FINITE SUBGROUPS OF THE ORTHOGONAL GROUP IN THREE DIMENSIONS AND THEIR POLES

J. K. Rimberia* and I. N. Kamuti

Mathematics Department, Kenyatta University P. O. Box 43844-00100, Nairobi, Kenya *Corresponding author

ABSTRACT: The action of finite subgroups of the orthogonal group $O(\square^3)$ on the set of their poles is well-known; (See Benson and Grove [1]; Neumann et al. [4]). In this paper we will use an approach different from the traditional one. We shall use the concept of marks of a permutation group. The results obtained agree with those obtained earlier (See [1], [4]).

KEYWORDS: Orthogonal group, Poles, Group action

INTRODUCTION

An orthogonal group of a vector space V, denoted O(V), is the group of all orthogonal transformations of V under the binary operation of composition of maps. If $T \in O(V)$, then $\det T = \pm 1$ and $T^{-1} = T^T$. The well-known finite subgroups of the orthogonal group in three dimensions are: the cyclic groups C_n ; the dihedral group of degree n, D_n ; the alternating group of degree n, n, the alternating group of degree n, n, are isomorphic to the groups of rotations of regular n-gons, n is isomorphic to the group of rotations of a cube or an octahedron and n is isomorphic to the group of rotations of an icosahedron or a dodecahedron. These rotations are all done in n (3 – dimensions), otherwise in n 2, some of them become reflections.

Notations and Preliminaries

Notation 2.1

Throughout this paper, G will denote a finite subgroup of the orthogonal group $O(\square^3)$ while τ will denote the set of poles of a finite subgroup G of $O(\square^3)$.

Definition 2.1

Let $O(\Box^3)$ be the orthogonal group in three dimensions, then the unit sphere $S = \{p \in \Box^3 : |p| = 1\}$ is left invariant by every transformation $T \in O(\Box^3)$. If $T \neq 1$ (identity) is a rotation, then there are precisely two diametrically opposite points; p, -p on the unit sphere which are left fixed by T. These are the points of intersection of S and the rotation axis for T and are called poles of T.

Theorem 2.1 (Benson and Grove [1])

Consider a finite subgroup G of $O(\square^3)$; each of its elements not equal to the identity has a pair of poles p, -p and the set of elements of G with a given axis form a finite cyclic subgroup of G. Furthermore if τ is the set of poles of non-identity rotations of G, then G acts on τ .

Theorem 2.2 (Burnside [2])

Suppose that the number of subgroups in a finite group G is s (where a set of conjugacy class is counted once). If we collect a complete set; G_1, G_2, \ldots, G_s in ascending order of their orders i.e. $|G_1| \le |G_2| \le \ldots \le |G_s|$, where G_1 = identity and $G_s = G$, then the set of corresponding coset representations; $G(/G_i), (i=1,2,\ldots,s)$ is the complete set of different transitive permutation representations of G.

Theorem 2.3 (Burnside [2])

Any permutation representation P_G of a finite group G acting on X can be reduced into transitive coset representations with the following equation:

$$P_G = \sum \alpha_i G(/G_i) \qquad (i = 1, 2, ..., s),$$

where the multiplicity α_i is a non-negative integer.

Definition 2.2 (Ivanov et al. [3])

The table of marks of a group G is the matrix M(G), with (i, j) - entry m_{ij} equal to $m(G_j, G_i, G)$, the mark of the subgroup G_j in the coset representation $G(/G_i)$.

That is

	G_1	G_2	•••	G_{s}
$G(/G_1)$	m_{11}	m_{12}		m_{ls}
$Gig(/G_1ig) \ Gig(/G_2ig)$	m_{21}	m_{22}	•••	m_{2s}
• • •		•••	• • • •	
$G(/G_s)$			•••	•••
$G(/G_s)$	m_{s1}	m_{s2}	•••	m_{ss}

Theorem 2.4 (Burnside [2])

The multiplicities α_i in equation 1) are obtained by using the table of marks as;

$$\mu_{j} = \sum_{i=1}^{s} \alpha_{i} m_{ij}, \ (j=1,2,...,s)$$

where, μ_j is the mark of G_j in the permutation representation P_G . Furthermore if $\mu = (\mu_1, \mu_2, ..., \mu_s)$ is a vector with components μ_j and $\alpha = (\alpha_1, \alpha_2, ..., \alpha_s)$ is a vector with components the multiplicities α_i in Theorem 2.3 and M(G) is the table of marks of G, then

$$\mu = \alpha M(G) \tag{2}$$

Theorem 2.5 (Orbit – Stabilizer Theorem) (Rose [5])

Let G act on the set X, and let $x \in X$. Then

$$|Orb_G(x)| = |G:Stab_G(x)|$$
.

