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ABSTRACT: This paper shows the calculation of velocity field and shear stress 

corresponding to Generalized second grade fluid performing sinusoidal motion. Shear stress 

is found by using 𝐷𝑡
𝛽

 Ga,b,c(.,.) = Ga,b+β,c(.,.) [4]. Velocity field obtained by applying Laplace 

and Hankel transforms. The solution have been written in series form by using generalised 

function G.,.,.(.,t) and Bessel functions. 
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INTRODUCTION 

The exact solution corresponding to the flow of fractional second grade fluid in circular 

cylinder were found and written under integral and series form by using G.,.,.(.,t )  function and  

found Newtonian and ordinary second grade fluid performing the same motion [1]. The aim of 

this paper is to calculate shear stress corresponding to non-Newtonian fluid by applying 

fractional derivative and the result mentioned in abstract of this paper. 

The non-Newtonian fluids with fractional derivatives have encountered a lot of success in 

describing complex fluid dynamics. The governing equations corresponding to the motion of 

fluid are obtained from those of ordinary fluids by replacing inner time derivative by the so 

called Riemann Liouville operator Dβ
t defined by 

𝐷𝑡
𝛽

 f(t)  =   
1

ɼ1−𝛽

𝑑

𝑑𝑡
 ∫

𝑓(𝜏)

(𝑡−𝜏)𝛽
𝑑𝜏

𝑡

0
               0 ≤ β < 1 

= 
𝑑

𝑑𝑡
𝑓(𝑡)      β = 1 

An excellent discussion of fractional differential equation and a good history of fractional 

calculus is given by K. S. Miller [9] carl. F. Lorenzo [3] presented a very useful paper on 

fractional derivative which are much flexible in describing visco elastic behaviour of fluids [6] 

M. Kamran [7] and A. Mahmood [8] presented exact solution for unsteady rotational flow of 

the generalized second grade fluid. M. Athar [2] solved Taylor–Couette flow of the generalized 

second grade fluid. 

Governing Equations 

In this paper we consider the velocity V and the extra stress S of the form  

𝑉 = 𝑉(𝑟, 𝑡) = 𝜔(𝑟, 𝑡)𝑒𝜃 

𝑆 = 𝑆(𝑟, 𝑡) 
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Where 𝑒𝜃 is the unit vector in the 𝜃 direction of the cylindrical coordinate system.  At 𝑡 = 0 

we have  

𝜔(𝑟, 0) = 0 

The governing equations corresponding to such motion of ordinary second grade fluid are  

𝜏(𝑟, 𝑡) = (𝜇 + 𝛼1
𝜕

𝜕𝑡
)(

𝜕

𝜕𝑟
−

1

𝑟
) 𝜔(𝑟, 𝑡)    (1) 

𝜕𝜔(𝑟,𝑡)

𝜕𝑡
= (𝜗 +

𝛼𝜕

𝜕𝑡
)(

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
) 𝜔(𝑟, 𝑡)        (2) 

Where µ is dynamic viscosity of the fluid and 𝛼 =  
𝛼1

𝜌
  is material constant; 𝜗 =  

𝜇

𝜌
   Kinematic 

viscosity of the fluid. Where 𝜌 being its constant density and  

𝜏(𝑟, 𝑡) = 𝑆𝑟𝜃(𝑟, 𝑡) is the shear stress. 

Governing equations corresponding to fractional second grade fluids are obtained by replacing 

inner time derivative w.r.t “t” by fractional derivative 𝐷𝑡
𝛽

 , 𝛽 > 0. 

