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ABSTRACT: this article studies transmission risk from mother child during the
pregnancy process where the immune system actshdiasth defense in an endogenous
growth model with epidemiological literature. Whitye transmission risk becomes positive,
the system defense also increases in order tote®pandemic propagation. Since a given
level is crossed, fixed points are ruled out, theytles and chaos arise, thus makes
population growth tends to zero. The social plafmentervention in order to ensure
population growth reaches the steady state defenasique optimal path where per-capital
capital must be monotonic and increasing in devalept economics. The application of the
theory shows the existence of a stable locus wihergap between lives fluctuations and the
steady state tends to zero. Whereas diseases agrelogical studies are mostly related to
economic variable in growth studies, this artickpkcitly models the medical system action
in presence of infection and acts such as a diskglsepower mechanics for health recovery
in order to contribute to the debate on populatgyowth
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INTRODUCTION

This article is based on the mathematical toolsdusg Goenka-Liu (2012) and also
introduces the epidemiological literature in a ogextor growth model but through the
modeling of HIV/AIDS disease transmission from mesthio child during the pregnancy
process in order to capture the existence of thbleststeady state in contrast to the basic
model where the infectious disease is more gen€fak logistic map conjugates
topologically to the disease dynamics in orderdgtedninate the link between the mother and
the baby as well as the pregnancies dynamics wdrielable to ensure a healthy new born.
The disease gravity depends on the parameterlotraasmissiong which is associated to
the immune system fight capability against the akseexpressed by the parameteBince
a<0 andy<1l and / on<a<y+2, the gap of life dynamics and the steady sta&dmost zero. In
contrast sincen>0, y>1 anda>y+2, cycles and chaos arise from the structure \adsli
dynamics. The social planner’s program unifies dhovanalysis to the epidemiology
literature and determines a policy which reducedflilrctuations in lives dynamics around the
steady state through a monotonic increase of patacaapital or medical care support and
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yields fixed points existence. Finally, the appiica of the theory highlights the existence of
a unique stable solution.

While disease in economic models are mainly focusedts impact on GDPK@ambou,
Devarajan and Over, 1992r on population growthTheodore, 2001, Young, 2005) as well
as on Human capital (Oster et al, 2013) and mdsiyd an opposite relation between
economic growth and epidemiologic literatures (GaerLiu, 2012) and Malthus (1798)
theory mostly forms the basis of discussions evdangled after while economic variables
still to explain disease, the feature of this &&ticolds on the explicit modeling of medical
mechanics matters in growth absence explanatian pepulation fluctuations. We highlight
the existence of immune system mechanics on whigdical care must act in life
maintenance target and play a great role on heatthvery faculty. Thus the model closely
related medical tools to financial support whergsedses are not only caused by economic
limitations and its efficiency to explain the siékiof the sustainability system. Moreover,
since disease are not only the outcomes of econshuctages but comes mostly from
information lack on medical interactions, the moplelvides tools to study the convergence
of life dynamics to its steady state in contrastliothe models quoted because economic
tools alone are unable to create life, thus diseasets natural resistance of the body and
creates fluctuations despite of the economic systgrmante and related to it ex-post with
medical care function of production which can captendogenously the situation in order to
make population growth tends towards its optimauto Indeed, the model is not limited to
growth and economic variables faculties only deeper than that and shows the existence of
hide mechanics able to explain population growdbtflations.

The human immunodeficiency virus (HIV) pandemioige of the most serious health crisis
the world poor is facing today. AIDS has killed radghan 25 million people since 1981 and
an estimated 38.6 million people are now livinghMdlV, about 2.3 million of whom are
children (2006 Report on the global AIDS epidentieneva, UNAIDS, 2006 Since 1999,
primarily as a result of HIV, average life expeatamas declined in 38 countries. In the most
severely affected countries, average life expegtamaiow 49 years — 13 years less than in
the absence of AIDfuestions & Answers (November 2006gneva, UNAIDS, 2005A
disproportionate burden has been placed on womenchildren, who in many settings
continue to experience high rates of new HIV infats and of HIV-related illness and death.
In 2005 alone, an estimated 540 000 children wevdyinfected with HIV, with about 90%
of these infections occurring in sub-Saharan Afrigigidemics of infectious diseases have led
to the study of their impact on the economy finstl dy modeling the disease transmission
explicitly like in the epidemiology literature, thipaper studies the effect of HIV/AIDS
transmission risk on life dynamics of the babiesirdy the pregnancy process of their
mothers, by modeling the dynamics of disease trassom, new insights on their effects
emerge. We show that varying parameters and lockirggeady states can be misleading as
the disease dynamics are a source of non-lineatign the infectivity of the disease
increases the nature of steady states change dodeaous fluctuations can emerge.

There is a growing empirical literature on the etfeof infectious diseases on economic
variables. This literature tries to measure theatfbf diseases on economic growlel{ et
al. (2003, 2004), Cuddington (1993a and 1993b),diwdon and Hancock (1994)Some
papers find the effect of control of diseases tdabge Bloom et al. 2008 while others find
the effect is modes®Aghraf et al. 200Por there might even be an adverse effect dubdo t
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dilution effect of a larger population and incredsedependency ratioAgcemoglu and
Robinson 2007; Young 20D5The underlying theoretical models in these pajsgely look

at steady state behavior with a fixed savings aateexogenous labor supplyhjrumurthy et

