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ABSTRACT: In this work, a generalized approach for computing the strain energy density 

of metals and the effects of deformation on it based on the structureless pseudopotential 

formalism is presented. The approach was used to compute the strain energy density of some 

metals and it variation with deformation was studied. The results obtained revealed that 

strain energy density of metals varies in an irregular manner with electron density 

parameter. Metals in the high-density limit have high values of strain energy density while 

metals in the low density limit have low values of strain energy density. Furthermore, the 

variation of strain energy density with deformation varies in different manner for different 

metals depending on the nature and intrinsic properties of the metals.  
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INTRODUCTION        

Metals achieve structural stability by letting their valence electrons roam freely through the 

crystal lattice. These valence electrons are the equivalents of the molecules of an ordinary 

gas. It is assumed that the electrons are moving about at random and colliding frequently with 

the residual ions (Pillai, 2010). Surface energy of solids is one of the important electronic 

properties of solid surfaces and controls a wide range of phenomenon such as stress for brittle 

fracture, the rate of sintering and the growth rate during particle coarsening. Surface energy is 

the energy require to create unit area of new surface and can also be described as the amount 

of work per unit area required to split an infinite crystal into two halves (Kiejna and 

Pogosov,1999). Surface stress is the solid state analogue of surface tension. Surface stress 

originates from the nature of chemical bonding of atoms at the metallic surface. The atoms at 

the surface of an undeformed metal would have equilibrium inter atomic distance different 

from that of the interior atoms if the surface atoms were not constrained to remain 

structurally coherent with the underlying lattice (Cammarata, 1994). Atoms at the surface and 

interior of metals changes during deformation along with their atomic distance depending on 

the metallic surface area that is subjected to different deformation (Sanders, 2003). 

Deformation is the change in the shape or size of an object during stress or strain. The study 

of the elastic behaviour of a solid is very important in fundamental technical research. In 

technology, it tells us about the strength of the materials and is of interest because of the 

insight it provides into the nature of the binding forces in solids. The relevant elastic 

constants also relate themselves to thermal properties like Debye temperature. The elastic 

properties of a homogenous crystal are generally anisotropic. In a cubic crystal, the 

relationship between stress and strain depends on the orientation of the crystal axes relative to 

http://www.eajournals.org/


International Research Journal of Pure and Applied Physics 

Vol.5, No.2, pp.8-18, June 2017 

__Published by European Centre for Research Training and Development UK (www.eajournals.org) 

9 

ISSN 2055-009X(Print), ISSN 2055-0103(Online) 

stress system (Kachhava, 1992). As a result of the anisotropy of  crystals, the atoms of any 

crystal can be deformed in a variety of ways that can be decomposed into three types of 

independent deformations viz, uniform compression associated with the bulk modulus or 

compressibility and two shears in both of which the volume is unchanged (Animalu, 1977). 

Mathematically, any lattice deformation can be characterized by a second-rank tensor , 

called a strain tensor which has three independent components in a system with cubic 

symmetry (Animalu, 1977). 

The concept of strain energy is of fundamental importance in applied mechanics. The 

application of the stress in a metallic string produces strain. The effect of this strain is to 

increase the energy level of the string itself. Strain energy is stored within an elastic solid 

when the solid is deformed under load. In the absence of energy losses, such as from friction, 

damping or yielding, the strain energy is equal to the work done on the solid by external 

loads. Strain energy is a type of potential energy. The energy stored in a body due to 

deformation is called the strain energy. The strain energy per unit volume is the strain energy 

density. The strain energy density at the yield point is the modulus of resilience. The strain 

energy density at rupture is modulus of toughness. Strain energy or strain energy density is a 

scalar quantity (Gavin, 2011). Consequently, a lot of efforts have been made to study the 

effects of deformation on some properties of selected metals. Adeshakin and Osiele (2012) 

developed a model for computing the surface energy and surface stress of deformed metals 

based on the structureless pseudo potential formalism. The developed models were tested by 

using them to compute the surface energy and surface stress of different classes of metals for 

different values of strain deformation. The results obtained revealed that deformation causes 

a reduction of surface energy and this reduction in surface energy is more pronounced in 

simple and alkaline metals. For surface stress of deformed metals, tensile stress is present in 

most metallic surfaces, although a few metals possess compressive stress on their surfaces. In 

