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ABSTRACT: this article studies transmission risk from mother to child during the 
pregnancy process where the immune system acts like health defense in an endogenous 
growth model with epidemiological literature. When the transmission risk becomes positive, 
the system defense also increases in order to stop the pandemic propagation. Since a given 
level is crossed, fixed points are ruled out, then cycles and chaos arise, thus makes 
population growth tends to zero. The social planner’s intervention in order to ensure 
population growth reaches the steady state defines a unique optimal path where per-capital 
capital must be monotonic and increasing in development economics. The application of the 
theory shows the existence of a stable locus where the gap between lives fluctuations and the 
steady state tends to zero. Whereas diseases or epidemiological studies are mostly related to 
economic variable in growth studies, this article explicitly models the medical system action 
in presence of infection and acts such as a disease fight power mechanics for health recovery 
in order to contribute to the debate on population growth.  
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INTRODUCTION 

This article is based on the mathematical tools used by Goenka-Liu (2012) and also 
introduces the epidemiological literature in a one sector growth model but through the 
modeling of HIV/AIDS disease transmission from mother to child during the pregnancy 
process in order to capture the existence of the stable steady state in contrast to the basic 
model where the infectious disease is more general. The logistic map conjugates 
topologically to the disease dynamics in order to determinate the link between the mother and 
the baby as well as the pregnancies dynamics which are able to ensure a healthy new born. 
The disease gravity depends on the parameter of risk transmission, α which is associated to 
the immune system fight capability against the disease expressed by the parameter γ. Since 
α<0 and γ<1 and / or γ<α≤γ+2, the gap of life dynamics and the steady state is almost zero. In 
contrast since α>0, γ>1 and α>γ+2, cycles and chaos arise from the structure of lives 
dynamics. The social planner’s program unifies growth analysis to the epidemiology 
literature and determines a policy which reduces the fluctuations in lives dynamics around the 
steady state through a monotonic increase of per-capita capital or medical care support and 
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yields fixed points existence. Finally, the application of the theory highlights the existence of 
a unique stable solution. 

 
While disease in economic models are mainly focused on its impact on GDP (Kambou, 
Devarajan and Over, 1992) or on population growth (Theodore, 2001, Young, 2005) as well 
as on Human capital (Oster et al, 2013) and mostly found an opposite relation between 
economic growth and epidemiologic literatures (Goenka –Liu, 2012) and Malthus (1798) 
theory mostly forms the basis of discussions even extended after while economic variables 
still to explain disease, the feature of this article holds on the explicit modeling of medical 
mechanics matters in growth absence explanation i.e in population fluctuations. We highlight 
the existence of immune system mechanics on which medical care must act in life 
maintenance target and play a great role on health recovery faculty. Thus the model closely 
related medical tools to financial support where diseases are not only caused by economic 
limitations and its efficiency to explain the stability of the sustainability system. Moreover, 
since disease are not only the outcomes of economic shortages but comes mostly from 
information lack on medical interactions, the model provides tools to study the convergence 
of life dynamics to its steady state in contrast to all the models quoted because economic 
tools alone are unable to create life, thus disease meets natural resistance of the body and 
creates fluctuations despite of the economic system ex-ante and related to it ex-post with 
medical care function of production which can capture endogenously the situation in order to 
make population growth tends towards its optimal locus. Indeed, the model is not limited to 
growth and economic variables faculties only it is deeper than that and shows the existence of 
hide mechanics able to explain population growth fluctuations.  
 
The human immunodeficiency virus (HIV) pandemic is one of the most serious health crisis 
the world poor is facing today. AIDS has killed more than 25 million people since 1981 and 
an estimated 38.6 million people are now living with HIV, about 2.3 million of whom are 
children (2006 Report on the global AIDS epidemic. Geneva, UNAIDS, 2006). Since 1999, 
primarily as a result of HIV, average life expectancy has declined in 38 countries. In the most 
severely affected countries, average life expectancy is now 49 years – 13 years less than in 
the absence of AIDS (Questions & Answers (November 2005), Geneva, UNAIDS, 2005). A 
disproportionate burden has been placed on women and children, who in many settings 
continue to experience high rates of new HIV infections and of HIV-related illness and death. 
In 2005 alone, an estimated 540 000 children were newly infected with HIV, with about 90% 
of these infections occurring in sub-Saharan Africa. Epidemics of infectious diseases have led 
to the study of their impact on the economy first and by modeling the disease transmission 
explicitly like in the epidemiology literature, this paper studies the effect of HIV/AIDS 
transmission risk on life dynamics of the babies during the pregnancy process of their 
mothers, by modeling the dynamics of disease transmission, new insights on their effects 
emerge. We show that varying parameters and looking at steady states can be misleading as 
the disease dynamics are a source of non-linearity, then the infectivity of the disease 
increases the nature of steady states change and endogenous fluctuations can emerge. 
 
There is a growing empirical literature on the effects of infectious diseases on economic 
variables. This literature tries to measure the effect of diseases on economic growth (Bell et 
al. (2003, 2004), Cuddington (1993a and 1993b), Cuddington and Hancock (1994)). Some 
papers find the effect of control of diseases to be large (Bloom et al. 2009), while others find 
the effect is modest (Ashraf et al. 2009) or there might even be an adverse effect due to the 
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dilution effect of a larger population and increase in dependency ratio (Acemoglu and 
Robinson 2007; Young 2005). The underlying theoretical models in these papers largely look 
at steady state behavior with a fixed savings rate and exogenous labor supply (Thirumurthy et 
al. 2007) to change in response to changes in disease incidence. Those papers do not 
simultaneously model both capital accumulation and the epidemiological structure of the 
diseases. One of the key insights of the epidemiology literature is that variations in infectivity 
change the dynamic properties of diseases. Thus, because it is not sufficient to know how 
steady states change in the economic model as the dynamic properties of the economy may 
not be invariant to changes in the disease incidence, Goenka and Liu (2012) show that the 
incidence of disease has level effects and also cause economic fluctuations and model the 
disease transmission explicitly through the epidemiology literature (see Anderson and May 
1991; Hethcote, 2000) into dynamic economic analysis to examine the effect of the canonical 
epidemiological structure for recurring diseases—SIS dynamics—in a discrete time growth 
model. SIS dynamics characterize diseases where upon recovery from the disease there is no 
subsequent immunity to the disease. This covers many major infectious diseases such as 
tuberculosis, malaria, dengue, schistosomiasis, trypanosomiasis (human sleeping sickness), 
typhoid, meningitis, pneumonia, diarrhoea, acute haemorrhagic conjunctivitis, strep throat 
and sexually transmitted diseases (STD) such as gonorrhea, syphilis (see Anderson and May 
1991) and HIV/AIDS (Loubaki, 2012a,b,c; Young, 2005) etc.. Infectious diseases affect the 
economy mainly through three channels: labor productivity (Thirumurthy et al. 2007; Weil, 
2007), human capital accumulation (Bell et al. 2003; Bleakley, 2007) and population size 
(Kalemli et al. 2000; Young, 2005). A decrease in the first two will have adverse effects on 
economic outcomes, but a decrease in the population size may have a positive effect 
contingent on the dependency ratio through increases in capital per capita. For the diseases 
mentioned above the major impact is making infected individuals ill and reducing labor 
productivity. For several of these, disease related mortality is low for adults.  
 