𝜏(𝑟, 𝑡) = (𝜇 + 𝛼1𝐷𝑡
𝛽

)(
𝜕

𝜕𝑟
−

1

𝑟
) 𝜔(𝑟, 𝑡)                                     (3) 

𝝏𝝎(𝒓,𝒕)

𝝏𝒕
= (𝜗 + 𝛼1𝐷𝑡

𝛽
)(

𝝏𝟐

𝝏𝒓𝟐 +
𝟏

𝒓

𝝏

𝝏𝒓
 −

𝟏

𝒓𝟐) 𝜔(𝑟, 𝑡)                             (4) 

Flow through a circular cylinder with a shear on boundary 

Consider incompressible generalized second grade fluid at rest, in an infinitely long cylinder 

of radius R>0. At time t=0 fluid is at rest and at time t=0+ cylinder begins to rotate and boundary 

of cylinder applies a sinusoidal shear stress on fluid. The fluid is gradually moved. The 

governing equations as given by (3) and (4). Boundary conditions and initial conditions are  

ω(𝑟, 0) = 0      Where  r𝜖(0, 𝑅] 

𝜏(𝑅, 𝑡) = (𝜇 + 𝛼1𝐷𝑡
𝛽

)(
𝜕

𝜕𝑟
−

1

𝑟
) 𝜔(𝑟, 𝑡)⃒(R=r) 

=  Ω𝑅𝑠𝑖𝑛(𝜔, 𝑡) with t>o 

Ω is constant 

Calculations of velocity field 

Applying Laplace transform to (3) and (4), and then applying Hankel transform and breaking 

𝜔̅𝐻 (𝑟𝑛, 𝑞) into two parts [1]. 

𝜔̅1𝐻 (𝑟𝑛, 𝑞) =  
1

𝜇𝑟𝑛
2 (

𝑅𝐽1(𝑅𝑟𝑛)𝛺𝜔𝑅

(𝑞2+ 𝜔2)
)                                         (5) 

and 

𝜔̅2𝐻 (𝑟𝑛, 𝑞) = −
𝑅𝐽1(𝑅𝑟𝑛)Ω𝜔𝑅𝑞(1+𝑞𝛽−1𝛼𝑟𝑛

2)

𝜇𝑟𝑛
2(𝑞2+ 𝜔2)(𝑞+𝜐𝑟𝑛

2+𝛼𝑞𝛽𝑟𝑛
2)

                                   (6) 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.4, pp.1-5, August 2017 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

3 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

Applying inverse Hankel transform to (5) and (6) and then inverse Laplace transform we get 

the velocity field; 

𝜔(𝑟, 𝑡) =
Ω𝑟3

2µ𝑅
sin(𝜔𝑡)  −  2 ∑

𝐽1(𝑟𝑟𝑛)Ω

µ𝑟𝑛
2𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

𝗑                                   

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛

2, 𝑡 − 𝑠)𝑑𝑠 +

𝑡

0

∞

𝑘=0

                                    

𝛼𝑟𝑛
2 ∑(−𝜗𝑟𝑛

2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛
2, 𝑡 − 𝑠)𝑑𝑠]

𝑡

0

∞

𝑘=0

                       (7) 

Where generalized function Ga,b,c (d,t) is defined by [3] equations (97) and (101) 

𝐺𝑎,𝑏,𝑐(d, t) = 𝐿−1 [
𝑞𝑏

(𝑞𝑎−𝑑)𝑐
] =  

∑
𝑑𝑘ɼ𝑐+𝑘

ɼ𝑐ɼ𝑘+1

∞

𝑘=0

  .  
𝑡(𝑐+𝑘)𝑎−𝑏−1

ɼ(𝑐 + 𝑘)𝑎 − 𝑏
 

 𝑅𝑒(𝑎𝑐 − 𝑏) > 0 , ⎟
𝑑

𝑞𝑎 ⎟ < 1 

Calculation of shear stress 

𝜏(𝑟, 𝑡) = (𝜇 + 𝛼1𝐷𝑡
𝛽

)(
𝜕

𝜕𝑟
 −  

1

𝑟
) 𝜔(𝑟, 𝑡) 

 

𝜏(𝑟, 𝑡) = (𝜇 + 𝛼1𝐷𝑡
𝛽

)
Ω𝑟2

µ𝑅
sin(𝜔𝑡) + 2 ∑

𝐽2(𝑟𝑟𝑛)Ω

µ𝑟𝑛𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

× 

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛

2, 𝑡 − 𝑠)𝑑𝑠 +

𝑡

0

∞

𝑘=0

 

𝛼𝑟𝑛
2 ∑(−𝜗𝑟𝑛

2)𝑘

∞

𝑘=0

∫ sin(𝜔𝑠)𝐺1−𝛽,−𝛽𝑘,𝑘+1(−𝛼𝑟𝑛
2, 𝑡 − 𝑠)𝑑𝑠

𝑡

0

] 

