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ABSTRACT: The key to sustainable development of every nation is largely dependent on the 

quality of education that it offers to its citizens, more especially at the basic level. Therefore, 

any issue that may affect the aim of building and achieving quality education for national 

development needs to examined and addressed. This paper reports on an analysis of factors 

contributing to poor academic performance of students of a political district in the Western 

Region of Ghana, in the Basic Education Certificate Examinations (BECE). In all, four 

hundred and sixty (460) respondents comprising two hundred and thirty-eight (238) students 

and two hundred and twenty two (222) teachers were used for the research.  Among other 

things, the study discovered that in all, there are eight dimensions underlying the poor 

performance of students at BECE in the political district, which accounted for; 63.2% of 

variance in students’ response, and 64.7%  of teachers’ response in the original variables. In 

sum, the constructs considered to be contributing to poor performance were: teacher failures, 

parent shortcomings, reactive learning, passive learning, unfavourable economic conditions, 

uncongenial circumstances, administrative lapse, and truancy. Stakeholders of education are 

advised to focus on these dimensions to ensure quality education for sustainable national 

development.  

KEYWORDS: Poor Academic Performance, Factor Analysis, Principal Component 

Factoring 

 

INTRODUCTION 

The issue of poor academic performance has been a major problem in Africa of which Ghana 

cannot dissociate itself. Many governments including that of Ghana have made several efforts 

at curtailing if not eliminating the problem of poor academic performance more especially at 

the foundation stage of education. Poor academic performance can be explained from several 

perspectives, but it can also be considered as a situation where individual or group of students 

fail(s) to achieve certain minimum standards or benchmarks either in an examination or other 

assessments. Consequences of poor academic performance at the basic school, range from; low 

quality graduates who may not be able to pursue higher education, production of graduates who 

are not fit for national development.  

In view of this negative impact, there has been a massive public uproar about poor performance 

at the basic schools in Ghana. Over the last couple of years, students’ performance in the BECE 

has dropped tremendously and this has been a major concern of all stakeholders of education.  

For instance, it has been discovered that, over a couple of years, terminal performance of 

students as well as the overall students’ performance in BECE in that political district has 

reduced drastically. It is against this background that this study solicited responses from 
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students and teachers to identify factors that contribute to students’ poor performance at the 

BECE and to propose ways of improving the situation. In summary, four hundred and sixty 

(460) respondents made up of two hundred and thirty-eight (238) students and two hundred 

and twenty two (222) basic school teachers were used. A questionnaire comprising 20 items 

for students and 24 items for teachers, that uses five-point Likert scale ranging from ‘strongly 

agree to strongly disagree’ was used for the data collection. The data collected was analysed 

using Statistical Products and Service Solutions (SPSS16). The factor analysis method used in 

this research is reviewed below. 

 

MATERIALS AND METHODS 

This section briefly discusses factor analysis and the fundamental equations that were used to 

analyse the data. Factor analysis is a statistical technique used to describe, if possible the 

covariance relationships among many variables in terms of a few underlying but unobservable 

random quantities called factors (Johnson and Wichern, 1992). The technique comprises 

common factor analysis and principal components. In this respect, factor analysis seeks to 

examine interdependence that exists among variables and common constructs (factors) that 

governs a situation or phenomenon.  

The Orthogonal Factor Model 

In a multivariate setting, if observable random variable𝑋, has 𝑝 components, with the mean μ 

and covariance matrix, Ʃ, then the factor model postulates that 𝑋 is linearly dependent upon a 

few factors 𝐹1,   𝐹2,   𝐹3, … , 𝐹𝑚; where 𝑚 is far less than 𝑝;  and 𝑝 additional source of variation 

𝜀1,𝜀2, 𝜀3, … , 𝜀𝑝 called errors or sometimes specific factors (Johnson and Wichern, 1992).  