The article is organized like follow section2 presents the epidemiological literature and some 
results highlighted by this structure in terms of lives dynamics, section3 presents the 
economic environment, section4 introduces the epidemiological literature in the one sector 
growth model and studies the equilibrium dynamics, section5 applies the theory to the 
concrete case and section6 concludes on the analysis.  
 
 
DISEASE TRANSMISSION DYNAMICS 
 
We abstract away from all the demographics in the model and assume the population consists 
of a continuum of individuals of mass N. The total size of the population is categorized into 
two classes: the healthy pregnant women and the infective HIV/AIDS pregnant women. Let 
Ht and It denote the number of the healthy and the infective pregnant women respectively, 
and ht=Ht/N, it=It/N denote the per-capita healthy and infective pregnant women where ht +i t 
=1. Let α be the transmission risk of HIV/AIDS to the future baby and γ be the percentage of 
chance for the baby to remain healthy. Since the healthy future mother becomes infected, 
then γIt(αbt

i) is the number of new cases for which the baby bt
i may be infected at the 

probability rate α and/ or remains healthy at the rate γ whereas, (1-α) is the fraction of healthy 
babies , thus bt

h is per-capita stock of healthy baby even from the already infected mothers 
which yields γIt(1-α)bt

h cases for which the baby is not infected recalling that bt
i is per-capita 
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infected babies’ stock and bt
h is per-capita healthy babies’ stock. Therefore, the dynamics of 

the mothers in connection with their babies are given by the following difference equations: 
 
 ( ) ( ) h

tt
i
tttt bIbIHH αγαγ −+−=+ 11        (1) 

 ( ) i
tt

h
tttt bIbIII αγαγ +−−=+ )1(1        (2) 

 
Where It , Ht ≥0 given.  
Since Ht+I t=N, one of the above equations is redundant. Therefore, we can express the 
HIV/AIDS prevalence and transmission risk in terms of healthy pregnant women stock 
evolution only which simplifies the dynamics to: 
 
   ( ) ( ) h

tt
h
tttt bIbIHH αγαγ −+−−=+ 1)1(1     (3) 

 
Therefore per-capita pregnant woman law of motion of health evolution can be expressed by 
equation (4) i.e 
   ( )( )t

h
ttt hbhh −−+=+ 11 αγ       (4) 

 
Where ht+1=g(ht ,bt

h) 
If bt

h=α, all the babies are infected, indeed bt
h=0 and ht+1 =ht , population in growth and level 

terms converges to 0 in the long run as the dynamic of population depends on pregnant 
women positively related to the babies’ stock and the increase of the parameter α decreases 
the stock of babies and lead women in pregnancy to death. 
 
 
Lemma 1 ∀  h0 , b0

h ∈[0, 1] it yields 0≤ht≤1 and 0≤bt
h
≤1 

 
Proof: showing 0<ht≤1 and 0<bt

h
≤1 where 0≤α≤γ and 0<γ<1 ∀ t, is equivalent to prove -

γα≤g(ht ,bt
h)≤1, ∀  ht ,bt

h � [0,α]U[α,1]. We notice that ( ) ( )αγ −= h
t

h
t bbg ,0  and 

( ) ( ) γαγα −+= tt hhg 10, , γα /10 * +=⇒=
∂
∂ h

t
t

b
h

g
>0 and 1*0 =⇒=

∂
∂

th
t

h
b

g
 therefore 

g(1,0)>0 and g(1, bh*)≤1, thus gmax=1. In parallel, g(0,α+1/γ)>0 and g(1, α+1/γ)≤1 thus 
gmax=1. Consequently, 0≤g(,)≤1, thus 0≤ht≤ 1 and 0≤bt

h
≤1. 

 

Assumption1: 
( )

hbh −−+=
γ

αγα 2
= bh(h) 

 
Lemma 2 For bh=bh(h), the mapping g is topologically conjugate to the logistic map 
L(ht)=µht(1-ht) with 0≤µ≤4  
 
PROOF: define µ=1+α-γ and the map ψ(h)=(γ/µ)(1-h), ψ is a homeomorphism3. and we can 
verify that L◦ψ=ψ◦g 

( ) ( ) ( ) ( )h
h

hhL −



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


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−−=


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−+=Ψ 1
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γα
γ

γα
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 Given topological spaces  X and Y  and a bijective application on them, f , then there is a double continuity of f: X→Y and f

-1
 Y→X 
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−
−+

=Ψ 1(
1 γα

γ
go ( )( )hbh h −−− 1αγ )=

( )
h

h −




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

−+
−− 1(

1

1
1

γα
γγ ) if the mother and the baby 

joint lives dynamics is expressed such that 
( )

hbh −−=−
γ

αγα 2
, thus, L◦ψ=ψ◦g indeed g 

and L are topologically conjugate with µ=1+α−γ. In addition, for 0≤µ≤4, the mapping L lies 
entirely in the interval [0,1], which is consistent with ht and bt

h 
�[0, 1]. As we know, 

mappings that are topologically conjugate are completely equivalent in terms of their 
dynamics. Hence, we can deduce the joint dynamics of ht and bt

h i.e g in terms of the 
parameters α, γ from the well-examined logistic map, as shown in Table 1, with µ=1+α−γ, 
the map has both stable and unstable orbits, and in Table 1 the stable orbits are reported. 
 