the presence of deformation, the surface stress of some metals decreases. For Ti and Pt, 

deformation causes an increase in their surface stress, while deformation causes an increase 

in the surface stress of Mo and W causing the stress on their surfaces to change from 

compressive to tensile. But for Cr, Be and Al, the stress on their surfaces changes depending 

on the amount of deformation. Adeshakin et al., (2012), developed a model based on the 

structureless pseudopotential to compute the correlation, binding and cohesive energy of 

deformed and undeformed metals. The computed binding and cohesive energy of metals were 

compared with available experimental values. The results obtained showed that correlation 

energy increases with increase in electron density parameter. The computed binding energy 

and cohesive energy of metals were in good agreement with experimental values. The results 

obtained also showed that deformation causes a decrease in the binding energy of metals and 

it does not cause a significant change in the cohesive energy of metals, although transition 

metals have high values of cohesive energy compared to alkaline and simple metals. Keijna 

and Pogosov, (2000) experimentally investigated the effect of deformation on some 

electronic properties of metals by measuring directly a sample of deformed metals using 

Kelvin method. They observed that the contact potential difference of metals 

increase/decreases when compressed/tensed. Shore and Rose (1991), calculated the surface 

properties of metals based on ideal-metal model. The results of the calculated surface 

properties are in agreement with experimental results but have slightly less satisfactory 

agreement for bulk properties than that of the structureless pseudopotential model of Perdew 

et al., (1990). Sarria et al., (2000), calculated the surface energy of metals based on the 

quantum size effects using structureless pseudopotential formalism. They found that the 

surface energy of metals increase rapidly at high valence electron density. Their results were 
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in good agreement with experimental results. They also calculated the self – consistent 

surface energy of stabilized jellium using the local – density approximation. The results 

obtained were compared with those obtained for a semi – infinite stabilized jellium and were 

found to be in good agreement. Lang and Kohn (1971), theoretically calculated the face 

dependent surface properties of metals based on electron densities determined for jellium 

based on perturbation theory. The results obtained shows that the surface properties of metals 

are greatly influenced by deformation is in agreement with experimental results. Kiejna and 

Pogosov (1999), theoretically determined the effect of deformation on the surface properties 

of metal, based on stabilized jellium model, and derived modified equations for the 

stabilization energy of the deformed Wigner Seitz cell as a function of the bulk electron 

density and the given deformation. They used the electron density parameter, Poisson ratio 

and young’s modulus of the metals as the input parameter. The results obtained were in 

agreement with experimental values .Pogosov and Shtepa (2006), calculated the surface 

stress and the contact potential difference of elastically deformed metals based on 

structureless pseudopotential model using self-consistent Kohn Sham method. The results of 

surface stress obtained were in agreement with experimental results, and also confirmed that 

the contact potential difference obtained for the deformed metallic surfaces by Kelvin method 

correspond to change in surface potential. Osiele and Edenma (2009), developed a model to 

compute the bulk modulus and kinetic energy contribution to the bulk modulus of metals 

based on structureless pseudopotential model. The computed bulk modulus of metals were in 

good agreement with experimental values for metal in low density limit and the agreement 

between the computed and experimental bulk modulus of metals decreases towards the high 

density limit. The results also revealed that the kinetic energy contributes significantly to the 

bulk modulus of metals. Osiele and Olubosede (2007) developed a stabilized jellium model to 

compute the surface stress and face dependent surface stress of metals. The surface stress of 

metals, computed using the stabilized jellium model, was compared with results obtained 

using other methods and available experimental values. The results obtained revealed that 

tensile stress is present on the surfaces of the metals, and metals in the high density limit have 

high strain derivative and high values of surface stress while metals in the low density limit 

have low strain derivatives and low values of surface stress. Mahan (1975) calculated the 

variational surface energy of the jellium model of a metal surface. He used variational 

parameters which only affect the surface properties of the wave functions. He obtained the 

kinetic, electrostatic and exchange energies of metals using these wave functions. The results 

were compared with that of Lang and Kohn (1971) and it was found to be in good agreement. 