- 3. Analysis of actions of Finite Subgroups of $O(R^3)$ on the set of their Poles using Table of Marks
- a) Action of $G = C_n$ on τ

The cyclic group G has exactly 2 poles. The subgroups of G are of the form C_k where k|n and since G is abelian each of its subgroups is normal. Suppose G has r subgroups, say $C_{1'}=1,C_{2'},C_{3'},\ldots,C_{r'}=G$ with i'|n and $i'\leq (i+1)',\ (i=1,2,\ldots,r-1)$. Then each of these subgroups fixes the 2 poles so that $\mu=(2,2,\ldots,2)$, an r-tuple. The table of marks of G is as shown in Table 3.1 below.

Table 3.1: Table of marks of $G = C_n$

	$C_{1'}=1$	$C_{2'}$	•••	$C_{(r-1)^{'}}$	$C_{r'} = G$
$G(/C_{1'})$ $G(/C_{2'})$	m_{11}				
$Gig(/C_{2'}ig)$	m_{21}	m_{22}			
:	:	:			
$G\!\left(/ C_{(r-1)^{'}} ight)$	m_{r-11}	m_{r-12}	•••	m_{r-1r-1}	
$Gig(/C_{r'}ig)$	1	1	•••	1	1

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_r)$, then by Equation 2) and using Table 3.1 we obtain the following system of linear equations,

$$\alpha_1 m_{11} + \alpha_2 m_{21} + \ldots + \alpha_{r-1} m_{r-11} + \alpha_r = 2$$

$$\alpha_2 m_{22} + \ldots + \alpha_{r-1} m_{r-12} + \alpha_r = 2$$

.....

$$\alpha_{r-1}m_{r-1,r-1}+\alpha_r=2$$

$$\alpha_r = 2$$

Since $m_{ii} \neq 0$ for all $i, \alpha_j \geq 0$, $1 \leq j \leq r$ and $\alpha_r = 2$, the solution to the above system of linear equations is $\alpha = (0, 0, ..., 0, 2)$. Hence by Theorem 2.3,

$$P_G = 2G(/G)$$
.

Therefore by Theorem 2.5 the action of G on τ yields 2 orbits of length one with G as the stabilizer.

b) Action of $G = D_n$ on τ

The dihedral group D_n is isomorphic to the group of rotations of a regular n – gon in three dimensions. A regular n – gon centred at the origin of \square 3 has n – 2 – fold axes of rotation perpendicular to the n – fold axis. Hence $|\tau| = 2(n+1) = 2n+2$ poles.

The subgroups of D_n depend on whether n is odd or even and are either cyclic or dihedral.

Case 1: When n is odd

In this case, the subgroups of D_n of order 2 lie in one conjugacy class of length n, hence its subgroups are;

- i). Identity.
- ii). A conjugacy class of n cyclic subgroups of order 2, C_2 .

- iii). Normal cyclic subgroups $C_{m_1}, C_{m_2}, \dots, C_{m_r}$ contained in C_n where $m_i \mid n$, $1 \le i \le r$.
- iv). Dihedral subgroups $D_{m_1}, D_{m_2}, \dots, D_{m_r}$ where $m_i \mid n, 1 \le i \le r$.
- v). A normal cyclic subgroup of order n, C_n .
- vi). D_n .

The only subgroups that fix a pole are $1, C_2, C_{m_1}, \ldots, C_{m_r}$ and C_n . The identity fixes 2n+2 poles, C_2 and C_n each fixes 2 poles and C_{m_1}, \ldots, C_{m_r} each fixes 2 poles. Hence $\mu = (2n+2,2,2,\ldots,2,0,\ldots,0,2,0)$, a 2r+4 - tuple. The corresponding table of marks of D_n (n odd) is as shown in Table 3.2.