 
 
Proposition1 per-capita mother dynamics can be expressed by equation (6) i.e: 
 

( )[ ]( )tttt hhhh −−−+=+ 121 γαγ        (6) 

 

Proof: replacing 
( )

γ
αγα −+=+ 2

t
h

t hb  inside equation (4) determined fully the law of 

motion of the mothers dynamics expressed by equation (6).  
 
 
Corollary 1: according to proposition 1, the baby’s disease dynamics is defined by  

 
( )

γ
αγα −+=+

2
1

h
tb - 1+th  

 

Proof: introducing equation (6) in the joint dynamics expression, 
( )

γ
αγα −+=+ 2

t
h

t hb , we 

get the expression of the babies’ dynamics in function of their mother law of motion of life 
dynamics. The babies’ dynamics can thus, be located in reference to their mothers’ dynamics 
through the parameters α and γ.  
 
Assumption 2: according to assumption1, in order for the transmission risk to be low, we 
must have γ<1 for α<0 to hold, otherwise since γ≥1 it yields α≥0 and may become too high 
making the sum of the mothers and the babies stock becoming negative 
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Definition1: f is a stages function if there exist a subdivision Λ={z0 , z1 ,…, zn } such that for 
each ] [1, +∈ ii zzx j≥0 , f is a positive and increasing function 

 
Lemma 3: when γ<1 and α<0, the system converges to the stable steady state, otherwise 
when γ≥1 the system becomes unstable in order to resist to the attacks of the infection 
highlights by the positivity of HIV/AIDS in the immune system expressed by the risk 
parameter, α>0. Then the system describes several stages i.e cycles and chaos arise 
expressing the fight of the body for both health maintenance and human reproduction 
worsened by medical care shortages in Sub-Saharan Africa. 
 
Proposition 2: a given disease transmission risk, α(γ) defines a gap G between the lives 
dynamics of the mothers and the babies, G=,bt+1

h - ht+1 such that (ht+1 ,bt+1
h) converge to 

some locus around the steady state, indeed:  
If α≤γ<1, there exits G >0,such that (ht+1 ,bt+1

h) converges to (1, γ ), then because γ<1, α<0, 
the path is optimal otherwise if γ>1, α is too high and the sum of the mothers and the babies 
stock becomes negative. 
If γ<α≤γ+2, the steady state where G=0 is reached at some point in the area, (ht+1 ,bt+1

h) 
converges to (1-2/γ, γ+1 ) just before the mother reaches the HIV state i.e when γ<1 
Since α>γ+2, and γ>1, the gap between the lives dynamics and the steady state G is a stages 

function such that: if γ+2<α≤(6)1/2+γ; (ht+1 ,bt+1
h) converges to (1-(6)1/2/γ, γ+6 ), there are 

cycles of period 2; if γ+(6)1/2 <α≤γ+µ∞ -1, there are cycles of periods (2r)r=2,3,4 and (ht+1 
,bt+1

h) converges to ((γ+1-µ∞ )/γ, 1++ ∞µγ ); if γ+µ∞-1<α≤γ+3, the dynamic process of 
pregnancies is chaotic and (ht+1 ,bt+1

h) converges to (1-3/γ , 3+γ ), the mother has crossed 
the AIDS threshold, the baby is unable to survive. 
 
Proof: because the map g is topologically conjugate to the logistic map L(ht) and the 
dynamics expressed in function of the transmission risk, α and the risk neutral transmission 
parameter, γ then for a given value of µ=µ(α,γ), we can find the corresponding value of α in 
function of γ which will give the corresponding deaths optimal dynamics of the mothers and 
determinate the lives dynamics of the babies. For a given value of α(γ) the stable orbit of new 
forthcoming healthy babies can thus be determined. The steady states are calculated in the 
usual way of letting ht= g(α, γ) and bt

h= bh(h,α,γ) for the bifurcation points of the logistic 
map, define G= bt+1

h - ht+1 as the basic reproductive stock which guarantees the species 
continuity, in reference to the epidemiology literature, it is the key parameter which 
determines whether the disease spectrum doesn’t exist in the long run (when G=0 because 
γ<1 and α<0) or becomes endemic (when G>0 because γ≥1 and α≥0). When α≤γ<1, the lives 
dynamics converge to its highest locus as proved by the following corollary 2. In contrast, 
when γ+µ∞-1<α≤γ+3, there is a chaotic behavior of the dynamics of the mothers and the 
babies’ because the spectrum which expresses the gap in lives term around the steady state 
reaches its highest level where γ>1 and α>0. In the area γ+(6)1/2<α≤γ+µ∞ -1 , the dynamics of 
the mothers defines a 2r periods steady state ; in the area γ+2<α≤ (6)1/2+γ , there is a stable 
cycle of period 2 pregnancy process; in the area γ<α≤γ+2, the dynamic process of 
pregnancies is divided in two parts where at the left of G=0 because γ<1 and α<0 the 
fluctuation of the dynamics is small and almost stable but at the right of G=0, the increasing 
and decreasing curves of the dynamics accelerates its progression toward a kind of non 
stability, the stable orbit is ruled out when γ≥1 and α≥0. Indeed, bh >γ means that the 
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infection impact on babies’ life is positive since γ≥1, thus, disease is no more free and G>0. 
In contrast, the steady state arises from the structure of the lives dynamics when G=0 leading 
to the highest steady state since bt+1

h = ht+1. For γ<α≤γ+2, the infection risk transmission 
exists and determines a stable endemic case. But when γ+2<α≤(6)1/2+γ , there are cycles of 
period 2. After the cross of the AIDS state or close to death, the system is chaotic and there 
are no lives possible since the dynamics of reproduction is too far from the steady state (see 
figure 1). 
 
 
Corollary 2: denote the mapping H where H={(m(γ),n(γ)) such that there exists α(γ), γ for 
which, (ht+1 ,bt+1

h) converges to (m(γ),n(γ))}, H is a convex function meaning that in presence 
of decreasing HIV/AIDS, the sustainable path converges to the steady state. 
 
Proof: the limits of the joint dynamics found in proposition 2 for γ<1 and α≤0 when drawn in 
a figure lead to a decreasing curve or figure 2 which represents the relationship of the 
mothers and the babies limits of the dynamics and highlights the fact that the optimal solution 
is reached at ht =1 and bt

h=γ<1, thus α<0. Therefore ht and bt
h inside the range 0 and 1 tend 

to the optimal solution where only one solution reaching the steady state exists (see figure 2).  
 