In this situation, the factor model is 

                                    𝑋1 − μ1  = ℓ11𝐹1  + ℓ12  𝐹2  + ⋯+ ℓ1𝑚 𝐹𝑚   + 𝜀1 

                                      𝑋2  − μ2 = ℓ21𝐹1   + ℓ22𝐹2  + ⋯+ ℓ2𝑚  𝐹𝑚   + 𝜀2 

                                   ⋮                          ⋮                  ⋮              ⋮        ⋮            ⋮              

                                   𝑋𝑝 − μ𝑝  = ℓ𝑝1𝐹1  + ℓ𝑝2  𝐹2  + ⋯+ ℓ𝑝𝑚 𝐹𝑚   + 𝜀𝑝 

which presents in matrix notation as (𝑋 − 𝜇)(𝑝×1) = 𝐿(𝑝×𝑚)𝐹(𝑚×1) + 𝜀(𝑝×1).   

The coefficient ℓ𝑖𝑗 is called the loading of 𝑖𝑡ℎ variable on the 𝑗𝑡ℎ factor. 𝐿 is the matrix of 

factor loadings. In an orthogonal factor model the data is analysed based on assumption that 

the factors and specific error terms are all independent. In this case we can mathematically 

write that: 

[𝐹] = (𝑚×1) [𝜀] = (𝑝×1) (𝐹) = (𝑚×𝑚) 

Cov (𝜀𝑖, 𝜀𝑗 ) = 0, Cov (𝐹𝑖, 𝜀𝑗 ) = 0, and 0 is a null matrix. 

 Also the coefficients (pattern loadings) 𝑙𝑖𝑗 , 𝑖 = 1, 2, . . . , 𝑝; 𝑗 =1, 2, . . . , 𝑚 are the same as the 

simple correlations (structure loadings) between the indicator variables 𝑋𝑖 and the factors 𝐹𝑗 , 
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and the variance (communality) that 𝑋𝑖 shares with 𝐹𝑗 is given by 𝑙2𝑖𝑗  (Sharma, 1996). Thus 

the total communality of an indicator variable 𝑋𝑖  with all the 𝑚 common factors is given 

by𝑙2𝑖1 + 𝑙2𝑖2 + ⋯+ 𝑙2𝑖𝑚. 

It should be noted that, the observable variables 𝑋1, 𝑋2, … , 𝑋𝑝 are correlated because they are 

influenced by some common underlying dimensions (factors). The correlation among the 

indicator variables enhances the identification of the common latent factors as the indicator 

variables that are influenced by the same factor tend to ‘load’ highly on (have a high correlation 

coefficient with) that common factor and also amongst themselves (Everitt and Dunn 2001; 

Johnson and Wichern, 1992; Sharma,1996). 

Principal Component Factoring 

This is one of the most frequently used methods of factor analysis which uses principal 

component analysis (PCA) to extract factors influencing many observed variables by 

examining correlation among them.  PC A is a mathematical procedure of data reduction 

technique that uses an orthogonal transformation to convert a set of observation of possibly 

correlated variables into a set of values of uncorrelated variables. This transformation is such 

that the first principal component (PC) has the largest possible variance in the data, the second 

PC accounts for maximum variance that was not accounted for by the first PC, and the third 

principal component accounts for highest of the remaining variance that was not accounted for 

by the first and second components, and so on, (Johnson and Wichern, 1992; Shama,1996; 

Everrit and Dunn,2001). 

If 𝑋1, 𝑋2, … , 𝑋𝑃 and 𝑤𝑖𝑗 , 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝  are the observed variables and respective 

coefficients (weights), then the PCs;  𝐶1, 𝐶2, … , 𝐶𝑃 are given by  

  𝐶1 = 𝑤11𝑋1  + 𝑤12  𝑋2  + ⋯+ 𝑤1𝑝 𝑋𝑝    

 𝐶2  = 𝑤21𝑋1   + 𝑤22𝑋2  + ⋯+ 𝑤2𝑝  𝑋𝑝 

                                                    ⋮                  ⋮              ⋮        ⋮            ⋮              

                                               𝐶𝑝 = 𝑤𝑝1𝑋1  + 𝑤𝑝2  𝑋2  + ⋯+ 𝑤𝑝𝑝 𝑋𝑝    

To restrain the variance of the 𝐶𝑖𝑠, 𝑖 = 1,2, … , 𝑝 from increasing, and ensure that the new axes 

representing the 𝐶𝑖𝑠 are orthogonal (uncorrelated), the weights, 𝑤𝑖𝑗, 𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑝  

are estimated based on equations 1 and 2 below (Johnson and Wichern, 1992; Shama,1996; 

Everrit and Dunn,2001). 