Table 3.2: Table of marks of $G = D_n$, n odd

	1	$C_{_2}$	C_{m_1}	• • •	C_{m_r}	$D_{\scriptscriptstyle m_{_{\! 1}}}$	•••	D_{m_r}	C_{n}	D_{n}
G(/1)	2n									
$G(/C_2)$	N	1								
$Gig(/C_{m_{\!\scriptscriptstyle 1}}ig)$	m_{31}	m_{32}	m_{33}							
÷	÷	÷	÷							
$Gig(/C_{m_r}ig)$	m_{r+21}	m_{r+22}	m_{r+23}	•••	m_{r+2r+2}					
$Gig(/D_{m_1}ig)$	m_{r+31}	m_{r+32}	m_{r+33}	• • •	m_{r+3r+2}	m_{r+3r+3}				
÷	÷	:	÷		:	:				
$Gig(/D_{m_r}ig)$	m_{2r+21}	m_{2r+22}	m_{2r+23}	• • •	$m_{2r+2r+2}$	$m_{2r+2r+3}$	•••	$m_{2r+22r+2}$		
$G(/C_n)$	2	0	2	•••	2	0	•••	0	2	
Gig(/Gig)	1	1	1		1	1		1	1	1

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, ..., \alpha_{r+2}, \alpha_{r+3}, ..., \alpha_{2r+2}, \alpha_{2r+3}, \alpha_{2r+4})$. Then by Equation 2) and using Table 3.2 we obtain,

Since $m_{ii} \neq 0$ for all i, $\alpha_j \geq 0$, $1 \leq j \leq 2r + 4$ and $\alpha_{2r+4} = 0$, so $\alpha = (0, 2, 0, ..., 0, 0, ..., 0, 1, 0)$; by Theorem 2.3,

$$P_G = 2G(/C_2) + G(/C_n).$$

Hence by Theorem 2.5, the action of G on τ yields 3 orbits; 2 orbits of length n with C_2 as the stabilizer and 1 orbit of length 2 with C_n as the stabilizer.

Case 2: When n is even

In this case, the subgroups of D_n of order 2 lie in two conjugacy classes each of length $\frac{n}{2}$, hence its subgroups are;

- i). Identity.
- ii). A conjugacy class of $\frac{n}{2}$ cyclic subgroups of order 2 denoted by $C_2(\frac{n}{2})$.
- iii). A conjugacy class of $\frac{n}{2}$ cyclic subgroups of order 2 denoted by $C_2'\binom{n}{2}$.
- iv). A normal cyclic subgroup of order 2 denoted by $C_2(1)$.

- v). Normal cyclic subgroups $C_{m_1}, C_{m_2}, \ldots, C_{m_r}$ contained in C_n where $m_i \mid n$ and $m_i \neq 2, 1 \leq i \leq r$.
- vi). Dihedral subgroups $D_{m_1}, \quad D_{m_2}, \ldots, D_{m_r}$ where $m_i \mid n, \quad 1 \leq i \leq r$.
- vii). A normal cyclic subgroup of order n, C_n .
- viii). D_n .

The only subgroups that fix a pole are 1, $C_2\binom{n}{2}$, $C_2'\binom{n}{2}$, $C_2(1)$, C_{m_1},\ldots,C_{m_r} and C_n . The identity fixes 2n+2 poles, $C_2\binom{n}{2}$, $C_2'\binom{n}{2}$, $C_2(1)$ and C_n each fixes 2 poles and C_{m_1},\ldots,C_{m_r} each fixes 2 poles. Hence $\mu=(2n+2,2,2,2,2,\ldots,2,0,\ldots,0,2,0)$, a 2r+6 – tuple.

The corresponding table of marks of D_n , n even is as shown in Table 3.3.