Proposition 3: the conditions for the spectrum convergence to 0 i.e the existence of the 
couple of scalars ( )αγ ,  for which 

( )
0=GLim

γα
 yield: if α≤γ, then G converges to 0 if and only 

if ( )αγ , ( ) ( ){ } ( )0,10,1,1,1 =→ Min ; if γ<α≤γ+2, then G converges around 0 if and only if 

( )αγ , ( ) ( ){ } ( )0.586 ;20.586 ;2,41.3 ;2 −=−→ Min ; if γ+2<α≤γ+(6)1/2 , then G converges 

around 0 if and only if ( )αγ , ( ) ( ){ } ( )45.3 ;15 ;75.2,45.3 ;1 =→ Min ; if γ+(6)1/2 <α≤γ-1+µ∞ , 

then G converges around 0 if and only if ( )αγ , ( ) ( ){ } ( )1.5 ;11.5 ;1,5.3 ;1 −=−→ Min ; if γ-1+µ∞ 

<α≤γ+3, then G converges around 0 if and only if ( )αγ , ( ) ( ){ } ( )0 ;34 ;1,0 ;3 −=−→ Min ; 
 
Proof: for the first case, setting α=γ in the expression of G and making it equal to zero, we 
find G converge to γ-1=0 yields γ converge to 1 or to α then replacing that value in the 
linking equation with α yields, α converge to 0+ or to 1-. Doing the same thing for the 
following cases, we obtain the limits announced in the proposition 3 where µ∞ ≈3.5.  
 
Proposition 4: if the transmission risk doesn’t exist or α=0 then γ=1 or γ=-3 meaning that 
α≤γ or γ-1+µ∞ <α≤γ+3. Otherwise, if 0<α<1 then γ<0 or γ<α≤γ+2. Finally, if α>1 then γ=1 
or γ=-1 respectively when γ+2<α≤γ+(6)1/2 and γ+(6)1/2 <α≤γ-1+µ∞  
Proof: in the chaotic behavior of the dynamics, transmission risk doesn’t exist because birth 
not exist either, the chaotic behavior leaves nothing possible when γ=-3 for γ-1+µ∞ <α≤γ+3 
or when the future mother is not infected i.e γ=1 for  α≤γ. When the transmission risk is low, 
the system still able to defend itself in the second case where γ<0 for γ<α≤γ+2. Finally when 
the transmission risk begins to widen, cycles appear which can be of period 2 or of period 2r. 
 
Next section presents a one sector growth model in which the epidemiological model is 
introduced. 
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THE ECONOMY   
 
There is a continuum of individuals of mass N. We assume the medical production function is 
composed of sick and healthy pregnant women expressed by f(kt ,bt

h, ht) where kt is per-capita 
capital stock or medical-care stock and the depreciation rate of capital is n �(0,1]. 
 
Assumption3 The production function f(kt ,bt

h, ht): R+
3 → R+ is a C2 function and satisfies: 

1. f is strictly increasing and concave in k, bh, and h; 
2. f satisfies Inada conditions, i.e limk→0f1=∞, limk→∞f1=0 and limb

h
 →0f2=∞, limb

h
 →∞f2=0; 

limh→0f3=∞, limh→∞f3=0;  
3. f(0, bt

h , h)=f(k, 0, h)=f(k, bh, 0)=0. 
We assume that for each individual, the instantaneous utility function is time additively 
separable and depends on consumption c, and health state, d=(db , dh) i.e respectively the 
baby and his mother’s health state. 
 
Assumption 4 The individual utility function u(c, d) is a C2 function and satisfies: 
1. u is strictly increasing and concave in c , d; 
2. u satisfies Inada conditions, i.e. limc→0 u1 =∞ , and limd→0 u2 =∞; 
3. u is additively separable in consumption as well as in health and u12=u21=0. 
Let θ (c, d) denote the marginal rate of substitution between health and consumption i.e. θ (c, 
d)=u2/u1 .Additive separability implies that θ (c,d) admits an optimal solution, thus doesn’t 
oscillate. 
 
 
We want to study the social planner’s problem. The objective of the social planner is to 
maximize the average individual utilities which is discounted at the rate β with 0<β<1. As 
the utility function of each individual is additively separable, the optimal allocation will have 
full insurance of consumption i.e ct

h=ct
i =ct (i.e healthy and infective pregnant women per-

capita consumption are equal) and the same for per-capita health state i.e dt
h=dt

i=dt for 
simplicity. Thus, we do not have to keep track of individual health histories and we can show 
the results analytically.  
Denote the welfare function by: U(ct ,dt ,bt

h, ht)=htu(ct ,dt )+bt
hu(ct ,dt ) 
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Figure1 (proposition 2 representation) 

 
 
Lemma 4 The social planner’s objective function U(c, d, bt

h, h): R+
4 →R is a C2 function 

which satisfies: 
1. U is strictly increasing in both c and d, and strictly concave in (c, d); 
2. U satisfies Inada conditions, i.e. limc→0 U1 =∞ and limd→0 U2 =∞; 
3. U is additively separable in consumption and health i.e. U12 =U21 =0. 
 
Proof From the assumption on u, we have 
U1 =hu1(c, d)+bhu1(c, d)>0 
U2=hu2(c, d)+bhu2(c, d)>0 
Assuming pregnant individuals work to finance their stays at the hospital, indeed we have: 
U11=hu11(c, d)+bhu11(c, d)<0 
U22=hu22(c, d)+bhu22(c, d)<0 
U12=U21=hu12(c, d)+bhu12(c, d)=0 
U11U22–U12U21>0. 
 
Hence, for the social planner’s objective function, the marginal rate of substitution 
θ (c,d)=U2/U1 is also an increasing function of c, then it is possible to show the monotonicity 
of the optimal capital stock. 
 

G 
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Figure 2 relative to corollary 2 
 
The social planner’s maximization problem is given by: 
 

( )
( )t

h
ttt
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kdc
hbdcUMax
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,,,
0
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∑

∞

=+

β  

sc 
( ) ( ) thbkfdckk t

h
tttttt ∀≤++−−+    ,,11 δ  

( )[ ]( )tttt hhhh −−−+=+ 121 γαγ  

( )
11

2
++ −−+= t

h
t hb

γ
αγα =bt+1

h(ht) 

kt ≥0, ct ≥0, dt ≥0 t∀  
 k0 >0, 0≤ b0

h ,h0 ≤1 given 
The state variables are kt , bt

h , ht and the control variables are ct , dt and kt+1  
 
 
THE EQUILIBRIUM DYNAMICS 
 
Define F(kt ,bt

h ,ht)=f(kt ,bt
h ,ht )+(1-n)kt . Since limk→0F1=∞ , we have kt>0 t∀  if k0>0. 