 𝑤𝑖
′ ∙ 𝑤𝑖  = 1…………………… . . (1)  

𝑤𝑖
′ ∙ 𝑤𝑗  = 0…………………… . . (1) for all 𝑖 ≠ 𝑗 

Where 𝑤𝑖
′ = (𝑤𝑖1, 𝑤𝑖2 , …… ,𝑤𝑖𝑝 ). The original variables 𝑋𝑖 with mean μ𝑖and standard 

deviation,𝜎𝑖𝑖, 𝑖 = 1,2, … , 𝑝 could be transformed into new components by 𝑍𝑖 =
𝑋𝑖−μ𝑖

𝜎𝑖𝑖
, for 𝑖 =

1,2, … , 𝑝. The resulting variables could be used to form the PCs (Johnson and Wichern, 

1992).  
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The vector of standardised variables, 𝑍 could be written in vector notation as (𝑉
1

2)
−1

(𝑋 − 𝜇) 

where 𝜇′ = (𝜇1, 𝜇2 , …… , 𝜇𝑝 ) and 𝑉
1

2  is the standard deviation matrix given by 𝑉
1

2 =

[

𝜎11 0 ⋯    0

0
⋮
0

𝜎22

⋮
0

⋯
⋱
⋯

0
⋮

𝜎𝑝𝑝

] in which case E(𝑍𝑖) = 0, Var(𝑍𝑖) = 1 for all 𝑖 = 1,2, … , 𝑝 and 

𝐶𝑜𝑣(𝑍) = (𝑉
1

2)
−1

∑(𝑉
1

2)
−1

=𝜌 where the variance-covariance matrix, Ʃ and the correlation 

matrix, 𝜌 of 𝑋 are given  ∑ =

[
 
 
 
 𝜎11

2

𝜎21
2

⋮
𝜎𝑝1

2

𝜎12
2

𝜎22
2

⋮
𝜎𝑝2

2

⋯
⋯
⋱
⋯

𝜎1𝑝
2

𝜎2𝑝
2

⋮
𝜎𝑝𝑝

2 ]
 
 
 
 

    

ρ =

[
 
 
 
 
 
 

𝜎11
2

𝜎11𝜎11

𝜎21
2

𝜎11𝜎22

⋮
𝜎𝑝1

2

𝜎11𝜎𝑝𝑝

 

 
𝜎12

2

𝜎11𝜎11

𝜎22
2

𝜎22𝜎22

⋮
𝜎𝑝2

2

𝜎22𝜎𝑝𝑝

⋯
⋯

  
⋱
⋯

 

𝜎1𝑝
2

𝜎11𝜎𝑝𝑝

𝜎2𝑝
2

𝜎22𝜎𝑝𝑝

⋮
𝜎𝑝𝑝

2

𝜎𝑝𝑝𝜎𝑝𝑝]
 
 
 
 
 
 

    

 and  𝜌𝑖𝑗 =
∑ (𝑋𝑘𝑖−𝜇𝑖)(𝑋𝑘𝑗−𝜇𝑗) 

𝑛
𝑘=𝑖

𝑛
, 𝑖 ≠ 𝑗 is the covariance between variables 𝑋𝑖and 𝑋𝑗, each of 

which has 𝑛  observations respectively. The PCs, 𝐶′ = [𝑐1, 𝑐2, … , 𝑐𝑝] are then given by  𝐶 =

𝐴′𝑍 where 𝐴 = [𝑒𝑖, 𝑒2, … , 𝑒𝑝], with 𝑒𝑖𝑠, 𝑖 = 1,2, … , 𝑝 being the eigenvectors of 𝜌. The 

eigenvalue- eigenvectors pairs (𝜆1, 𝑒1), (𝜆2, 𝑒2),… , (𝜆𝑝, 𝑒𝑝) of 𝜌 are such that 𝜆1 ≥ 𝜆2 ≥

⋯ , 𝜆𝑝 ≥ 0,    𝑒𝑖
′ ∙ 𝑒𝑗  = 0,    𝑒𝑖

′ ∙ 𝑒𝑖  = 1 and Var(𝐶𝑖) =     𝑒𝑖
′𝜌𝑒𝑖 = 𝜆1 and ∑ 𝑉𝑎𝑟(𝐶𝑖) 

𝑝
𝑖=1 =

 ∑ 𝑉𝑎𝑟(𝑍𝑖) =𝑝
𝑖=1 𝜌.  