al. 2007 to change in response to changes in diseaseemmd Those papers do not
simultaneously model both capital accumulation #mel epidemiological structure of the
diseasesOne of the key insights of the epidemiology litaratis that variations in infectivity
change the dynamic properties of diseases. Thusube it is not sufficient to know how
steady states change in the economic model asytrerdc properties of the economy may
not be invariant to changes in the disease incieleBoenka and Liu (2012) show that the
incidence of disease has level effects and alssecaagonomic fluctuations and model the
disease transmission explicitly through the epidéogy literature (seénderson and May
1991; Hethcote, 20Q0nto dynamic economic analysis to examine theatfbf the canonical
epidemiological structure for recurring diseas&Sdynamics—in a discrete time growth
model.SISdynamics characterize diseases where upon rectnenythe disease there is no
subsequent immunity to the disease. This coversymaaor infectious diseases such as
tuberculosis, malaria, dengue, schistosomiasipatrgsomiasis (human sleeping sickness),
typhoid, meningitis, pneumonia, diarrhoea, acuteni@rhagic conjunctivitis, strep throat
and sexually transmitted diseases (STD) such asrgwa, syphilis (seAnderson and May
1991 and HIV/AIDS (Loubaki, 2012a,b,c; Young, 2005¢.etinfectious diseases affect the
economy mainly through three channels: labor prodtyg (Thirumurthy et al. 2007; Weill,
2007, human capital accumulatioBé€ll et al. 2003; Bleakley, 2007) and populatioresi
(Kalemli et al. 2000; Young, 2005) decrease in the first two will have adverse @feon
economic outcomes, but a decrease in the populaipm may have a positive effect
contingent on the dependency ratio through inceaseapital per capita. For the diseases
mentioned above the major impact is making infedtetividuals ill and reducing labor
productivity. For several of these, disease relatedality is low for adults.

The article is organized like follow section2 pretsethe epidemiological literature and some
results highlighted by this structure in terms ofe$ dynamics, section3 presents the
economic environment, section4 introduces the epiodlegical literature in the one sector
growth model and studies the equilibrium dynammsction5 applies the theory to the
concrete case and section6 concludes on the analysi

DISEASE TRANSMISSION DYNAMICS

We abstract away from all the demographics in tbeehand assume the population consists
of a continuum of individuals of masé The total size of the population is categorizeo i
two classes: the healthy pregnant women and tleetiné HIV/AIDS pregnant women. Let
H: and|; denote the number of the healthy and the infegiregnant women respectively,
andh=H¢/N, i=I/N denote the per-capita healthy and infective pregmamen wherd; +i;
=1. Leta be thetransmission risk of HIV/AIDS to the future babydanbe the percentage of
chance for the baby to remain healthy. Since tladtline future mother becomes infected,
then yli(aby) is the number of new cases for which the bapymay be infected at the
probability ratex and/ or remains healthy at the rat@hereas, 1-¢) is the fraction of healthy
babies , thud" is per-capita stock of healthy baby even from ahready infected mothers
which yieldsyl(1-0)b" cases for which the baby is not infected recaltimagby' is per-capita
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infected babies’ stock arta" is per-capita healthy babies’ stock. Thereftine, dynamics of
the mothers in connection with their babies arewgily the following difference equations:

Ht+1:Ht_Mt(abti)"'”t(l_a)bth (1)
lia = t_Mt((l_a)bth)+Mtabti (2

Wherel; , H; >0 given.

Since Hi+l =N, one of the above equations is redundant. Thexefwe can express the
HIV/AIDS prevalence and transmission risk in terfs healthy pregnant women stock
evolution only which simplifies the dynamics to:

Ht+l:Ht_Mt(a(l_bth))+y{t(l_a)bth (3)

Therefore per-capita pregnant woman law of motibhealth evolution can be expressed by
equation (4) i.e

h. =h + /" -afi-h) 4)

Whereh.1=g(h; ,b")

If b=, all the babies are infected, inde®®0 andh.1 =h; , population in growth and level
terms converges to 0 in the long run as the dynashipopulation depends on pregnant
women positively related to the babies’ stock amelihcrease of the parametedecreases
the stock of babies and lead women in pregnandgaoh.

Lemma 10 ho, by O[O, 1] it yields G<h<1 and Gb"<1

Proof: showing O<k<1 and 0<h"<1 where 8a<y and 0<<1 [t, is equivalent to prove -
ya<sg(h ,b"<1, O h ,b" O [0,]U[a,1]. We notice thatg(o,b")=p{b" -a) and

ag h* ag
0)=1+ -y, —=0=b" =a+1/y>0 and
g(h 0)= 1+ ) -y # ! y "
g(1,0)>0 and g(1, B")<1, thusg™<1. In parallel,%](oa+1/y)>0 and g(1, a+1/y)<1 thus
g"“=1. Consequently)<g(,)<1, thus &h< 1 and Gby'<1.

=0=>h*=1 therefore

Assumption® b" = a +M -h=b"h)
y

Lemma 2 For b’=b"(h), the mapping g is topologically conjugate tee thogistic map
L(hy)=uh(1-h) with Osu<4

PROOF: defing:=1+a-y and the map(h)=(y/x)(1-h), v is a homeomorphisfnand we can
verify that Loy=y°g

Low=(1+a-y)—7 (1—h)[1—¢h}: 1—Mj(1—h)

1+a-y 1+a-y 1+a-y

® Given topological spaces X and Y and a bijective application on them, f, then there is a double continuity of f: X—Y and f* Y—X
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joint lives dynamics is expressed such tbét- a = =*——. —h, thus,Ley=y°g indeedg

4

andL are topologically conjugate witl=1+a—y. In addition, for 8u<4, the mappind. lies
entirely in the interval [0,1], which is consistewith h; and R" LI1[0, 1]. As we know,
mappings that are topologically conjugate are cetebt equivalent in terms of their
dynamics. Hence, we can deduce the joint dynamick @and b" i.e g in terms of the
parameters:, y from the well-examined logistic map, as shown iml€&dl, with y=1+a-7y,
the map has both stable and unstable orbits, amdbfel the stable orbits are reported.