Since limk→∞F1<1 , there exists a maximum sustainable stock kh>0 for each fixed (bh , h) and 
kh is increasing in (bh , h) by the implicit function theorem4. Hence kmax with F(kmax 
,α+1/γ,1)=kmax is the maximum sustainable stock for all h, bh � [0, 1]. Therefore we have (kt 
,bt

h ,ht) � X=[0,kmax]x[0,1]x[0,1] ⊂ R3 and the set X is closed and bounded. 
 

                                                           
4
 If f(x0 , y0 )=0 and f2’(x0 , y0 )≠0 , then the equation f(x,y)=0 defines y as an “implicit function” of x i.e y=ρ(x)  of x near x0 with y0 =ρ(x0) and 

with its derivative given by y’=-f’(x,y)/ f2‘(x,y) 
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According to dynamic programming methods and the Bellman equation, the social planner 
problem can be written such that: 
 

( )
( )

( ) ( )[ ]111
,,

,,,,,,,
1

++++=
+

t
h
ttt

h
ttt

kdc
t

h
tt hbkVhbdcuMaxhbkV

ttt

β  

      St 
( ) ( ) thbkfdckmk t

h
tttttt ∀≤++−−+    ,,11  

( )[ ]( )tttt hhhh −−−+=+ 121 γαγ  

( )
γ

αγα −+=+ ++
2

11 t
h

t hb  

kt ≥0, ct ≥0, dt ≥0 t∀  
 k0 >0, 0≤b0

h , h0 ≤1 given 
 

Isolating the choice of consumption and of labor supply from the investment choice in 
decomposing the planning problem into a static problem and a dynamic problem5, the static 
problem is given by: 
 

( ) ( ) ( )hbdcUMaxhkkW h

hbkkBdc h
tt

,,,,',
,,',(), ∈

=  

 Where 
( ) ( ) ( ){ } ,,'  ,10 /  ,,,', 2 hbkFkcdRdchbkkB hh ≤+≤≤∈=  

 
 
Lemma 5: W is continuous and bounded, and the maximizers c(k, k’ , bh, h) and d(k, k’ , bt

h, h) 
are continuous functions; W is strictly concave in (k, k’ ) for each fixed (bh, h); W is 
continuously differentiable and W1>0, W2<0, W12>0, W22< 0 for each fixed h and bh  
 
Proof: since U is continuous and B(k, k’, bh, h) is continuous and compact, by the theorem of 
the maximum, the function W is continuous and the maximizers are non empty, compact 
valued and upper hemi-continuous. Since the objective function is strictly concave, the 
maximizers are unique and continuous functions. Since (k, k’, bt

h, h) ЄX=[0,kmax]x[0,1]x[0,1]  
which is compact, W is bounded. Fixing (h, bh ) and choosing any λЄ[0,1]  and letting (c1 , d1 
) being the maximizers of (k1 ,k1’, bt

h ,h) and (c2 , d2 ) being the maximizers of (k2 , k2’, bt
h , h) 

then (λc1 + (1-λ)c2 , λ(1-d1) + (1-λ)(1-d2)) is feasible for (λk1 + (1-λ)k2 , λk’1 + (1-λ)k’2, b
h ,h) 

and  
W[λk1+(1-λ)k2 ,λk’1+(1-λ)k’2, bt

h ,h]≥U[λc1+(1-λ)c2 ,λ(1-d1)+(1-λ)(1-d2), bt
h ,h] 

>λU(c1 ,1-d1 , bt
h ,h)+(1-λ)U(c2 ,1-d2 , bt

h ,h)=λW(k1 ,k1’ ,bt
h ,h)+(1-λ)W(k2 ,k2’ ,bt

h , h) by 
strict concavity of U, thus, W is strictly concave for each fixed (bh , h). Let (c*, d*) be the 
optimal consumption and health care supply, by the envelope theorem, W is continuously 
differentiable, W1=U1F1/(c*,d*) >0 and W2=-U1/(c*,d*) <0 . Given the Inada conditions, the 
corner solution can be ruled out, thus the optimal solution given by c*=c(k, k’, bh ,h) and 
d*=d(k, k’ bt

h, h) is determined by  
F2(k, hd+bhd)-θ(c,1-d, bh , h)=0 and F(k, dh+dbh )-c - k’=0. By the implicit function theorem 
c(k, k’, bh ,h) and d(k, k’, bh ,h) are differentiable in the neighborhood of (k, bh , h) and (k’, bh 
, h). 

                                                           
5  Aiyagari et al. 1992 
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Based on the properties of the function W above, the dynamic problem is given by: 
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 and 0<β<1 
 

Let the optimal capital investment be kt+1=g1(kt ,bt
h , ht) where ht+1 and bt+1

h are governed by 
the mapping g’(ht) and b(ht)  
 
Lemma 6: V is continuously differentiable, strictly concave in kt for each fixed (bh , h) and g’ 
is a continuous function  
 
Proof: since X is a convex subset of R3

+ and the correspondence E: X→X is non empty, 
compact-valued and continuous, the function W is continuous and bounded, from Lucas and 
Stockey (1989) theorem, there exists a unique value function which solves the dynamic 
programming problem and the policy correspondence is compact valued. Since W is strictly 
increasing in k in the way that k1 ≤k2 implies A(k1 , bt

h, h)⊂  A(k2 , bt
h, h), V is strictly 

increasing in k in the way that k1 , k2 Є [0, kmax] • 
 
 

Given ( )000 ,, hbk h , the sequence ( )∞
=0,, tt

h
tt hbk  defined by 

( ) ( ) ( )( )1
1

111 ),(',,,,, ++++ = t
h

tt
h
ttt

h
tt hbhghbkghbk  is the unique solution which satisfies: (Ѕ) i.e 

 
( ) ( ) 0,,,,, 111112 =+ ++++ t

h
ttt

h
ttt hbkVhbkkW β  

( ) ( )t
h
ttt

h
ttt hbkVhbkkW ,,,,, 111 =+  

( )[ ]( )tttt hhhh −−−+=+ 121 γαγ =g(ht) 

bt+1
h(ht)

( )
1

2
+−−+= th

γ
αγα  

( ) 0,,, 11 =+∞→ tt
h
ttt

t

t
khbkkWLimβ  

 
The dynamical system has three state variables kt and (bt

h , ht ). Therefore, the dynamical 
system is given by the vector (X, g, bh), where X={[0 , kmax]×[0,1]x]0,1]} is the state space. 
 