In this case, the percentage of variance explained by the 𝐶𝑖 is given by the 
𝜆𝑖

𝑝
.   

The correlation between a given PC, 𝐶𝑖 and a given standardised variable, 𝑍𝑗  is referred to as 

the loading of 𝑍𝑗   on 𝐶𝑖 and is given by 𝐶𝑜𝑟𝑟(𝐶𝑖, 𝑍𝑗) = 𝑒𝑖𝑗. 𝜆𝑗

1

2 . The loading reflects the extent 

to which each 𝑍𝑗   influences 𝐶𝑖 considering the effect of other variables 𝑍𝑘 , 𝑗 ≠ 𝑘 (Hair et al, 

2006; Johnson and Wichern, 1992; Shama,1996). In PCF, the initial communalities of the 

indicator variables are one.   The following section presents the results of the analysis of the 

data described in the introduction, using principal component factoring. 
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RESULTS 

Table 1: KMO and Bartlett’s Test 

 Students’ Response Teachers’ Response 

KMO 0.866 0.732 

Bartlett’s Test: Approx. Chi-

Square 

495.799 580.680 

Df 21 105 

Sig. 0.000 0.000 

Source: Results from analysis of field work data, 2016 

To verify that our data is suitable for factor analysis, we check the Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy (KMO), and Bartlett’s Test of Sphericity, for the sample size 

and the appropriateness of the correlation matrix for factor analysis. From the results presented 

in    Table 1, it could be seen that the values of the KMO, obtained from students’ and teachers’ 

responses are respectively 0.866 and 0.732 (which are greater than the minimum recommended 

value of 0.5 (Sharma, 1996)). The corresponding values for the Bartlett’s test are 0.000 each, 

which is less than 0.05 indicating that the tests are significant. This indicates that at least, some 

of the variables are correlated amongst themselves. Hence the data are appropriate for factor 

analysis.  

 

Table 2: Communalities 

Variable (students’ response) Initial Extraction 

My parents do not assist me in doing my homework 1.000 0.962 

My class teacher does not check my attendance to school regularly 1.000 0.568 

My teacher does not give me class work after class lessons regularly 1.000 0.595 

My class teacher fails to discuss previous lessons before he starts 

teaching 

1.000 0.620 

My teacher does not regularly use diagrams, tables, charts and graphs 

as practical in teaching 

1.000 0.571 

My teacher does not spend much time on weak students 1.000 0.583 

My teacher fails to conduct mental drill during class lessons 1.000 0.524 

Variable (teachers’ response) Initial Extraction 

Students are not regular and punctual to school 1.000 0.759 

Students do not participate in my class effectively 1.000 0.674 

Students do not do class work regularly 1.000 0.667 

Students do not do homework regularly 1.000 0.647 

The outcome of students’ class work and homework is not encouraging 1.000 0.535 

Students skip classes during market days to assist their parents to sell 

their wares 

1.000 0.592 

Students do other menial jobs to support themselves with their school 

needs 

1.000 0.690 

Large class size in my school contributes to poor academic 

performance in BECE 

1.000 0.717 

Routine supervision of lesson notes and teaching is not done in my 

school regularly 

1.000 0.691 
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Mock examinations conducted in my school every year is inadequate 

for students preparing for BECE    

1.000 0.579 

Parents fail to provide the needed learning materials for their wards’ 

studies 

1.000 0.724 

My students  are unable to honour their study time table  1.000 0.603 

Students do not revise materials taught frequently  1.000 0.662 

Students are unwilling to initiate learning themselves 1.000 0.540 

Students in my school hardly do discovery learning 1.000 0.630 

 Source: Results from analysis of field work data, 2016 

 

The communalities (extraction) are shown in Table 2. In PCF, all variables are assigned an 

initial variance (total communality) of one, as we have stated earlier. The final communalities 

of each variable indicate the variance for each variable accounted by the chosen factor solution. 

