parameter vector,  . t 1 is the information available for forecasting ,t t NX  and  t is a 

random variable with a probability density function defined over a [0, +∞) support with unit mean 

and unknown constant variance, 
2

1 . That is  

 2

1 1~ 1,t D 
                                      (2) 

There are many distributions having the distributional characteristics given in (2) among which 

are; Exponential, Gamma, Inversted Gamma, Raleigh, Weibull, Lognormal and so on. However 

the most common distributions used in modeling (1) are Gamma and Weibull as respectively 

suggested by Engle and Gallo (2006) and Bauwens and Giot (2000) and as a result our study 

distributions would be the Gamma and Weibull distributions. 

One of the popular methods of handling (1) is to linearize by taking logarithm transformation. That 

is 

 
* *logt e t t tY X                    (3) 

where, 
* *log , logt e t t e tX     and 

   * 2

2 2~ 0,t D 
                      (4)  

Logarithm transformation is one of the popular transformations used for variance stabilization and 

conversion of the error of any purely multiplicative error model component to an additive structure.  

In statistical modeling of (1) where unit-mean and homogeneity of variance of the error component 

are required for the application of parametric method of statistical analysis, the presence of outliers 

and some other factors may yield a data set with a non-constant variance error structure. For a data 

set where the assumption of constant variance is far from being true, there is need for the 

application of a variance-stabilizing transformation. 

According to Vidakovic (2012), "it is not an overstatement to say that statistics is based on various 

data transformations. Basic statistical summaries such as sample mean, variance, z-scores, 

histograms, etc., are all transformed data. Some more advanced summaries such as principal 

components, periodograms, empirical characteristics functions, etc., are also examples of 

transformed data.  Vidakovic (2012) went further to say that “transformations in statistics are 

utilized for several reasons, but unifying arguments are that transformed data”; (i) are easier to 

report, store and analyze (ii) comply better with a particular modeling framework and (iii) allow 
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for additional insight to the phenomenon not available in the domain of non-transformed data. For 

example, variance stabilizing transformations, symmetrizing transformations, transformations to 

additivity, laplace, Fourier, Wavelet, Gabor, Wigner-Ville, Hugh, Mellin, transforms all satisfy 

one or more of points listed in (i – iii). 

Data transformations are the applications of mathematical modifications to the values of a variable 

and the most common variance stabilizing transformations are the power transformations namely; 

logarithm, inverse, inverse-square, inverse-square-root, square and inverse-square (Iwueze et al., 

(2011). In practice, a data transformation where absolutely necessary must be successful. Ohakwe 

et al.,(2012) defined  a successful transformation for (1) as one where the unit mean and constant 

variance assumptions are not violated after transformation. Except the logarithm transformation 

every other power transformation leaves (1) multiplicative and as such the distributional 

characteristics of 
*

t  still follow (2), while it follows (4) for the logarithm transformation. For 

model (1) Ohakwe et al., (2012) had studied the
 implication of square root transformation on the 

unit mean and constant variance assumptions of the error component of model (1) whose 

distributional characteristics belong to the Generalized Gamma Distribution under the various 

forms; Chi-square, Exponential, Gamma (a, b, 1), Weibull, Maxwell and Rayleigh distributions. 

From the results of the study, the unit mean assumption is approximately maintained for all the 

given distributional forms of the GGD. However there were reductions in the variances of the 

distributions except those of the Gamma (a, b, 1), for a > 1, Rayleigh and Maxwell that increased, 

hence they concluded that square-root transformation is not appropriate for multiplicative error 

model with a Gamma (a, b, 1) for a > 1 or Rayleigh or Maxwell distributed error component. 

Finally,  Ohakwe et al., (2012) recommended that square-root transformation, where applicable 

for a multiplicative error model is successful for the studied distributions if the variance of the 

transformed error component       < 0.5. 