Lemma 7: the sequence ( )∞
=0ttk  is strictly monotonic for every fixed ht , bt

h  

 
Proof: from the system of equations (Ѕ), we have 

( ) ( ) ( )( ) 0),(',,,,,, 1
1

1
1

2 =+ +t
h

tt
h
ttt

h
tt hbhghbkgVhbgkW β  by substitution into the policy 
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function. By the implicit theorem, g1 is differentiable in k for a fixed (bh, h) and the chain rule 
W21+W22g

1
11+βv11g

1
11=0, thus g1

1=-W21 /W22+βv11 . Since W21>0, W22<0 and V11<0, we 
have g1

1(k, bh ,h)>0 i.e g1 is strictly increasing in the first argument. Hence for every fixed 
(bh, h), if k1>k0 , k2 =g1(k1 ,bh ,h)>g1(k0 ,bh ,h)=k1 and by induction kt+1>kt for every t. 
Similarly if k1 <k0 , kt+1 =kt for every t. Thus the sequence (kt)t=0 ∞ is strictly monotonic for 
every fixed (bh ,h). 
 
 
Fixed Points 
Definition2: let the set Ω be such that Ω⊂ Rn , the map l: Ω→Ω is said to have a fixed point 
if there exists x*∈ Ω such that l(x*)=x*  
 
Proposition 5: if α≤γ and γ<α≤γ+2 where, α<0 and γ<1 as well as α≥0 and γ≥1, the 
sequence (bh ,ht)t=0

∞ converge to some locus around the steady state. where for fixed (bh* ,h*) 
the sequence (kt)t=0

∞ is strictly monotonic (lemma 6) and bounded i.e kt Є [0, kmax ]. By the 
monotone convergence theorem, (kt )t=0 ∞ converge to some fixed point k*. Because of the 
uniqueness of the limit and the continuity of the mapping, h*=g1(0,0, h*), bh* =g1(0, bh ,(0) 
and k*=g1(k*, bh* ,h*) as the set X is closed, it yields (k*, bh* ,h*) ЄX  
 
 
Cycles 
Definition3: let the set Ω be such that Ω ⊂ Rn , the map l: Ω→Ω is said to have cycles of 
period r>1 if we have lr(x)=x  
 
Proposition6: if γ+(6)1/2<α≤γ+µ∞-1, the system has cycles of period 2r , r=1,2,3,… and for 
each α there is a unique periodic orbit which is attracting 
 
Proof: consider the case of r=1  first, if γ+2<α≤γ+(6)1/2 from lemma 6, the sequence (kt)t=0

∞ 
has a unique attracting cycles of period 2. So that for any t≥T, (kt)t=0

∞ takes value from the set 
О(g) =(( b1

h, b2
h ),(h1 ,h2 )), and we substitute the value of bt

h , ht into the mapping g1 for t>T : 
( )11

1
1 ,, hbkgk h

TT =+  

( ) ( )( )2211
11

221
1

2 ,,,,,, hbhbkgghbkgk hh
T

h
TT == ++  

( ) ( )( )11221
11

112
1

3 ,,,,,, hbhbkgghbkgk hh
T

h
TT +++ ==  

( ) ( )( )22112
11

223
1

4 ,,,,,, hbhbkgghbkgk hh
T

h
TT +++ ==  

( ) ( )( )11223
11

114
1

5 ,,,,,, hbhbkgghbkgk hh
T

h
TT +++ ==  

……. 
We define a new sequence {(kT+2j )j=0

∞ = {kT ,, kT+2 , kT+4 , . . .} with kT+2(j+1) =g1(g1(kT+2j ,b1
h 

, h1 ), b2
h, h2). If kT <kT+2 , g1 (kT , b1

h ,h1 )< g1(kT+2 , b1
h ,h1 ) since g1(k, b1

h , h1 ) is 
increasing in k for fixed b1

h , h1 , and thus, by the same reasoning kT+2 =g1(g1(kT , b1
h , h1), b2

h 

, h2)<g1 (g1(kT+2, b1
h , h1), b2

h , h2) = kT+1 . Hence, by induction kT+2j <kT+2(j+1) � j . 
Similarly, if kT >kT+2 we have kT+2j >kT+2(j+1) � j , and if kT =kT+2 we have kT+2j =kT+2(j+1) � 
j. Hence, the sequence {kT+2j} j=0

∞ is strictly monotonic. Moreover, since {kT+2j } j=0
∞ is a 

subsequence of {kt } t=0
∞ then { kT+2j} j=0

∞ is bounded. By the monotone convergence theorem, 
{ kT+2j} j=0

∞ converge to some fixed point k1*. By the uniqueness of the limit and continuity of 
the mapping g1(g1(k, b1

h , h1), b2
h , h2), k1* is determined  by k1*= g1(g1(k1* , b1

h , h1), b2
h , h2) 

and k1*�[0, kmax ]. Similarly, we can define the sequence {kT+1+2j} j=0 
∞ = {kT+1 , kT+3 , kT+5 . . 
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.} with kT+1+2(j+1) =g1(g1(kT+1+2j , h2), h1 ). This sequence, {kT+1+2j} j=0
∞ converge to some fixed 

point, k2*  determined by k2*=g1(g1(k2*, b2
h , h2), b1

h , h1) and k2*  � [0, kmax ]. Therefore, by 
construction we decompose the sequence {kT+j} j=0

∞ into two subsequences, {kT+2j} j=0
∞ 

consisting all the even terms and converging to k1* and {kT+1+2j } j=0
∞ consisting all the odd 

terms and converging to k2*. Thus, {kT+j} j=0
∞ will fluctuate between k1*  and k2*  for sufficient 

large j. Moreover {kT+j} j=0
∞ is the tail of the sequence {kt} t=0

∞, so {kt} t=0
∞ has a cycle of 

period 2. Hence, the system has a cycle of period 2, which is attracting. 
Second, if γ-2<α≤γ+ u∞−1, from Lemma 6 the sequence {ht} t=0

∞ has a cycle of period 
2r , r = 2, 3, 4, . . .. Moreover for each α, there is a unique attracting periodic orbit. Following 
the same argument above we can show the sequence {kt} t=0

∞ has a cycle of the same period as 
{bt 

h, ht} t=0
∞,. Hence, the system has a cycle of period 2r , r = 1, 2, 3, 4, . . .. 