Analysis of the students’ and teachers’ responses revealed that seven and fifteen variables were 

maintained respectively in the final factor solution. The other variables were removed from the  

Table 3: Total Variance Explained 

 Initial Eigenvalues (Students’ 

Data) 

Initial Eigenvalues (Teachers’ Data) 

 

Component 

 

Total 

% of 

Variance 

Cumulative 

(%) 

  

 Total 

% of 

Variance 

Cumulative 

(%) 

1 3.389 48.410 48.410 3.409 22.726 22.726 

2 1.034 14.774 63.184 1.654 11.025 33.751 

3 0.650 9.282 72.466 1.373 9.156 42.907 

4 0.579 8.274 80.740 1.143 7.618 50.525 

5 0.478 6.823 87.563 1.082 7.212 57.737 

6 0.462 6.597 94.160 1.049 6.995 64.733 

7 0.409 5.840 100.00 0.750 4.998 69.731 

8    0.745 4.968 74.699 

9    0.692 4.611 79.310 

10    0.654 4.361 83.671 

11    0.586 3.904 87.575 

12    0.560 3.733 91.308 

13    0.504 3.361 94.669 

14    0.439 2.928 97.596 

15    0.361 2.404 100.00 

Source: Results from analysis of field work data, 2016 

analysis because of lower communalities of less than 0.50 threshold value, or they were cross-

loading (loading on more than one factor) in the exploratory analysis. Using the results of     

Table 2, we can see that all the final communalities are at least 0.50. This means that at least 

50% of the initial communality of each of the retained variables was accounted for in the final 

factor solution. The factor solution is considered to be adequate if at least half of the variance 

of each variable is shared with the factors (Sharma, 1996). To determine the number of factors 

to extract, we need to consider the Kaiser’s criterion. In this situation, all factors with 

eigenvalues more than or equal to 1 are retained in the final factor solution. The results of Table 
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3 suggest we extract two and six components, respectively, from the variables in the students’ 

and teachers’ data.  

The eigenvalues of the components extracted in the students’ data and that of the teachers’ data 

are 3.389, and1.034, and 3.409, 1.654, 1.373, 1.143, 1.082, and1.049 respectively. The two 

factor solutions account for 63.184%, and 64.733% of the initial variability in the data 

respectively.  It is customary to consider more than one criterion in the extraction of the 

components for the final solution, as it serves as a guarantee that the final factor solution is 

more acceptable. In this regard, the Kaiser’s criterion, the scree plots and the percentage of the 

initial total variance explained were considered. Kaiser’s criterion suggests retaining two (2) 

and six (6) components; respectively, from students’ and teachers’ data as these components 

have eigenvalues greater or equal to one. 

 

Fig 1: Eigenvalues against component no.        Fig 2: Eigenvalues against component no. 

Figure 1 suggests the extraction of two (2) components from the students’ data while Figure 2 

appear to suggest the extraction of six (6) components from teachers’ data respectively, as there 

appear to be a major change in the direction of the curve of the scree plot at the second and 

sixth components respectively. The remaining components of Figures 1 and 2 have eigenvalues 

lower than one (1). The two factor solutions suggested by the Kaiser criterion accounted for 

63.2% and 64.7% of the total variance explained in the case of the students’ data and the 

teachers’ data respectively. These two values are greater than the suggested minimum of 60% 

(Hair et al) overall variance explained. The first two components in the case of the students’ 

data and the first six in the case of teachers’ data were retained as the final factor solution as 

these factor solutions satisfy both the Kaiser and the minimum variance explained criteria. 

They also represent a more conservative solution than the ones suggested by the scree plots.  

Number of Factors Extracted 

Having considered analysis of total variance explained and the scree plot, we now turn our 

attention to the component matrix. This shows the loadings of each of the items on the 
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components. At a cut- off value of 0.5 we see that the retained (variables) load on the first two 

and six components of the students’ and teachers’ data respectively.  