 Also in this area of study, Ohakwe and Chikezie (2013) had investigated the implications of
 power 

transformations namely, inverse-square-root, inverse, inverse-square and square transformations 

on the unit-mean and constant variance assumptions of the error component of the multiplicative 

error model. Here the distributions of the error component studied were the various forms of the 

generalized gamma distribution namely Gamma (a, b, 1), Chi-square, Exponential, Weibull, 

Rayleigh and Maxwell distributions. The purpose of their study were to investigate whether the 

unit-mean and constant variance assumptions necessary for modeling using the multiplicative error 

model are either violated or retained after the various power transformations. From the results of 

the study, Ohakwe and Chikezie (2013) discovered the following; (i) For the inverse-square-root 

transformation, the unit-mean and constant variance assumptions are approximately maintained 

for all the distributions under study except the Chi-square distribution where the unit mean 

assumption was violated.  (ii) For the inverse transformation, the unit-mean assumptions are 

violated after transformation except for the Rayleigh and Maxwell distributions.  (iii)  For the 
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inverse-square transformation, the unit-mean assumption is violated for all the distributions under 

study. (iv) For the square transformation, it is only the Maxwell distribution that maintained the 

unit-mean assumption. (v) For all the studied transformations the variances of the transformed 

distributions were found to be greater than those of the untransformed distribution. 

The popular power transformations frequently used in statistical time series data modeling are 

logarithm, inverse, inverse-square-root, square-root, square and inverse-square and based on the 

literature review, there is no question that out of the six transformations only the logarithm 

transformation is yet to be explored. Therefore the essence of this paper is to study the implication 

of logarithm transformation of model (1) with the overall aim of establishing if the said 

transformation will lead to a zero-mean distributed error component with a constant variance 
2

2    as it is expected even though 
2 2

1 2maynot beequal .  The study distributions in this 

paper would be the Gamma and Weibull distributions which are the most favoured distributions 

of the error component of the MEM. The paper is organized as follows: Section one contains the 

introduction while the moments of the logarithm transformed distributions are given in section 

two. Numerical results and discussions are contained in Section three while the conclusion and 

references are respectively contained in Sections four and five. 

Distributional Characteristics of the Gamma and Weibull   Distributions 

In this Section we give the probability density function (pdf) and moments of the untransformed 

distribution. Furthermore in this Section, we would also obtain the moments of the Gamma and 

Weibulll distributions under natural logarithm transformation. 

The pdf of a Gamma random variable, X and its kth moment as contained in Walck (2000) is given 

by 

  
 

x

1x e
f x , x 0

  






 


               (5) 

with 

  
 

 
k

k

k
E X , k 1,2,3,...



 

 
 


              (6) 

  E X



                  (7) 

  
 2

2

1
E X

 




                 (8) 
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and 

   2

1 2
Var X





                 (9) 

Similarly for the Weibull distributed random variable whose pdf is also given in Walck (2000) as 

  
1 x

x
f x e , x 0, 0and 0





 

 

  
 
  

    
 

          (10) 

with 

  k k k
E X 1



 
   

 
             (11) 

  
1 1

E X 1



  

   
       

   
            (12) 

  
2

2 2 2 2 2
E X 1




  

   
       

   
                      (13) 

and 

  
2

2
2

1

2 1 1
Var X 2




   

     
         
      

          (14) 

Logarithm Transformation of the Gamma and the Weibull Distributions 

Applying the following substitutions in (5) and (10); 

 
xy e , 1 y    

 ln y x                           (15) 

 
dx 1

dy y
  

Where the pdf of Y =    
dx

f y f x ln x
dy

  (Hogg and Craig (1978)), we obtain the following 

logarithm transformed pdfs of Gamma and Weibull; 
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For the Gamma; 

  
 

 

ln y
1

ln y e
f y , 1 y

y

 





  


            (16) 

and for the Weibull; 

  
1 ln y

ln y
f y e , 1 y

y






 

  
 
  

   
 

                      (17) 

Moments of Logarithm Transformed Distributions 

To obtain the kth moment   kE Y ,k 1,2,3,...   of the logarithm transformed Gamma distribution, 

we make the following substitutions in (16); 

 w

w

ln y
w , 0 w

y e

dy e dw









   





                 (18) 

hence  

    
 

 
ln y

1k k k 1

1 1

E Y y f y dy y ln y e dy


 



 
 

   

 
 

   
 

 
2

1w k 1 w 1 kw w 1

0 0

e w e e dw w e dw
 

   
 

 

 
    

            (19) 

Also by change of variable method in (19), let 

  p w 1 k , 0 p                  (20) 

then 

 
p dp

w and dw
1 k 1 k 

 
 