Sarria et al., (2000) investigated the quantum size effects on the surface energy the density 

yielding energy stability of metals, by examining the thin films of two simple metals 

(aluminium and lithium) in the stabilized jellium model. And found that the stabilized jellium 

model predicts positive surface energies that increase rapidly at high electron densities as 

shown by experiment while the, jellium model predicts surface energies that are strongly 

negative at these densities. Wojciechowski (1995) calculated the bulk properties of the 

stabilized uniform interstitial electron gas in metals. He employ the stabilized – jellium model 

and the use of the bonding – valence and interstitial – density parameters. The results 

obtained are quite in good agreement with available experimental values. 

Brajczewska et al., (2001) calculated the dependence of metals surface properties on the 

valence – electron density in the stabilized jellium model whose valence electron density is 

described by the density parameter is as its single input. The results obtained were quite in 

good agreement with available experimental results. Skriver and Rosengaad (1992) 

calculated the surface energy for six close – packed surfaces of metals based on the linear 
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muffin – tin – orbital’s method within the tight – binding and atomic sphere approximations. 

The results of the surface energy obtained are in excellent agreement with available 

experimental values.  

In this work the structureless pseudopotential is extended to the study of the effects of 

deformation on the strain energy density of some metals. This will provide an insight into 

how the strain energy density of metals changes with deformation. The metals were chosen 

based on their technological and industrial applications and availability of some physical 

constants that are required for computation.  

Theoretical Consideration 

For a metal under the action of a deforming force, the average electron density in such a 

metal as a function of deformation is expressed as (Pogosov and Shtepa, 2006). 

    2

0 1 (1 2 ) 0 (1)xx xxn n u u     

where  is the Poisson ratio relating compression to elongation in the direction of applied 

deformation, uxx is the applied deformation or strain and  is the average electron density in 

the bulk of undeformed metal and is given as 3

0 3 4 sn r  and rs  is the electron density 

parameter of undeformed metal. For a metal under the action of a strain or deforming force, 

the electron density parameter of the metal is (Adeshakin, 2013) 

                       
1 2

1 (1 2 ) (2)su s xxr r u    

     

For an elastic material that is being deformed, the strain tensor is  

              2 (3)
ji

ij

j i

uu

x x

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Equation (3) is convenient for calculations but its disadvantage is that linear constitutive 

equations can only be used if the solid experiences small rotations as well as small changes in 

shape.  

The strain can be separated into the elastic strain and thermal strain. 

                    (4)e T

ij ij ij     

where 
T

ij  is the thermal strain and the elastic strain is  

            
1

(5)e

ij ij kk ij

v

E E


   


   

where E is the Young’s Modulus, v is Poisson ratio,   is stress tensor and   is Kronecker 

delta.  

The strain energy density is  
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This can be written as 

              21
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Based on the work of Needs and Godfrey (1990), the surface stress can be written as  

        

( )
( ) (10)

nd n
n

dn


    

where  (n) is the surface energy  and 
3

3 4
s

n r  and rs is the electron density parameter. 

The second term in the right hand of equation (10) is the strain derivative of the surface 

energy 

which in terms of rsu for a deformed metal can be written as (Needs and Geofrey, 1990) 

(11)
3

su

su

rnd d

dn dr

 
 

 

Hence 

(12)
3

su

su

r d

dr


  

 

Combining  equations (6) and (12) , we obtain the expression for computing the strain energy 

of deformed metals according to the structureless pseudopotential model as  
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2

1
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In this work, the surface energy was computed based in the parameterized expression of 

Brajczewska et al., (2001).  

In this work, the strain energy density of deformed metals will be computed and how 

deformation affects this property of metals will be studied. Also the variation of strain energy 

density with electron density parameters will be investigated.  

 

RESULTS AND DISCUSSION 

Figure 1 shows the variation of strain energy density with electron density parameter for 

some elemental metals. Fig.1 revealed that strain energy density does not exhibit a regular 

pattern with electron density parameter. As revealed in the figure, metals in the high density 

limit have high strain energy density and this decrease towards the low –density limit. This 

may be due to the dependence of the strain energy on the relative location of the particles or 

electrons in the metals. Also, the observed trend may be due to the increase in the volume of 

the metals from the high density limit to the low-density limit.   