Table 4: Rotated Component Matrix (Students’ Response) 

 Component 

Variable 1 2 

My class teacher fails to discuss previous lessons before he starts 

teaching 

0.775  

My teacher does not give me class work after class lessons regularly 0.763  

My teacher does not spend much time on weak students 0.760  

My class teacher does not check my attendance to school regularly 0.752  

My teacher does not regularly use diagrams, tables, charts and graphs 

as practical in teaching 

 

0.746 

 

My teacher fails to conduct mental drill during class lessons 0.709  

My parents do not assist me in doing my homework  0.980 

Source: Results from analysis of field work data, 2016 

This suggests that two and six-factor solutions are likely to be more appropriate in the data 

collected from students and teachers correspondingly. Hence, per these three criteria of 

eigenvalue-greater-one rule, scree plot and the percentage of variance explained, two and six 

factors are retained for interpretation. The seven variables from students’ responses and fifteen 

variables from teachers’ responses to be considered are shown in Tables 4 and 5 respectively.  

Table 5: Rotated Component Matrix (Teachers’ Response) 

 

Variable 

Component 

1 2 3 4 5 6 

𝑉1 0.776      

𝑉2 0.731      

𝑉3 0.703      

𝑉4 0.578      

𝑉5 0.524      

𝑉6  0.778     

𝑉7  0.673     

𝑉8  0.584     

𝑉9   0.790    

𝑉10   0.706    

𝑉11    0.765   

𝑉12    0.653   

𝑉13     0.826  

𝑉14     0.630  

𝑉15      0.839 

Source: Results from analysis of field work data, 2016 

Interpretation of Output  

Tables 4 and 5 present the results of the rotation of the initial factor solutions. It can be seen 

that after Varimax rotation, 7 variables are retained to constitute the two components (factor) 
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solution of the students’ data, and fifteen variables to constitute six components (factor) of the 

teachers’ data. These variables are defined as;  𝑣1 −  students do not revise materials taught 

frequently,        𝑣2 −  students in my school hardly do discovery learning, 𝑣3 −
students are unwilling to initiate learning themselves,   𝑣4 − my students are unable to 

honour their study time table, and 𝑣5 − the outcome of students’ class work and homework is 

not encouraging, to constitute component1. For component2, the variables are; 𝑣6 − students 

do not do classwork regularly, 𝑣7 − students do not do homework regularly, 𝑣8 − students do 

not participate in my class effectively.  Component3 is made up of; 𝑣9 − students do menial 

job to support themselves with their school needs, and 𝑣10 − students skip classes during 

market days to assist their parents to sell their wares.  𝑉11 −  large class size in my school 

contributes to poor academic performance in BECE, and 𝑣12 − parents fail to provide the 

needed learning materials for their wards’ studies, constitute compnent4. Also, 𝑣13 − routine 

supervision of lesson notes and teaching is not done in my school regularly, and 𝑣14 − mock 

examinations conducted in my school every year is inadequate for students preparing for 

BECE, constitute component5. The sixth component comprises; 𝑣15 −
students are not regular and punctual to school. 

Based on these factor solutions, the dimensions influencing poor academic performance in 

BECE are named as follows: 

Students’ Response 

Factor1: Teacher failures  

Factor 2: Parent shortcomings 

Teachers’ Response  

Factor 1: Reactive learning 

Factor 2: Passive learning 

Factor 3: Unfavourable economic conditions  

Factor 4: Uncongenial circumstances  

Factor 5: Administrative lapse 

Factor 6: Truancy 

 

CONCLUSION 

Inferring from above analyses, we conclude that for the political district  in  the Western Region 

of Ghana to succeed in getting rid of poor academic performance at BECE, it  must persistently 

inspect all facets of it operations in respect of; teachers and parents collaborating to discharge 

their full responsibilities towards students’ education, involving students in diverse active 

learning exercises to develop skills in constructing and using knowledge, by creating enabling 

economic and other congenial atmosphere that promote learning, and honouring administrative 

duties, more especially the ones that check students’ attendance to school. This will help 

improve the performance of its basic school graduates which will serve as bedrock for quality 
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education for national development. The findings in this study support the literature of 

researchers such as; Ansu (1989), Anamuah-Mensah et al. (2007), and Oppong-Sekyere et al. 

(2013), who discovered that factors attributed to teachers, students and parents are the causes 

of low academic performance of students at basic level. In this research, only one political 

district was used. It is therefore recommended that in future research, more districts are covered 

to enable us establish concrete external validity about the study results. Also, responses were 

solicited from only students and teachers: it is suggested that in future research, feed-back is 

sought from   principal stakeholders such as parents, and other civil society organisations.  
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