            (21) 

hence 
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  
   

 
2 2 2

k 1 p

0

1 1
E Y p e dp

1 k 1 k 1 k

  
  


    



      
        

         
       (22) 

Based on the result of (22), the first and second moments are obtained as follows; 

  
2

E Y
1







 
  

 
              (23) 

  
2

2E Y
1 2







 
  

 
              (24) 

and 

 

2
2

2

2
1 2 1

 

 


 

   
    

   
             (25) 

Similarly, for the kth  moment of the logarithm transformed Weibull distribution, we adopt the 

following substitution 

 
1

1

1

w

1
1

w

ln y
w , 0 w

ln y
w

y e

dy w e dw























 
    
 

 
 
 





                 (26) 

therefore 

 
1 1ln y ln y

k k k 1

1 1

1 ln y ln y
E Y y e dy y e dy

y


 

  

   

     
    

      
    

   
     

               

will yield 

 

1

w k w

k

0

E Y e dw


 
  
 
                (27) 
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However (27) cannot be integrated in a closed form and this agrees with the comment of 

O'Brien(2010) therefore we will proceed our study using  only the Gamma distribution. 

Numerical Illustrations 

It is important to recall that the unit-mean conditions (That is    for the Gamma distribution) 

had been given in Ohakwe et al., (2012). Also given in Ohakwe et al., (2012) is the variance of the 

study distribution resulting from the application of the unit-mean condition and it is as follows;  

  2

1

1
where  


               (28) 

In this Section we shall first apply the unit mean conditions to the expressions for the mean and 

variance of the logarithm transformed Gamma distribution to obtain the following results; 

  
2

E Y , 1
1








 
  

 
             (29) 

 

2
2 2

2

2 , 0.5
1 2 1

 

 
 

 

   
     

    
           (30) 

Secondly we would investigate the interval for successful logarithm transformation of the study 

distribution, by computing compute the values of (28), (29) and (30) for values of 

0.01,0.02,...,0.98, 0.99  . The results of the computations are given in Table 1. In Table 1 it is 

obvious that the mean of the logarithm transformed gamma distribution under the application of 

the unit-mean condition is less than unity but never zero     1.0E Y E X  . The percentage 

decrease in mean were calculated for various values of  using     100%E X E Y . Also in 

Table 1, there is a significant reduction in the variance of the logarithm transformed Gamma 

against the untransformed gamma distribution. As it is expected, the logarithm transformation 

reduced the spread of values of the distribution. The percentage reduction in variance were 

calculated for the various values of  using  
2 2
2 1

2
1

100%
 




. 

Mathematically when    22

00.5, E Y


    which is undefined and also for 0.5  , we have 

that     2E Y R


     where   , a function of  is negative-valued and this  contradicts 

the fundamental result that  
2

2 


  

N

i

i

Y

iN
E Y R Y , therefore logarithm transformation can be 

successfully applied to a multiplicative error model with a Gamma distributed error component 
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for the purpose of either linearizing the model or stabilizing the variance or both when 0 0.48   

considering that there is an increase in variance for  = 0.49 after the transformation. 

CONCLUSIONS 

In this study we examined the implication of logarithm transformation on the two most popular 

distributions (Gamma and Weibull) of the error component of the multiplicative error model. The 

kth moment ( k =1, 2, 3, …) of the logarithm transformed Gamma distribution was established 

while that of the log-transformed Weibull distribution was found not to be solvable in its closed 

form hence further investigations were limited to the Gamma distributed error component. The 

mean of the log-transformed Gamma distribution as required in statistical modeling was found to 

exist for 1    while its variance exits for 0.49   . However using simulations the 

region for successful application of natural log-transformation for the distributed error component 

was found to be 0 0.48    . Furthermore, it was discovered that the log-transform led to a 

significant reduction of the variance of the distribution, however the expected zero-mean 

assumption after linearing a multiplicative model with a logarithm transformation is not met even 

though there were decreases in the mean values after the transformation. 