 

=
Ω𝑟2  sin(𝜔𝑡)

𝑅
+ 2 ∑

𝐽2(𝑟𝑟𝑛)Ω

(𝑟𝑛)𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

× 

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛

2, 𝑡 − 𝑠)𝑑𝑠 +

𝑡

0

∞

𝑘=0
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𝛼µ𝑟𝑛
2 ∑(−𝜗𝑟𝑛

2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛
2, 𝑡 − 𝑠)𝑑𝑠] +

𝑡

0

∞

𝑘=0

 

𝛼1𝜔𝑟2 

µ𝑅
 [𝐷𝑡

𝛽
(sin(𝜔𝑡)] + 2 𝛼1 ∑

𝐽2(𝑟𝑟𝑛)Ω

𝜇𝑟𝑛𝐽1(𝑅𝑟𝑛)
 

∞

𝑛=1

× 

 (∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽𝑘,𝑘  +1(−𝛼𝑟𝑛

2, 𝑡 − 𝑠)𝑑𝑠 +

𝑡

0

∞

𝑘=0

 

𝛼1𝛼𝑟𝑛
2 ∑(−𝜗𝑟𝑛

2)𝑘

∞

𝑘=0

∫ sin(𝜔𝑠)𝐺1−𝛽,𝛽−𝛽𝑘,𝑘+1(−𝛼𝑟𝑛
2, 𝑡 − 𝑠)𝑑𝑠

𝑡

0

])                        (8) 

1. Newtonian 

Applying 𝛼 → 0 and 𝛼1 → 0 in (7 and 8) we get, 

𝜔(𝑟, 𝑡) =
Ω𝑟3

2µ𝑅
sin(𝜔𝑡)  −  2 ∑

𝐽1(𝑟𝑟𝑛)Ω

µ𝑟𝑛
2𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

𝗑                                   

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽−𝛽𝑘,𝑘+1(0, 𝑡 − 𝑠)

𝑡

0

∞

𝑘=0

𝑑𝑠                                    (9) 

𝜏(𝑟, 𝑡) =  
Ω𝑟2  sin(𝜔𝑡)

𝑅
 + 2 ∑

𝐽2(𝑟𝑟𝑛)Ω

𝑟𝑛𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

× 

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺1−𝛽,1−𝛽−𝛽𝑘,𝑘  +1(0, 𝑡 − 𝑠)𝑑𝑠]

𝑡

0

∞

𝑘=0

                     (10) 

𝛽 → 1 for ordinary second grade fluid 

𝜔(𝑟, 𝑡) =
Ω𝑟3

2µ𝑅
sin(𝜔𝑡)  −  2 ∑

𝐽1(𝑟𝑟𝑛)Ω

µ(𝑟𝑛
2)𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

𝗑                                   

[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺0,−𝑘,𝑘  +1(0, 𝑡 − 𝑠)𝑑𝑠]

𝑡

0

∞

𝑘=0

                                      (11) 

𝜏(𝑟, 𝑡) =  
Ω𝑟2  sin(𝜔𝑡)

𝑅
  x 2 ∑

𝐽2(𝑟𝑟𝑛)Ω

𝑟𝑛𝐽1(𝑅𝑟𝑛)

∞

𝑛=1

× 
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[∑(−𝜗𝑟𝑛
2)𝑘 ∫ sin(𝜔𝑠)𝐺0,−𝑘,𝑘  +1(0, 𝑡 − 𝑠)𝑑𝑠]

𝑡

0

∞

𝑘=0

                                 (12) 

 

CONCLUSION  

The velocity field and shear stress corresponding to generalized second grade fluid were 

calculated and written in the series form with the help of generalized function G.,.,.(.,t). The 

velocity field was calculated by applying Laplace transform and Hankel transform. Shear stress 

was calculated by using  

                      𝐷𝑡
𝛽

Ga, b, c (., t) = G a, b+β, c (., t)  

 Newtonian and ordinary second grade fluid were found as a limiting case.                   
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