Table 3.3: Table of marks of $G = D_n$, n even

	1	$C_2\left(\frac{n}{2}\right)$	$C_2'\binom{n}{2}$	$C_2(1)$	C_{m_1}	•••	C_{m_r}	$D_{m_{ m l}}$	•••	D_{m_r}	C_n D_n
G(/1)	2 <i>n</i>										
$G(/C_2(n/2))$	n	2									
$G\left(/C_2'\binom{n}{2}\right)$	n	0	2								
$G(/C_2(1))$	n		0	n							
$Gig(/C_{m_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	m_{51}	m_{52}	m_{53}	m_{54}	m_{55}						
:	:	÷	:	:	:						
$Gig(/C_{m_r}ig)$	m_{r+41}	m_{r+42}	m_{r+43}	m_{r+44}	m_{r+45}	• • •	m_{r+4r+4}				
$Gig(/D_{m_{_{\! 1}}}ig)$	m_{r+51}	m_{r+52}	m_{r+53}	m_{r+54}	m_{r+55}	•••	m_{r+5r+4}	m_{r+5r+5}			
:	:	:	:	÷	:		:	÷			

Published by European Centre for Research Training and Development UK (www.eajournals.org)

$$G\Big(/D_{m_r}\Big) \hspace{0.5cm} m_{2r+41} \hspace{0.5cm} m_{2r+42} \hspace{0.5cm} m_{2r+43} \hspace{0.5cm} m_{2r+44} \hspace{0.5cm} m_{2r+45} \hspace{0.5cm} \cdots \hspace{0.5cm} m_{2r+4r+4} \hspace{0.5cm} m_{2r+4r+5} \hspace{0.5cm} \cdots \hspace{0.5cm} m_{2r+42r+4} \\ G\Big(/C_n\Big) \hspace{0.5cm} 2 \hspace{0.5cm} 0 \hspace{0.5cm} 2 \hspace{0.5cm} 2 \hspace{0.5cm} \cdots \hspace{0.5cm} 2 \hspace{0.5cm} 0 \hspace{0.5cm} 2 \hspace{0.5cm} \\ G\Big(/G\Big) \hspace{0.5cm} 1 \hspace{0$$

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, ..., \alpha_{r+4}, \alpha_{r+5}, ..., \alpha_{2r+4}, \alpha_{2r+5}, \alpha_{2r+6})$. Then by Equation 2) and using Table 3.3 we obtain,

$$2n\alpha_{1} + n\alpha_{2} + n\alpha_{3} + n\alpha_{4} + \alpha_{5}m_{51} + \dots \alpha_{r+4}m_{r+41} + \alpha_{r+5}m_{r+51} + \dots + \alpha_{2r+4}m_{2r+41} + 2\alpha_{2r+5} + \alpha_{2r+6} = 2n+2$$

$$2\alpha_{2} + \alpha_{5}m_{52} + \dots \alpha_{r+4}m_{r+42} + \alpha_{r+5}m_{r+52} + \dots + \alpha_{2r+4}m_{2r+42} + \alpha_{2r+6} = 2$$

$$2\alpha_{3} + \alpha_{5}m_{53} + \dots \alpha_{r+4}m_{r+43} + \alpha_{r+5}m_{r+53} + \dots + \alpha_{2r+4}m_{2r+43} + \alpha_{2r+6} = 2$$

$$n\alpha_{4} + \alpha_{5}m_{54} + \dots \alpha_{r+4}m_{r+44} + \alpha_{r+5}m_{r+54} + \dots + \alpha_{2r+4}m_{2r+44} + 2\alpha_{2r+5} + \alpha_{2r+6} = 2$$

$$\alpha_{5}m_{55} + \dots \alpha_{r+4}m_{r+45} + \alpha_{r+5}m_{r+55} + \dots + \alpha_{2r+4}m_{2r+45} + 2\alpha_{2r+5} + \alpha_{2r+6} = 2$$

$$\alpha_{r+4}m_{r+4r+4} + \alpha_{r+5}m_{r+5r+4} + \dots + \alpha_{2r+4}m_{2r+4r+4} + 2\alpha_{2r+5} + \alpha_{2r+6} = 2$$

$$\alpha_{r+5}m_{r+5r+5} + \dots + \alpha_{2r+4}m_{2r+4r+5} + \alpha_{2r+6} = 0$$