Figures 2, 3, 4 and 5 shows the variation of strain energy density with deformation for metals 

of different valencies.  Fig. 2 reveals that for deformed monovalent metals, the strain energy 

density of potassium is least followed by that of silver and copper.  The strain energy density 

of potassium, silver and copper decreases with increase in deformation.  This also true for 

zinc and cadmium in Fig.3 , Yitrium bismuth and titanium in Fig. 4. Furthermore, the strain 

energy density of the polyvalent metals (metals whose valency is grater than three) decreases 

with increase in deformation. The decrease in the strain energy density of the metals with 

increase in deformation may be a consequence of increase in volume of the metals as a result 

of  the applied deformation.  This further reveals that deformation causes a relative large 

displacement of the particles in the metals. The displacement of the particles of the metals 

also depends on the nature of the metals. 

In Fig.2, the strain energy density of chromium increases with increase in deformation, gets 

to a maximum value, and starts decreasing. The same behaviour is exhibited by beryllium in 

Fig. 3 and titanium in Fig. 4.  The behaviour of these metals may be due to the fact that the 

respective volume of these metals decreases as the deformation increases gets to a certain 

value and starts decreasing after relaxation of the metal. This may also be due to the 

resilience of these metals which accounts for the ability of the metals to absorb energy within 

the elastic limit. Also in Fig.2, the strain energy density of cadmium and nickel increases up 

to when the deformation is 0.6 and starts decreasing. The same behaviour is exhibited by 

aluminium in Fig. 4. This behaviour may be due to the ability of the metals to absorb energy 

without fracturing.  

Generally, for the metals used to test the model, the variation of strain energy density with 

deformation do not exhibit s general trend.  This may be due the dependence of strain energy 

density on the elastic properties of the metals through the Young’s modulus, the type of stress 
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present in the metals, the electronic packing density and the type of bonding between the 

electrons in the metals. 

This work is more general and accurate than the work of Kiejna and Pogosov (2000) that  

computed the surface energy, work function, strain derivative and surface stress for deformed 

aluminium and lithium at the (100) and (111) faces. The computation of Kiejna and Pogosov 

(2000) was based on the assumption that the electron density parameters of deformed and 

undeformed metals are equal, thereby neglecting dilation and uniaxial strain. They also 

assumed a Poisson ratio of 0.5 for all the metals, which is an upper limit of Possion ratio of 

metals.    

In our computation, Poisson ratio of different metals used in the work was obtained from 

Gere and Timoshenko, 1998. Uniaxial strain was obtained in our computation and used to 

obtain accurate values of electron density parameter of deformed metals.  

 

CONCLUSION  

In this work, a generalized approach for computing and studying the strain energy density of 

metals based on the structureless pseudopotential formalism is presented. The variation of 

strain energy density of metals with deformation do not exhibit a particular trend. The strain 

energy density of metals depends on some properties of metals such as its elasticity, nature of 

the internal stress in the metal, electronic bonding, inter-particle spacing, variation of the 

volume of the metal with deformation and resilience of the metals. 
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APPENDIX 
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Fig. 1: Variation of strained energy density with electron density parameter for some     

            metals. 
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Fig. 2: Variation of strain energy density with deformation for some deformed monovalent 

metals. 

 

http://www.eajournals.org/


International Research Journal of Pure and Applied Physics 

Vol.5, No.2, pp.8-18, June 2017 

__Published by European Centre for Research Training and Development UK (www.eajournals.org) 

17 

ISSN 2055-009X(Print), ISSN 2055-0103(Online) 

0.0 0.5 1.0 1.5 2.0

0

500

1000

1500

2000

2500

3000

3500

 

 

 BERYLLIUM

 MAGNESIUM

 NICKEL

 ZINC

 CADMIUM

 IRON

St
ra

in
 e

ne
rg

y 
de

ns
it

y 
(J

/m
3 )

Deformation

 

Fig. 3: Variation of strain energy density with deformation for some deformed divalent 

metals. 

 

 

 

0.0 0.5 1.0 1.5 2.0

0

250

500

750

1000

1250

 

 

 ALUMINIUM

 BISMUTH

 TITANIUM

 YTTRIUM

 TIN

St
ra

in
 e

ne
rg

y 
de

ns
ity

 (J
/m

3 )

 Deformation

 

Fig. 4: Variation of strain energy density with deformation for some deformed trivalent 

metals. 
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Fig. 5: Variation of strain energy density with deformation for some deformed polyvalent 

metals. 
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