 
 
Chaos 
For a one dimensional system, if the Lyapunov6 exponent is positive, then the orbits from two 
infinitesimally close initial conditions diverge exponentially over time and there is sensitive 
dependence on initial conditions. For higher dimensional systems7, the local behavior of the 
system depends on the direction and the nearby points may be moving apart in one direction 
but the other move together in another8 direction. To prove chaos existence, it is necessary to 
study the behavior of the entire system, i.e. g = (g1 , g)9. 
 
Definition4 Let l be a smooth map on Ω ⊂  Rn and JT= DhT(x0), JT’= D(bh)T(y0) be the 
Jacobian of hT(x) and (bh)T(y) respectively evaluated at an orbit starting point from the initial 
condition x0 and y0. Let λq

T , q =(1, . . . , n) and λp
T , p =(1, . . . , n) be the eigenvalues of JT 

and JT’ respectively, then the qth and pth Lyapunov number of x0 and y0 is defined by Lq = 
limT→∞ (λq

T)1/T and Lp = limT→∞ (λp
T)1/T if this limit exists, then the qth and pth Lyapunov 

exponent of x0 and of y0 is respectively such that: 
T
q

T
q Ln

T
Lim λ1

∞→
=Γ  and T

p
T

p Ln
T

Lim λ1
∞→

=Γ  

The set of all the Lyapunov exponents i.e  { }nq ΓΓΓΓ=Γ ,...,.., 21  and { }mp ΓΓΓΓ=Γ ,...,..,' 21  

are called the Lyapunov spectrum of the dynamical systems ht+1 and bt+1
h. Using the concept 

of Lyapunov exponents, we can give the definition of chaotic orbits of higher dimensional 
maps10. The conditions 1 and 3 below are standard and hold for the conventional definitions 
of one-dimensional chaos. Condition 2 is to rule out quasi-periodic orbits which are 
predictable. 
 
Definition5 Let l, m be a map on Ω, Ω’ ⊂  Rn and let {x0, x1, . . .} and {y0, y1, . . .}  be a 
bounded orbit of l, m. The orbit exhibits multi-dimensional chaos if: 
1. It is not asymptotically periodic, 
2. No Lyapunov exponent is exactly zero, and 
3. At least one Lyapunov exponent is positive. 

                                                           
6
 The Lyapunov exponents are away to study the divergence of orbits on an attractor and other invariant sets. 

7
 The definition of higher dimensional chaos is provided by Alligood at al, 1997, Chap.5 

8
 The definition of higher dimensional chaos that we use (see Alligood et al. 1997, Ch. 5) is equipped to deal 

with such issues. This definition also relies on the Lyapunov exponent. Note that while it is well known that g2 

on its own exhibits chaos (Ott 2002, Section 2.2) as it is topologically conjugate to the logistic map and has a 

positive Lyapunov exponent, 
9
 Note that g exhibits chaos, see Ott 2002, Section 2.2 

10
 Alligood et al. 1997, p. 196 
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Proposition 7: if γ+µ∞-1<α≤γ<α≤γ+3, the dynamical system exhibits multidimensional chaos. 
 
Proof: the orbit O(g1) = { (k0 , bt

h h0), (k1 , b1
h h1), . . .} is bounded since (kt , bt

h ,ht) � X. 
Beyond the accumulation point of cycles of period 2r , that is µ∞<µ≤4 where µ∞ = 3.570 . . ., 
the logistic map L has a chaotic attractor with an infinite number of embedded unstable 
periodic orbits. Since the mapping g and L are topologically conjugate and the Lyapunov 
exponent is invariant with respect to topological conjugacy, g has the same Lyapunov 
exponent as the logistic map, L which is positive when γ+µ∞−1<α<γ+3 (from Lemma 4). It 
turns out that Гg =(Гq ,Гp) i.e the Lyapunov exponent of g, is one of the Lyapunov exponent 

of mapping g as well, that is ( ) ( ) 0
1

,2,,22 f
T

p
T

q
T

g LnLn
T

Lim λλ +=Γ
∞→

 because the Jacobian of the 

system is given by JT+JT’ =J= 









2
2

1
2

1
1

0 g

gg
 and the second Lyapunov exponent is 

( ) ( )T
q

T
p

T
qp

g LnLn
T

Lim ,1,1,1,11

1 λλ +=Γ+Γ=Γ
∞→

 where ( )t
h

tt
T
t

T hbkg ,,1
111 =Π=λ  and 

( )t
h

tt
T
t

T hbkg ,,1
212 =Π=λ . For this Lyapunov exponent to be exactly equal to zero it must be 

that g1(kt , bt
h , ht)=1, �t. As g1

1(kt , bt
h, ht)=−W21 /W22 +βv11 , we can see that this will not be 

true in general. The orbit O(g1) is not asymptotically periodic as the dynamics are governed 
by the well-known logistic map. Thus, the orbit O(g1) is not asymptotically periodic as well. 
Therefore, the system exhibits multi-dimensional chaos. Note that, α=γ+3 is equivalent to 
µ=4 in the logistic map, when µ=4 the orbit is dense in [0, 1]. Hence, bt

h , ht may be equal to 
zero and the population cease. 
 