Table 1 The dynamics of the logistic map

I Attractors

= =1 =4u

| = =3 =

7 ” ra & pHla =3+l s p o u—Futl
J=p=l4++6 Xy = W A= }4’—%—"—4:
|4+ 6 <t = s Cyclesof period 27, r = 2.3, 4, _..

Mog = =4 Chaotic attractor

g 15 the accumwlation point of cycles of penod 27 (r = 2,3, 4, . and pine = 3.57 .. .. Source: Weisstein
{2009)

Proposition1 per-capita mother dynamics can be expressed batiequ(6) i.e:
h. =h +[(2y-a)-h]L-h) (6)
(2y-a)
y

motion of the mothers dynamics expressed by equébip

Proof: replacing bth +h =a+ inside equation (4) determined fully the law of

Corollary 1: according to proposition 1, the baby’s diseaseaiyics is defined by
2y-a
( 4 ) - ht+1
4

h _
bt+1 =a+

Proof: introducing equation (6) in the joint dyn:ﬂ:lsniexpressionl;)th +h =a+

get the expression of the babies’ dynamics in foncof their mother law of motion of life
dynamics. The babies’ dynamics can thus, be lodateeference to their mothers’ dynamics
through the parametessandy.

Assumption 2 according to assumptionl, in order for the traissiman risk to be low, we

must havey<1 for a<O to hold, otherwise since>1 it yieldso>0 and may become too high
making the sum of the mothers and the babies stec&ming negative
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Definitionl: f is a stages function if there exist a subdivisiedz, , z ,..., z } such that for
eachxlj]zi ,ziﬂ[,-zo , fis a positive and increasing function

Lemma 3 wheny<l and a<0, the system converges to the stable steady, stdterwise
when y>1 the system becomes unstable in order to resigheoattacks of the infection
highlights by the positivity of HIV/AIDS in the imne system expressed by the risk
parameter,a>0. Then the system describes several stages ckescyand chaos arise
expressing the fight of the body for both healthintemance and human reproduction
worsened by medical care shortages in Sub-SahafiaceA

Proposition 2: a given disease transmission risky) defines a gap G between the lives
dynamics of the mothers and the babies, G£'b h.1 such that (b1 ,b+1") converge to
some locus around the steady state, indeed:

If a<y<1, there exits G >0,such thath ,b[+1h) converges to (1)), then becausg<l, a<O0,

the path is optimal otherwise$1, a is too high and the sum of the mothers and theéebab
stock becomes negative.

If y<a<y+2, the steady state where G=0 is reached at sooietpn the area, (b1 ,b[+1h)
converges to (1-2/ 1+ y) just before the mother reaches the HIV statevheny<1

Sincea>y+2, andy>1, the gap between the lives dynamics and thedgtetate G is a stages
function such that: if+2<a<(6)"*7; (hu1 ,b+1") converges to (1-(8%/y, V6 + ), there are
cycles of period 2; if+(6)*? <a<y+u,, -1, there are cycles of periods'¥2 34 and (h:1
.bt+1h) converges to {t1-u, )y, y+pu, +1); if p+u.-1<a<y+3, the dynamic process of
pregnancies is chaotic and(h ,b.1") converges to (1-3/,y +3), the mother has crossed
the AIDS threshold, the baby is unable to survive.

Proof. because the map is topologically conjugate to the logistic magh;) and the
dynamics expressed in function of the transmissigiy oo and the risk neutral transmission
parametery then for a given value g@f=u(a,y), we can find the corresponding valuesoin
function ofy which will give the corresponding deaths optimahamwics of the mothers and
determinate the lives dynamics of the babies. Fgiven value of:(y) the stable orbit of new
forthcoming healthy babies can thus be determifibé. steady states are calculated in the
usual way of lettingh= g(a, y) andb= b"(h,a,y) for the bifurcation points of the logistic
map, define G, - hs1 as the basic reproductive stock which guaranteesspecies
continuity, in reference to the epidemiology litewre, it is the key parameter which
determines whether the disease spectrum doesst iexthe long run (when G=0 because
v<1 anda<0) or becomes endemic (Wwh&»0 becausg>1 ando>0). Whena<y<1, the lives
dynamics converge to its highest locus as provethbyfollowing corollary 2In contrast,
wheny+u.-1<a<y+3, there is a chaotic behavior of the dynamics of nithers and the
babies’ because the spectrum which expresses thindaves term around the steady state
reaches its highest level wherel anda>0. In the area+(6)**<a<y+u., -1, the dynamics of
the mothers defines a 2r periods steady stateheirarea+2<a< (6)">7y , there is a stable
cycle of period 2 pregnancy process; in the ayga<y+2, the dynamic process of
pregnancies is divided in two parts where at tHe d&¢ G=0 because<l anda<0 the
fluctuation of the dynamics is small and almosbkadut at the right of G=0, the increasing
and decreasing curves of the dynamics accelertdegrogression toward a kind of non
stability, the stable orbit is ruled out whel ando>0. Indeed,b" >y means thathe
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infection impact on babies’ life is positive singel, thus, disease is no more free and G>0.
In contrast, the steady state arises from thetstreiof the lives dynamics when G=0 leading
to the highest steady state sir®a" = hy1. For y<a<y+2, the infection risk transmission
exists and determines a stable endemic case. Bet jH2<a<(6)">+y , there arecycles of
period 2. After the cross of the AIDS state or elés death, the system is chaotic and there
are no lives possible since the dynamics of repholn is too far from the steady state (see
figure 1).

Corollary 2: denote the mapping H where H={(M((y)) such that there existgy), y for
which, (R D" ) converges to (m),n(y))}, H is a convex function meaning that in presenc
of decreasing HIV/AIDS, the sustainable path cogestto the steady state.