$$\alpha_{2r+4}m_{2r+42r+4} + \alpha_{2r+6} = 0$$

$$2\alpha_{2r+5} + \alpha_{2r+6} = 2$$

$$\alpha_{2r+6} = 0$$

Since $m_{ii} \neq 0$ for all $i, \alpha_j \geq 0, 1 \leq j \leq 2r + 6$ and $\alpha_{2r+6} = 0$, so $\alpha = (0,1,1,0,0,...,0,0,...,0,1,0)$. Therefore by Theorem 2.3,

$$P_G = G\left(/C_2\left(\frac{n}{2}\right)\right) + G\left(/C_2\left(\frac{n}{2}\right)\right) + G\left(/C_n\right).$$

Hence by Theorem 2.5, the action of G on τ yields 3 orbits; 1 orbit of length n with $C_2\binom{n}{2}$ as the stabilizer, 1 orbit of length n with $C_2\binom{n}{2}$ as the stabilizer and 1 orbit of length 2 with C_n as the stabilizer.

c) Action of $G = A_4$ on τ

The alternating group A_4 is isomorphic to the group of rotations of a tetrahedron. A tetrahedron has 4 faces, 4 vertices and 6 edges, hence 7 axes of rotation. To each axis, there corresponds 2 poles, therefore $|\tau| = 2 \times 7 = 14$ poles.

Furthermore, A_4 has five conjugacy classes of subgroups. These are;

- i). Identity.
- ii). 3 conjugate subgroups of order 2, C_2 .
- iii). 4 conjugate cyclic subgroups of order 3, C_3 .
- iv). A normal subgroup of order 4 isomorphic to $C_2 \times C_2$ which we shall denote by V_4 .
- v). A_{4}

The only subgroups of A_4 that fix a pole are 1, C_2 and C_3 with 14, 2 and 2 poles fixed respectively. Thus $\mu = (14, 2, 2, 0, 0)$. The table of marks of A_4 is as shown in Table 3.4 below;

Table 3.4: Table of marks of $G = A_4$

	1	C_2	C_3	V_4	A_4
G(/1)	12				
$G(/C_2)$	6	2			
$G(/C_3)$	4	0	1		
$Gig(/V^{}_4ig)$	3	3	0	3	
G(/G)	1	1	1	1	1

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$. Then by Equation 2) and using Table 3.4 we obtain,

$$12\alpha_{1} + 6\alpha_{2} + 4\alpha_{3} + 3\alpha_{4} + \alpha_{5} = 14$$

$$2\alpha_{2} + 3\alpha_{4} + \alpha_{5} = 2$$

$$\alpha_{3} + \alpha_{5} = 2$$

$$3\alpha_{4} + \alpha_{5} = 0$$

$$\alpha_{5} = 0$$

Thus $\alpha = (0,1,2,0,0)$. By Theorem 2.3,

$$P_G = G(/C_2) + 2G(/C_3).$$

Hence by Theorem 2.5, the action of G on τ yields 3 orbits; 1 orbit of length 6 with C_2 as the stabilizer and 2 orbits of length 4 with C_3 as the stabilizer

d) Action of $G = S_4$ on τ

The symmetric group S_4 is isomorphic to the group of rotations of a cube or an octahedron. Since a cube and an octahedron are dual polyhedra, we examine the rotational symmetries of a cube. A cube has 6 faces, 8 vertices and 12 edges, hence 13 axes of rotation.

Therefore $|\tau| = 2 \times 13 = 26$ poles. Also S_4 has 11 conjugacy classes of subgroups, these are;

- i). Identity.
- ii). 6 conjugate subgroups of order 2 generated by permutations of the form (ab). A subgroup representative is denoted by $C_2(6)$.
- iii). 3 conjugate subgroups of order 2 generated by permutations of the form (ab) (cd). A subgroup representative is denoted by $C_2(3)$.
- iv). 4 conjugate cyclic subgroups of order 3, C_3 .
- v). 3 conjugate cyclic subgroups of order 4, C_4 .