In summary, the monotonicity of capital accumulation (for fixed bh , h) implies that the 
dynamics of the system are fully determined by the disease transmission dynamics. Non-
linearity in the disease transmission dynamics can induce fluctuations in the population 
growth and dynamics. We find that sufficiently large HIV/AIDS transmission risks and 
unhealthy babies’ stock can generate complex dynamics in population growth. Intuitively, 
when the transmission rate is low (relative to the babies’ healthy rate), that is α≤γ , α<0 and 
γ<1 the inflow into the infective class is small while the outflow is relatively larger. Thus, the 
number of infective people is decreasing which leads to an even smaller inflow as less 
pregnant women are infected. Therefore, the number of infective pregnant women will keep 
declining and eventually becomes zero which leads to upper babies stock. This is the disease-
free steady state, and is the same as the one sector neo-classical growth model where the 
disease is absent. When the HIV/AIDS transmission rate is such that γ<α≤γ+2, the inflow 
into the infective class is larger than the outflow and the system reaches the stable steady 
state with a fixed proportion of infective people. This is called the endemic or disease-
persistent steady state and has a higher level of physical capital or medical care stock and 
lower economic performance compared with the disease-free case. This can easily be shown 
by the comparative statics of the steady states. The larger the proportion of healthy people is, 
the lower needs of the capital per capita for medical care use is. The disease-free and endemic 
steady states have been the focus in the economic literature. As we abstract away from 
change in population size, the disease prevalence has an adverse effect on the economy 
through its impact on labor productivity. When both the transmission rate and the stability of 
health rate are high non optimality establishes because the mechanics of the pandemic 
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HIV/AIDS are stronger than those of the immune system, cycles and chaos emerge in the 
population growth and the economy do not have a locally stable steady state. If the 
transmission rate is high, a large number of healthy pregnant women are getting infected and 
babies too, thus the both move into the infective class. Indeed, the number of healthy future 
mothers will decline and the number of infective future mother will rise. In contrast to  
the epidemiologic literature, here many pregnant women are unable to move from the 
infective class to the healthy class as a result of recovery from the disease only if the system 
didn’t reach cycles of period 2r and chaos. If the condition of α≤γ+2 is satisfied, then the 
number of healthy future mothers increases while the number of infective future mothers 
drops. Therefore, the number of healthy pregnant women in each class fluctuate sharply, and 
eventually they may not reach two cycle of period 2r , r = 1, 2, 3, 4, . . . or exhibit chaotic 
behavior. Which situation is realized depends on the relative rate of flows in and out of the 
classes, that is on the magnitudes of α and γ. Moreover, the oscillation in the number of 
healthy pregnant women causes the fluctuations of the capital stock, and consequently, causes 
population growth fluctuates endogenously.. 
 
 
Application of the theory 
The utility function of the agents is ( ) ( ) ( )tttt dcdcu lnln, ε+=  because of the hypothesis of 

full insurance of consumption and health care. Therefore the social planner objective function 

is ( ) ( ) ( ) ( )b
t

h
t

h
tttt

h
ttt dbdhchbdcU lnlnln,,, ++= 11  

The medical production function is of Cobb-Douglas i.e 

( ) ( ) 1,0      where--1 <<= δσσδδσ
t

h
ttt hbAky  and capital fully depreciate on use.  

 
The social planner’s problem (Ѕ’) is:  
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kt ≥0, ct ≥0, dt ≥0 t∀  
 k0 >0, 0≤b0 

h ,h0 ≤1 given 
 

The first order conditions are: 
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h
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11

 See Goenka and Liu, 2012, p.137 
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Combining (1) and (3) as well as (2) and (3) it yields 
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+

+= t
h
ttb

t

h
tb

t
h

t hbkF
d

b
db β =  
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In the long run we have: 1+= tt cc ; 1+= tt yy ; j
t

j
t dd 1+=  added with the assumption 

tdd h
t

b
t ∀=     , therefore re-writing the equations in dynamical terms we get: 

 t
h
t yAb δβ=          (7) 

 ( ) tt yAh σδβ −−= 1         (8) 

 ttt dyAc −−= )1( βσ         (9) 

Indeed, 
 ttttt yAdcyk σβ=+−=+ )(1        (10) 

 
 
Proposition8: both the mother and the baby dynamics are expressed in function of per-capita 

capital expressed by M
tt kh 1∆= , N

t
h

t kb 2∆=  define per-capita capital law of motion given 

by equation (11) i.e 
 ( ) ( )δσδσδσδσβ −−++−−

+ ∆∆= 11
21

4
1

MN
tt kAk       (11) 

Where MN ff   and  12 ∆∆   
 
Proof: introducing the expression of the production function inside equations (7)-(9), then we 
determinate the dynamics given where each constant variable depends on parameters and thus 
express parameters inside the range 0 and 1. 
 
 
Proposition9: the economy admits a unique optimal solution (kt ,ht, b

h)t=0
∞ for α≤γ and the 

system achieves the disease free steady state satisfying:  

( ) ( )[ ]δσδσδσδσβ −−++−−−∆∆= 11
21

4*
MN

Ak ; ( ) ( )[ ]δσδσδσδσβ −−++−−−∆∆∆= 11
21

4
2*

MNNh Ab ; 

( ) ( )[ ]δσδσδσδσβ −−++−−−∆∆∆= 11
21

4
1*

MNM
Ah  

If transmission risk is located such that γ<α≤γ+2, then the system achieves the endemic 

steady state and =+ t
h

t hb 100% leads to one feasible solution for health maintenance i.e 

2/32/1 +−=γ  ; if transmission risk is located such that γ+2<α≤γ+µ∞-1, then the system 

has cycles of period 2r and t
h

t hb + =100% lead to ( ) 11 1/1 −−
∞ −−−= γγγµ  where r=1, 2, 3, 

4,… because the dynamics presents cycles. If γ+µ∞-1<α≤γ+3, the system is chaotic and 

t
h

t hb + =100% yields multiple solutions where the evident are 2/)321( +=γ  and 

2/)321(' +−=γ  and summarize a chaotic behavior. 
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Proof: solving the equations of proposition 8 in the long run terms i.e fixing the time for the 
variables, determinate the steady state locus ensuring population growth equilibrium i.e the 
stable optimal path existence. The following calculus aim is to look for the stable equilibrium 
in fixing the joint dynamics to hundred percent. 
 
 
CONCLUSION 
 
The model began with the disease transmission dynamics in conformity with the 
epidemiological literature and established that since transmission risk is positive, the immune 
system rise in order to fight against HIV/AIDS and protect the baby whom life dynamics 
depends on his mother’s health state. Therefore at a given levels of infection and protection, 
the pandemic force is higher than the natural health state power which thus arise cycles and 
chaos in opposite to the stable steady state. The spectrum is a stages function after the cross 
of a given infection gravity. The introduction of that literature inside the one sector growth 
model highlights the medical production function to use for health care, then the social 
planner aim is to maximize the utility function of babies and the mothers to ensure life 
continuity and make population growth reached its stable steady state. Unfortunately, in 
contrast with the SIS model, the recovery mechanics doesn’t work and life fluctuates 
endogenously. That is the state of evolution in Africa where still prevailing lake of 
information on that illness evolution and limitations on medical care. The model is useful to 
understand the way disease such that HIV/AIDS in infant appear in Africa as well as gives 
tools to understand how to deal with it. 
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