Proof. the limits of the joint dynamics found in proposn 2 fory<l andu<O when drawn in
a figure lead to a decreasing curve or figure 2cWhiepresents the relationship of the
mothers and the babies limits of the dynamics aglliights the fact that the optimal solution
is reached aft; =1 andb"=y<1, thusa<0. Thereforeh, andb" inside the range 0 andténd
to theoptimal solution where only one solution reachiing steady state exists (see figure 2).

Proposition 3: the conditions for the spectrum convergence toeOthe existence of the
couple of scalarS(V. a') for which Li(rg]G =0 yield: if a<y, then G converges to O if and only
aly,

it (y,a) - Min{(23),(10)} = (10); if y<a<y+2, then G converges around 0 if and only if
(y,a) - Min{(\/_2;3.41), (— \/5;0.58@}: (— x/§;0.58@; if y+2<a<y+(6)"?, then G converges
around 0 if and only if(y,a) - Min{(1,345) (2755)} = (1,345); if y+(6)"? <a<y-1+u.. ,
then G converges around 0 if and onlyjifa) - Min{(135),(- 11. 5)} = (- 11.5); if y-1+u.,
<a<y+3, then G converges around 0 if and onlyyfa) — Min{(- 30,(14)} = (- 3,0);

Proof: for the first case, settingry in the expression of G and making it equal to zer®
find G converge to-1=0 yields y converge to 1 or ta then replacing that value in the
linking equation witha yields, « converge to D or to I. Doing the same thing for the
following cases, we obtain the limits announcethm proposition 3 where, ~3.5.

Proposition 4: if the transmission risk doesn’t exist @0 theny=1 or y=-3 meaning that
o<y or y-1+u,, <a<y+3. Otherwise, if 0€<1 theny<0 or y<a<y+2. Finally, if a>1 theny=1

or y=-1 respectively whep+2< a<y+(6)*? andy+(6)*? <a<y-1+u.,

Proof. in the chaotic behavior of the dynamics, transiois risk doesn’t exist because birth
not exist either, the chaotic behavior leaves mgthpossible whep=-3 for y-1+u,, <a<y+3

or when the future mother is not infected)= for a<y. When the transmission risk is low,
the system still able to defend itself in the secoase where<0 for y<a<y+2. Finally when
the transmission risk begins to widen, cycles appd@ch can be of period 2 or of period 2r.

Next section presents a one sector growth modethith the epidemiological model is
introduced.
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THE ECONOMY

There is a continuum of individuals of magésWe assume the medical production function is
composed of sick and healthy pregnant women exgdesgf(k; ,b", h) wherek; is per-capita
capital stock or medical-care stock and the deptieci rate of capital is [1(0,1].

Assumption3The production functiof(k; ,b", h): R.> — R, is aC? function and satisfies:
1.fis strictly increasing and concavekind', andh;

2. f satisfies Inada conditionsgilim_ofi=o0, lim_..f1=0 and lim" _¢f=c0, limp" _..f=0;
limp_ofz=00, limn_,f3=0;

3.1(0, b", h)=f(k, 0, h)=f(k, B, 0)=0.

We assume that for each individual, the instantasedtility function is time additively
separable and depends on consumptioand health statej=(d” , d") i.e respectively the
baby and his mother’s health state.

Assumption 4The individual utility functionu(c, d)is aC? function and satisfies:

1. uis strictly increasing and concavedn ¢

2. u satisfies Inada conditions, i.e. imy u; =co0 , and limy_ Uz =o0;

3. uis additively separable in consumption as wellnalsaalth andli; >=u,,=0.

Let d(c, d)denote the marginal rate of substitution betweealth@and consumption i.€(c,
d)=u,/u; .Additive separability implies thafl(c,d) admits an optimal solution, thus doesn’t
oscillate.

We want to study the social planner's problem. Dhgective of the social planner is to
maximize the average individual utilities whichdscounted at the rafe with 0<p<1. As
the utility function of each individual is additilyeseparable, the optimal allocation will have
full insurance of consumption i®'=c/ =c (i.e healthy and infective pregnant women per-
capita consumption are equal) and the same forcggita health state i.6=d;=d; for
simplicity. Thus, we do not have to keep track of individualltirehistories and we can show
the results analytically.

Denote the welfare function by(c; ,d; ,b", h)=hu(c ,d )+bu(c ,d;)
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y+3

v
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Figurel (proposition 2 representation)

Lemma 4 The social planner’s objective function U(c, d\, h): R.* >R is a @ function
which satisfies:

1. U is strictly increasing in both ¢ and d, and stiyaconcave in (cgl);

2. U satisfies Inada conditions, i.em._.o U; =0 andlimgy_q Uy =;

3. U is additively separable in consumption and hea&hU,;, =U,; =0.

Proof From the assumption an we have

Uz =hu(c, d)+b"uy(c, d)>0

Us=hu(c, d)+b"ux(c, d)>0

Assuming pregnant individuals work to finance ttetays at the hospital, indeed we have:
Uzi=hua(c, d)+b"uys(c, d)<0

Uzz=htks(c, d)+b"uzo(c, d)<0

U12=U21:hU12(C, d)+th12(C, d)=0

U11U22-U12U21>0.