Finally as a result of the findings of this study, we recommend in statistical modeling, that 

logarithm transformation is not appropriate in a multiplicative error model (with a unit mean error 

component) for either linearizing or stabilizing the variance of the model or both since it leads to 

a distribution whose kth moment ( k = 1, 2, 3, . .) is not solvable in a closed form (for the Weibull 

distribution) or whose mean is not zero (for the Gamma) as required after transformation.  
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Table 1: Computations of the Moments of Logarithm Transformed Gamma Distribution, 

Variance of the untransformed Gamma Distribution and the PIV 

   E X
 

 E Y   2E Y  
2

1  
2

2      E X E Y 100%

 

2 2

2 1

2

1

100%
 



 
 
 

 

.0.0 00.. .0.0 .0.0 0..0.. .0.0 00.. -..0.9 

.0.9 00.. .000 .000 0.0.. .009 04040 -..0.0 

.0.0 .00.  .000 .000 00000 .000 000.. -..004 

.0.4 00.. .0.. .0.0 900.. .000 99000 -..00. 

.0.0 00.. .0.4 .0.0 9.0.. .00. 900.. -..0.4 

.0.0 00.. .0.9 .0.9 0000. .090 9000. -.00.0 

.0.. 00.. .00. .0.. 0409. .099 0.0.0 -.0040 

.0.0 00.. .00. .000 0900. .090 0900. - 009..  

.0.. 00.. .000 .000 00000 .090 04009 -..0.0 

.00. 00.. .004 .000 0.0.. .094 00094 -..000 

.000 00.. .009 .000 .0.. .094 0.00. -..009 

.009 00.. .000 .009 0000 .090 000.0 -..0.9 

.000 00.. .00. .000 .00. .090 4.0.. -.00.0 

.004 00.. .00. .00. .004 0.09  4000. -.004. 

.000 00.. .000 .00. 000. .090 490.. -.00.. 

.000 00.. .00. .00. 0090 .090 4900. -.00.. 

.00. 00.. .00. .00. 0000 .09. 4004. -.0044 

.000 00.. .000 .000 0000 .09. 4400. -.000. 

.00. 00.. .000 .000 0090 .090 44009 -.40.0 

.09. 00.. .000 .000 00.. .090 400.. -.404. 

.090 00.. .000 .000 40.0 .090 40040 -.40.0 

.099 00.. .004 .000 4000 .09. 400.0 -.0004 
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Table 1 Continues 

   E X
 

 E Y   2E Y  
2

1  
2

2      E X E Y *100%

 

2 2

2 1

2

1

*100%
 



 
 
 

 

.090 00.. .004 .00. 4000 .09. 400.. -.0090 

.094 00.. .004 .00. 400. .00. 40000 -.900. 

.090 00.. .004 .00. 40.. .000 4009. -.9000 

.090 00.. .004 .00. 0000 .000 09040  -.000. 

.09. 00.. .004 .000 00.. .009 40009 -.0000 

.090 00.. .004 .009 000. .000 40090 -..000 

.09. 00.. .004 .000 0040 .004 40000 -..099 

.00. 00.. .004 .004 0000 .000 400.0 -0.00. 

.000 00.. .004 .000 0090 .000 400.9 -0000. 

.009 00.. .000 .00. 0000 .00. 40044 -00000 

.000 00.. .000 .00. 00.0 .00. 400.. -0.090 

.004 00.. .000 .0.0 90.4 .04. 440.. -00000 

.000 00.. .000 .0.0 9000 .049 44094 -0000. 

.000 00.. .000 .0.0 90.0 .044 400.0 -84.12 

.00. 00.. .00. .0.. 90.. .04. 40000 -82.77 

.000 00.. .00. .009 9000 .04. 49009 -81.23 

.00. 00.. .000 .00. 9000 .000 40009 -79.43 

.04. 00.. .00. .0.0 900. .00. 400.0 -77.31 

.040 00.. .00. .0.. 9044 .009 4.094 -74.78 

.049 00.. .000 00.4 9000 .00. 0.004 -71.70 

.040 00.. .009 0000 9000 .0.0 00000 -67.87 

.044 00.. .000 0090 909. .004 0.000 -62.97 

.040 00.. .004 000. 9099 .0.. 00090 -56.49 

.040 00.. .000 0000 900. 0004 000.0 -47.47 

.04. 00.. .000 0000 9000 0040 000.9 -33.92 

.040 00.. .000 9009 90.0 0000 09004 -10.74 

.04. 00.. .00. 0000 90.4 90.. 0.00. 42.19 
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