- vi). A normal subgroup of order 4 isomorphic to $C_2 \times C_2$ generated by permutations of the form (ab) (cd). We denote this subgroup by $V_4(1)$.
- vii). 3 conjugate subgroups of order 4 isomorphic to $C_2 \times C_2$ generated by permutations of the form (ab) and (ab) (cd). A subgroup representative is denoted by V_4 (3).
- viii). 4 conjugate subgroups of order 6 isomorphic to D_3 .
- ix). 3 conjugate subgroups of order 8 isomorphic to D_4 .
- \mathbf{x}). A_{4}
- xi). S_4 .

The only subgroups that fix a pole are $1, C_2(6), C_2(3), C_3$ and C_4 with 26, 2, 2, 2 and 2 poles fixed respectively. Thus $\mu = (26, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0)$.

The corresponding table of marks $G = S_4$ is as shown in Table 3.5 below.

Table 3.5: Table of marks of $G = S_4$

	1	$C_2(6)$	$C_2(3)$	C_3	C_4	$V_4(1)$	$V_4(3)$	D_3	D_4	A_4	S_4
G(/1)	24										
$G(C_2(6))$	12	2									
$G(/C_2(3))$	12	0	4								
$G(/C_3)$	8	0	0	2							
$Gig(/C_4ig)$	6	0	2	0	2						
$G(/V_4(1))$	6	0	6	0	0	6					
$G(V_4(3))$	6	2	2	0	0	0	2				
$Gig(/D_3ig)$	4	2	0	1	0	0	0	1			
$Gig(/D_4ig)$	3	1	3	0	1	3	1	0	1		
$G(/A_4)$	2	0	2	2	0	2	0	0	0	2	
Gig(/Gig)	1	1	1	1	1	1	1	1	1	1	1

Published by European Centre for Research Training and Development UK (www.eajournals.org) Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_{11})$, then by Equation 2) and using Table 3.5 we obtain,

$$24\alpha_{1} + 12\alpha_{2} + 12\alpha_{3} + 8\alpha_{4} + 6\alpha_{5} + 6\alpha_{6} + 6\alpha_{7} + 4\alpha_{8} + 3\alpha_{9} + 2\alpha_{10} + \alpha_{11} = 26$$

$$2\alpha_{2} + 2\alpha_{7} + 2\alpha_{8} + \alpha_{9} + \alpha_{11} = 2$$

$$4\alpha_{3} + 2\alpha_{5} + 6\alpha_{6} + 2\alpha_{7} + 3\alpha_{9} + 2\alpha_{10} + \alpha_{11} = 2$$

$$2\alpha_{4} + \alpha_{8} + 2\alpha_{10} + \alpha_{11} = 2$$

$$2\alpha_{5} + \alpha_{9} + \alpha_{11} = 2$$

$$6\alpha_{6} + 3\alpha_{9} + 2\alpha_{10} + \alpha_{11} = 0$$

$$2\alpha_{7} + \alpha_{9} + \alpha_{11} = 0$$

$$\alpha_{8} + \alpha_{11} = 0$$

$$+\alpha_{9} + \alpha_{11} = 0$$

$$2\alpha_{10} + \alpha_{11} = 0$$

$$\alpha_{11} = 0$$

Thus $\alpha = (0,1,0,1,1,0,0,0,0,0,0)$. By Theorem 2.3,

$$P_G = G(/C_2(6)) + G(/C_3) + G(/C_4).$$

Hence by Theorem 2.5, the action of G on τ yields 3 orbits; 1 orbit of length 12 with $C_2(6)$ as the stabilizer, 1 orbit of length 8 with C_3 as the stabilizer and 1 orbit of length 6 with C_4 as the stabilizer.

e) Action of $G = A_5$ on τ

The alternating group A_5 is isomorphic to the group of rotations of an icosahedron or a dodecahedron. Since an icosahedron and a dodecahedron are dual polyhedra, we consider the rotational symmetries of an icosahedron. An icosahedron has 20 faces, 12 vertices and 30 edges, hence 31 axes of rotation. Therefore $|\tau| = 2 \times 31 = 62$ poles.

Also A_5 has 9 conjugacy classes of subgroups, these are;

i). Identity.