Hence, for the social planner's objective functidhe marginal rate of substitution

6 (c,d)=U,/U; is also an increasing function gfthen it is possible to show the monotonicity
of the optimal capital stock.
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Figure 2 relative to corollary 2

The social planner’s maximization problem is giverby:

Max 38U (c,.d,.bP,h )

(detrkul) t=0
Sc
Koy —(1-3)k, +¢, +d, < fk,b",h) Ot
ho =h +[2y-a)-h]1-h)
2v—-a
bt+lh -a+ (y—y) - ht+1 =bl+1h(hf)
k>0, g >0, d >0 [t
ko >0, 0< hy" ,hp <1 given
The state variables ake, hh , hand the control variables atg, d andk:+1

THE EQUILIBRIUM DYNAMICS

Define F(k: ,b" ,h)=f(k; ,h" ,h )+(1-n)k . Sincelim_oF1=o , we havek>0 [t if ko>O0.
Sincelimi_..F1<1 , there exists a maximum sustainable sl for each fixedb” , h) and
K' is increasing in i’ , h) by the implicit function theorefn Hence K™ with F(k™®
a+1/y,1)=K"is the maximum sustainable stock forkgld’ O [0, 1]. Therefore we havé
b h) O X=[0,k™x[0,1]x[0,1] [ R® and the seX is closed and bounded.

“1f f(xo, Yo )=0 and fy’(Xo, Yo J#0 , then the equation f(x,y)=0 defines y as an “implicit function” of x i.e y=p(x) of x near xo with yo =p(xo) and
with its derivative given by y’=-f'(x,y)/ f,'(x,y)
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According to dynamic programming methods and thénten equation, the social planner
problem can be written such that:

Vik.bh)= Max |ulc,d, b )+ BV (k. bl b
St
Ky —(L-mk, +¢, +d, < f(k,b",h) Ot
h. =h +[(2y-a)- i ]L-h)
(2y-a)
y

k>0, >0, d >0 [t
ko >0, 0<by” , hy <1 given

h —
bt+1 + ht+1 =a+

Isolating the choice of consumption and of labopmy from the investment choice in
decomposing the planning problem into a static lermband a dynamic problépnthe static
problem is given by:

W(kk',h)=  Max )U(c,d,b“,h)

(q )0 B(k,k,b™,h

Blk.k',b",h)={(cd)OR?/ 0<d <1 c+k's F(k,b",h)}

Lemma 5 W is continuous and bounded, and the maximizersc®', h) and d(k, k b", h)
are continuous functions; W is strictly concave (kp K) for each fixed (b h); W is
continuously differentiable and 30, We<0, Wi>0, Wa,< O for each fixed h and™d

Proof: sinceU is continuousandB(k, k', B, h)is continuous and compact, by the theorem of
the maximum, the functioWV is continuous and the maximizers are non empbdynpact
valued and upper hemi-continuous. Since the obectiunction is strictly concave, the
maximizers are unique and continuous functionsc&ik k', h", h) €X=[0,k™*{x[0,1]x[0,1]
which is compactW is bounded. Fixingh H' ) and choosing an}c[0,1] and letting(c, , ch

) being the maximizers gk, ,k’, b" ,h)and(c, , & ) being the maximizers @k , k', b" , h)
then(icy + (1-2)cz , A(1-ch) + (1-2)(1-a)) is feasible forik, + (1-A)kz , Ak's + (1-2)K'2, b ,h)
and

W[Ake+(1-kz 4K 1+(1-2)K'2, B h]2U[Ac+(1-2)co A(L-ch)+(1-2)(1-ck), b ,h]

>U(c 10, B h)y+(L-)U(c ,1-a; , b" ,h)=IW(q k' b" h)+(1-)W(k k' b, h) by
strict concavity ofU, thus,W is strictly concave for each fixed"(, h). Let (c*, d*) be the
optimal consumption and health care supply, byédheelope theorem\V is continuously
differentiable, Wy=U 1F1/(cx g+ >0 andW>=-U1/+q+ <O . Given the Inada conditions, the
corner solution can be ruled out, thus the optismdiition given byc*=c(k, k', b" ,h) and
d*=d(k, k' b", h)is determined by

Fo(k, hd+d'd)-6(c,1-d, B , h)=0 andF(k, dh+d' )-c - k’=0. By the implicit function theorem
c(k, k', B' ,h)andd(k, k', B' ,h) are differentiable in the neighborhood kf ', h) and(k’, b"

, h).

* Aiyagari et al. 1992
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Based on the properties of the functidfabove, the dynamic problem is given by:

Vionnh)= o Max o Wik kBB AV (KB R
Where
(s, 0%, s JOR® 7 kg < F i, b1 ) and hy,, =h +[(2y-a)-jh](L-h)
Aol )=1 o, +h,, =ar+ 2V 29)
y
and 0$<1

Let the optimal capital investment kg;=g'(k ,b" , h) whereh., andby." are governed by
the mapping ghy) andb(h)

Lemma 6 V is continuously differentiable, strictly concamek for each fixed (b, h) and g’
is a continuous function

Proof: since X is a convex subset df Rnd the correspondené&e X — X is non empty,
compact-valued and continuous, the funcWins continuous and bounded, from Lucas and
Stockey (1989) theorem, there exists a unique vélunetion which solves the dynamic
programming problem and the policy correspondeaasmpact valued. Sind# is strictly
increasing ink in the way thatg <k, implies A(k, , b", h)O Ak , ", h), Vis strictly
increasing in k in the way thit , k € [0, K"+

Given (ko b0, b, ), the sequence (kb h )7, defined by
(k..p.b .0 ) = (92 (k,,b", b ), @' (h),b" (1, ) is the unique solution which satisfies) {.e

W, (ke K B 1)+ BV (K Bl By ) = 0
W, (K, Ky, b0 ) =V (kB 1)
h. =h +[(2v-a)-h ]Ja-h)=0(h)

bre1"(hy) = a+(2yy a) -h,

Lim BW, (k. k. B 1y J, =0

The dynamical system has three state variaklesd 6" , h ). Therefore, the dynamical
system is given by the vectfX, g, 1Y), whereX={[0, K"™x[0,1]x]0,1]} is the state space.

Lemma 7: the sequencékt )f';o is strictly monotonic for every fixed "

Proof: from the system of equations  S)( we have
W, (kg% b!"h )+ BV, (g*(k. b h ) g'(h).b"(h,,,)=0 by substitution into the policy
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function. By the implicit theoreny! is differentiable irk for a fixed p", h) and the chain rule
W21+W229111+ﬁV119111:0, thus gllz-W21 /\/\/22+ﬂV11 . SinceW,:>0, W5,<0 and V41<0, we
haveg:'(k, B' ,h)>0 i.e g is strictly increasing in the first argument. Herfor every fixed
(", h), if ke>ko , ke =g*(ks ,b" ,h)>g*(ko ,b" ,h)=k; and by inductiork.1>k; for everyt.
Similarly if ky <ko , k+1 =k for everyt. Thus the sequendk)-o “ is strictly monotonic for
every fixed b" h).

Fixed Points
Definition2: let the sef2 be such thaQ I R" , the mag: Q—Q is said to have a fixed point
if there exists xf1 Q such that(x*)=x*

Proposition 5: if o<y and y<a<y+2 where, a<0 and y<1 as well aso>0 and y>1, the
sequence (b,h)w=” converge to some locus around the steady staterevfbr fixed (B ,h*)

the sequence dko” is strictly monotonic (lemma 6) and bounded i.€ k0, K"®]. By the
monotone convergence theorem, ) “ converge to some fixed point k*. Because of the
uniqueness of the limit and the continuity of trepping, h*=g(0,0, h*), 8" =g*(0, J' ,(0)

and k*=g'(k*, b™ ,h*) as the set X is closed, it yields (k¥, bh*) €X

Cycles
Definition3: let the se2 be such tha®2 OR", the map: Q—Q is said to have cycles of
periodr>1 if we have l(x)=x

Proposition6: if y+(6)/*<a<y+1.-1, the system has cycles of peri#dd, r=1,2,3,...and for
eacha there is a unique periodic orbit which is attnagti

Proof: consider the case of1 first, if y+2<a<y+(6)*? from lemma 6, the sequen(i)-o”
has a unlq]ue attracting cycles of period 2. Softhraanyt>T, (k)w=o” takes value from the set
0(g) =((b.", b,"),(hy 1)), and we substitute the valuelgt, h; into the mapping® for t>T :

Krw = g*(k; ,bMy)
Koz = 0% (ke b3 1, ) = g*(g*(kr BP0y ) B3, 1)
g*(kr.o, b1, hl)—g (9*(kr., b2, ) bf
Krva = 04 (Kpas 01, ) = 4@ (ky.s, b1, ) B2 )
gl(kT+4'b1 hl) gl(gl(kns’bzh’ )b1 h1)

We deflne a new sequenf{@r.zj )0~ = {kT . Kre2 . Krea , . }Wlth kT+2(J+1) =g'(g" (kT+2J ,

), B hy). If kr <kr.a d (kr, b b )< glkri , by ) since g'(k, b" hl)ls
mcreasmg irk for fixed b,", hy , and thus, by the same reasorkng =g*(g'(kr , b, hy), b,"
, l)<g® (g'(kr2, b, hy), bzh , ) = kr+1 . Hence, by inductiorkrsz; <krizgyy O j .
Similarly, if kt >kt+2 We han(T+2j >k'|'+2(j+1) O j , and ifky =kg+2 we han(T+2j :kT+2(j+1) O
j. Hence, the sequencde{zj}Fo‘” IS strictly monotonic. Moreover, sinceky }j=o~ IS a
subsequence of{}=0" then{kr.zj}j=0” is bounded. By the monotone convergence theorem,
{kr+2i}j=0" converge to some fixed poikt*. By the uniqueness of the limit and continuity of
the mappings'(g'(k, 1", hy), ", h), ke* is determinedby k*= g'(g'(ke*, by, hy), k2", 1)
andk* J[0, K"™]. Similarly, we can define the sequenég.{.zj}j=0 * = {kr+1 , k3 , krss . .

kT+3

Kris =
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I with kreaezgeny =00 (Krs1+2) , 1), hy ). This sequencekf+1+2}j=0” converge to some fixed
point, ko* determined by.*=g*(g'(ko*, bo", hp), b, hy) andk,* O [0, K"*]. Therefore, by
construction we decompose the sequenkgif-o” into two subsequenceskrsj}i=o”
consisting all the even terms and convergingztoand {kr+1+2j }j=0” consisting all the odd
terms and converging t0*. Thus, {kr+}j=0” will fluctuate betweer* andk,* for sufficient
large j. Moreover kr.}i=0” is the tail of the sequencéi=o”, SO {k}=o~ has a cycle of
period 2. Hence, the system has a cycle of periochih is attracting.

Second, if-2<a<y+ u,—1, from Lemma6 the sequencehf} =" has a cycle of period
2r,r=234,...Moreover for each, there is a unique attracting periodic orbit. Bwoling
the same argument above we can show the sequieheg’{has a cycle of the same period as
{b:", h}=0”,. Hence, the system has a cycle of periodr2= 1, 2, 3, 4, . ...

Chaos

For a one dimensional system, if the Lyapudhexponent is positive, then the orbits from two
infinitesimally close initial conditions diverge ganentially over time and there is sensitive
dependence on initial conditions. For higher dintms system$s the local behavior of the
system depends on the direction and the nearbyspwiay be moving apart in one direction
but the other move together in anothdirection. To prove chaos existence, it is neagssa
study the behavior of the entire system,d.e.(g*, g’.