- ii). 15 conjugate subgroups of order 2, C_2 .
- iii). 10 conjugate cyclic subgroups of order 3, C_3 .
- iv). 5 conjugate subgroups of order 4 isomorphic to $C_2 \times C_2$, a representative subgroup is denoted by V_4 .
- v). 6 conjugate cyclic subgroups of order 5, C_5 .
- vi). 10 conjugate subgroups of order 6 isomorphic to D_3 .
- vii). 6 conjugate subgroups of order 10 isomorphic to D_5 .
- viii). 5 conjugate subgroups of order 12 isomorphic to A₄.
- ix). A_5 .

The corresponding table of marks of $G = A_5$ is as shown in Table 3.6.

Table 3.6: Table of marks of $G = A_5$

	1	C_2	C_3	V_4	C_5	D_3	D_5	A_4	A_5
G(/1)	60								
$G(/C_2)$	30	2							
$G(/C_3)$	20	0	2						
$Gig(/V_4ig)$	15	3	0	3					
$G(/C_5)$	12	0	0	0	2				
$Gig(/D_{_3}ig)$	10	2	1	0	0	1			
$Gig(/D_5ig)$	6	2	0	0	1	0	1		
$G(/A_4)$	5	1	2	1	0	0	0	1	
Gig(/Gig)	1	1	1	1	1	1	1	1	1

The only subgroups that fix a pole are $1, C_2, C_3$ and C_5 with 62, 2, 2 and 2 poles fixed respectively. Thus $\mu = (62, 2, 2, 0, 2, 0, 0, 0, 0)$. Now, let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_9)$. Then by equation 2) and using Table 3.6 we obtain,

$$\begin{aligned} 60\alpha_{1} + 30\alpha_{2} + 20\alpha_{3} + 15\alpha_{4} + 12\alpha_{5} + 10\alpha_{6} + 6\alpha_{7} + 5\alpha_{8} + \alpha_{9} &= 62 \\ 2\alpha_{2} & + 3\alpha_{4} & + 2\alpha_{6} + 2\alpha_{7} + \alpha_{8} + \alpha_{9} &= 2 \\ 2\alpha_{3} & + \alpha_{6} & + 2\alpha_{8} + \alpha_{9} &= 2 \\ 3\alpha_{4} & + \alpha_{8} + \alpha_{9} &= 0 \\ 2\alpha_{5} & + \alpha_{7} & + \alpha_{9} &= 0 \\ \alpha_{6} & + \alpha_{9} &= 0 \\ \alpha_{7} & + \alpha_{9} &= 0 \\ \alpha_{8} + \alpha_{9} &= 0 \\ + \alpha_{9} &= 0 \end{aligned}$$

Thus $\alpha = (0,1,1,0,1,0,0,0,0)$. By Theorem 2.3,

$$P_G = G(/C_2) + G(/C_3) + G(/C_5).$$

Hence by Theorem 2.5, the action of G on τ yields 3 orbits; 1 orbit of length 30 with C_2 as the stabilizer, 1 orbit of length 20 with C_3 as the stabilizer and 1 orbit of length 12 with C_5 as the stabilizer.

The results obtained can be summarized as shown in Table 3.7 below;

Table 3.7: Orbits and stabilizers of actions of $G \le O(\square^3)$ on τ

\boldsymbol{G}	<i>G</i> /	Orbits	$ \tau $	Order of stabilizers		
C_n	n	2	2	n	n	
D_n	2 <i>n</i>	3	2n + 2	2	2	N
A_4	12	3	14	2	3	3
S_4	24	3	26	2	3	4
A_5	60	3	62	2	3	5

REFERENCES

- [1] Benson, C. T. and Grove, L. C. 1971. Finite reflection groups, Bogden and Quigley, Inc. Publishers.
- [2] Burnside, W. 1911. Theory of groups of finite order, Cambridge University Press, Cambridge (Dover reprint 1955).
- [3] Ivanov, A. A. et al. 1983. On the problem of computing subdegrees of transitive permutation groups. Soviet Mathematical Survey 38: 123 124.
- [4] Neumann, P. M., Gabrielle, A. S. and Edward, C. T. 1995. Groups and Geometry, Oxford University Press Inc., New York.
- [5] Rose, J. S. 1978. A course on group theory, Cambridge University Press, Cambridge.