Definition4 Let | be a smooth map of2 [ R" andJ'= Dh'(xy), J"= D(b")'(yo) be the
Jacobian oh'(x) and (5)'(y) respectivelyevaluated at an orbit starting point from the aiti
condition % and y. Leti," , q=(1, ..., D andi , p=(1L ..., n be the eigenvalues df
andJ" respectively, then thgth andpth Lyapunov number of, and y is defined byl =
limr_.. (iq")"" and L, = limr_., (4,")"" if this limit exists, then theth andpth Lyapunov
exponent ok, and of y is respectively such that:

M= Lim1 Ln/lT‘ andl = Lim1 Ln/lTp‘

TaOOT q Too
The set of all the Lyapunov exponents i.¢ :{rl,rz,..rq,..rn} and I":{I'l,l’z,..l’p,...l'm}

are called the Lyapunaspectrum of the dynamical systems, andbi.1". Using the concept
of Lyapunov exponents, we can give the definitidrcloaotic orbits of higher dimensional
maps®. The conditions 1 and 3 below are standard and foslthe conventional definitions
of one-dimensional chaos. Condition 2 is to rule quasi-periodic orbits which are
predictable.

Definition5 Letl, mbe a map o2, Q' [ R'and let o, X, . . } and {yo, y1, . . } be a
bounded orbit of, m. The orbit exhibits multi-dimensional chaos if:

1. It is not asymptotically periodic,

2. No Lyapunov exponent is exactly zero, and

3. At least one Lyapunov exponent is positive.

®The Lyapunov exponents are away to study the divergence of orbits on an attractor and other invariant sets.

” The definition of higher dimensional chaos is provided by Alligood at al, 1997, Chap.5

® The definition of higher dimensional chaos that we use (see Alligood et al. 1997, Ch. 5) is equipped to deal
with such issues. This definition also relies on the Lyapunov exponent. Note that while it is well known that g2
on its own exhibits chaos (Ott 2002, Section 2.2) as it is topologically conjugate to the logistic map and has a
positive Lyapunov exponent,

? Note that g exhibits chaos, see Ott 2002, Section 2.2

° Alligood et al. 1997, p. 196
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Proposition 7: if y+u.,-1<a<y<a<y+3, the dynamical system exhibits multidimensiarelos.

Proof: the orbitO(g") = {(ko , b" ho), (k. , b" hy), . . } is bounded sincék; , b" ,h) O X.
Beyond the accumulation point of cycles of period that isuco<u<4 whereuw = 3570. .,
the logistic mapL has a chaotic attractor with an infinite humbereofibedded unstable
periodic orbits. Since the mappimgandL are topologically conjugate and the Lyapunov
exponent is invariant with respect to topologicahjogacy,g has the same Lyapunov
exponent as the logistic map, L which is positiveewy+uoco—1<a<y+3 (from Lemmad). It
turns out thal™® =(y ,I'p) i.e the Lyapunov exponent gf is one of the Lyapunov exponent

of mappingg as well, that is"? = IT_im%‘Ln(/l;q)+ Ln(/lgpl >~ 0 because the Jacobian of the
% O
2

9,
Mo=r,+M,= IFET%"‘”(/]IP% Ln(/]m where A} =N,

system is given byJ+J" :J:( j and the second Lyapunov exponent is

g(k.b"h)  and

gi(kt,bth,htl. For this Lyapunov exponent to be exactly equatdm it must be

Ay =N,
thatg'(k, b, h)=1, Ot. As gk , b", h)=—Wb1 Mh, +8v11 , we can see that this will not be
true in general. The orb®(g") is not asymptotically periodic as the dynamics goeerned
by the well-known logistic map. Thus, the orbifg") is not asymptotically periodic as well.
Therefore, the system exhibits multi-dimensionahah Note thatg=y+3 is equivalent to
u=4 in the logistic map, whem=4 the orbit is dense in [Q]. Henceh", h may be equal to
zero and the population cease.

In summary, the monotonicity of capital accumulatigor fixed b" , h) implies that the
dynamics of the system are fully determined by dise=ase transmission dynamics. Non-
linearity in the disease transmission dynamics ratuce fluctuations in the population
growth and dynamics. We find that sufficiently lar¢dlV/AIDS transmission risks and
unhealthy babies’ stock can generate complex dycegmi population growth. Intuitively,
when the transmission rate is low (relative to labies’ healthy rate), that is<y , a<0 and
v<1 the inflow into the infective class is small \éhihe outflow is relativelyarger. Thus, the
number of infective people is decreasing which $e#ml an eversmaller inflow as less
pregnant women are infected. Therefore, the nuraberfective pregnant women will keep
declining and eventually becomes zero which leadgpper babies stock. This is the disease-
free steady state, and is the same as the one sectarlassical growth model where the
disease is absent. When the HIV/AIDS transmissaig s such that<a<y+2, theinflow
into the infective class is larger than the outfland the system reaches the stedtéady
state with a fixed proportion of infective peoplehis is called the endemior disease-
persistent steady state and has a higher levehysigal capital or medical care stock and
lower economic performance compared with the diseaseefise. This can easily be shown
by the comparative statics of the steady states.|3iiger the proportion of healtipgople is,
the lower needs of the capital per capita for mediare use is. The disease-free and endemic
steady statetiave been the focus in the economic literature.w&sabstract away from
change inpopulation size, the disease prevalence has anrsalwdfect on the economy
throughits impact on labor productivityWhen both the transmission rate and the stabifity o
health rate are high non optimality establishesabse the mechanics of the pandemic

66



International Journal of Development and Econo®icstainability
Vol.1, No 3, pp. 52-70, September 2013

Published by European Centre for Research TrammmiDevelopment UK (www.ea-journals.org)

HIV/AIDS are stronger than those of the immune eystcycles and chaos emerge in the
population growth and the economy dot have a locally stable steady state. If the
transmission rate is high, a large numbghealthy pregnant women are getting infected and
babies too, thus the both move into the infectias< Indeed, theumber of healthy future
mothers will decline and the number of infectiveufie mother willrise. In contrast to

the epidemiologic literature, here many pregnanmewn are unable to move from the
infective class to the healtltjass as a result of recovery from the disease ibtihe system
didn’t reach cycles of period 2r and chaos. If doadition ofa<y+2 is satisfied, then the
number of healthy future mothers increases whike nbmber of infective future mothers
drops. Therefore, the numbei healthy pregnant women in each class fluctubtepy, and
eventually they may not reach two cycle of period 2= 1, 2, 3, 4, . . .or exhibit chaotic
behavior. Which situation is realized depends anr#iative rate of flows in and out of the
classes, that is on the magnitudesacdnd y. Moreover, the oscillation in the number of
healthy pregnant women causes the fluctuationsetapital stock, and consequently, causes
population growth fluctuates endogenously..

Application of the theory
The utility function of the agents is(c,,d, ) =In(c, )+ £In(d,) because of the hypothesis of

full insurance of consumption and health care. &fuee the social planner objective function
is U(c,,d,,br"h ) =In(c,)+h In(d,")+b" In(d?) ™

The medical production function IS of Cobb-Douglas i.e

y, = Ak (0" )’ (n )" where 0< 0,4 <1 and capital fully depreciate on use.

The social planner’s problerS’j is:

Vik.h)= Max [In(c,)+ b n{d )+ bl In(d?)+ Bv k. bl )

G0 oK
St

Ky +¢ +d, < Flk.b"h) Ot
h., =h +[(2y-a)-h]L-h)
bt+1h + ht+1 =a +—(2y _a)

y
k>0, g >0, d >0 [t
ko >0, O<ho " ,hy <1 given

The first order conditions are:

1/¢, = BV, (ke b, By )= 0 (i)
h/d," = AVi (ks by P ) = O ()
b /d," = AV, ke, b 1y )= 0 ()
Vi (kb 1) = BV, (ke bl by JF (kB 1) 0

! See Goenka and Liu, 2012, p.137
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Combining (1) and (3) as well as (2) and (3) itgse

1 1y, 1 Yis
1/¢c, = B—Fk..,b",,h. | =AcB—=1L = Ag 4
A (ke bl 1) el
/4" = ARE, (kb h) = AQ- 8- 0)p - Vet < p-5-g)p e
dt+1 dt+l ht+1 dt+1
h h
P + —_ + y+ _ y+
b/ = B (k. bl R ) = AGE 2 Yer - agp Yo
d., d..° b, d..c

In the long run we havet, =c.,; Y, = V.., d,’' =d.,' added with the assumption

dtb = dth Ot , therefore re-writing the equations in dynamieams we get:

b = AdBy, (7)
h = AB(L-J-0)y, (8)
C = (1_ A/BJ) Yi — dt (9)
Indeed,
kt+1 =Y~ (Ct + dt) = AU,Byt (20)

Proposition8: both the mother and the baby dynamics are expraassedhction of per-capita
capital expressed by, =A k"™ ,b" =A,k" define per-capita capital law of motion given
by equation (11) i.e

K., = (J,BA4 A(i Alz—a—d' )kta+N6+M(1—a—6) (11)
WhereA, - A, and N > M

Proof: introducing the expression of the production fumetinside equations (7)-(9), then we
determinate the dynamics given where each congéaigble depends on parameters and thus
express parameters inside the range 0 and 1.

Proposition9: the economy admits a unique optimal solutian ik b"w=o” for a<y and the
system achieves the disease free steady statby/safis

Kt = (JﬁA4A(iA12_U_5 )—[U+N5+M (1-0-0)]
h* = A, (oBA* A3 -2
If transmission risk is located such thata<y+2, then the system achieves the endemic
steady state andy,” +h =100% leads to one feasible solution for health maintereai.e

-N[g+NJ+M (1-0-3)] .

b = A, (oBatas Ao :

)—M [+No+M (1-0-3)]

y= -1/2+4/3/2 ; if transmission risk is located such that2< a<y+u.-1, then the system
has cycles of period 2and b," +h =100% lead tou,, = (1—y— y‘l)ll— y* where r=1, 2, 3,
4,... because the dynamics presents cyclegtdf-1<a<y+3, the system is chaotic and
bth +h,=100% yields multiple solutions where the evideme g/ = (\/2_1+ 3)/2 and

y'= (—x/2_1+ 3)/2 and summarize a chaotic behavior.
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Proof. solving the equations of proposition 8 in thedann terms i.e fixing the time for the
variables, determinate the steady state locus migspopulation growth equilibrium i.e the
stable optimal path existence. The following calsuhim is to look for the stable equilibrium
in fixing the joint dynamics to hundred percent.

CONCLUSION

The model began with the disease transmission dsarm conformity with the
epidemiological literature and established thateittansmission risk is positive, the immune
system rise in order to fight against HIV/AIDS aprbtect the baby whom life dynamics
depends on his mother’s health state. Therefoeegaten levels of infection and protection,
the pandemic force is higher than the natural hestte power which thus arise cycles and
chaos in opposite to the stable steady state. péetrsim is a stages function after the cross
of a given infection gravity. The introduction dfat literature inside the one sector growth
model highlights the medical production function use for health care, then the social
planner aim is to maximize the utility function bébies and the mothers to ensure life
continuity and make population growth reached teble steady state. Unfortunately, in
contrast with the SIS model, the recovery mechanioesn’'t work and life fluctuates
endogenously. That is the state of evolution inic&frwhere still prevailing lake of
information on that illness evolution and limitat®on medical care. The model is useful to
understand the way disease such that HIV/AIDS fannhappear in Africa as well as gives
tools to understand how to deal with it.
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