
International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

25

ENRICHING BATCHED STREAM PROCESSING USING BAYESIAN NETWORK

FOR WEB SERVICES

 Prof D.M Thakore
Professor, BVCOE, Pune, India

Prof N.B Kadu

Assistant Professor, PREC, loni, Ahmednagar, India

Abstract - The need for secure data transactions has become a necessity of our time.
Medical records, financial records, legal information and payment gateway are all in need of
secure data transaction process. There have been several methods proposed to perform
secure, fast and scalable data transactions in web services. As the web servers deals with the
huge amount of query it becomes really difficult to handle all the query to perform in the
limited amount of time , and the failure of this can crash the web service or it may cause
transaction failures, which can cause a huge financial losses to the organizations. Batched
stream processing is a new distributed data processing paradigm that models recurring batch
computations on incrementally bulk-appended data streams. The model is inspired by our
empirical study on a trace from large-scale production data-processing clusters at the web
server end; it allows a set of effective query optimizations that are not possible in a
traditional batch processing model. By applying Bayesian Networks concept we stream the
query so that similar queries are batched as cluster of queries which we called them as jumbo
query. These batched queries are then commit for the transaction so that the complete
process runs without any much load on the servers and they can handle heavy amount of
transactions without any failures which lead to any fuss.

Keywords: Bayesian Networks, Web Server, Batched Stream processing, Query Series,
Jumbo Query.

INTRODUCTION
At the web servers end where each query specifies computation on a large bulk of data. These
systems tend to process queries individually. In reality, we face the challenging problem of
executing a large number of complicated queries on a large amount of data every day across
thousands of servers. Optimization of query executions is essential for effective resource
utilization and high throughput.

Our study further reveals that the redundancy in the web server transactions is due to
correlations among queries. The workload exhibits temporal correlations, where it is common
to have a series of queries involving the same recurring computations on the same data
stream in different time windows. The workload further exhibits spatial correlations, where a
data stream is often the target of multiple queries involving different but somewhat
overlapping computations. For example, one data stream might store web search logs and is

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

26

appended daily with new entries. A query might be issued daily to retrieve the top ten hottest
keywords from the search logs over a sliding window of the last 7 days. These daily queries
have clear temporal correlations. Another set of daily queries might probe the geographical
distribution of search entries in the same 7-day window, thereby exhibiting spatial
correlations with the first set of queries.

To expose temporal correlations among queries, we introduce Batched Stream Processing
(BSP) to model recurring (batch) computations on incrementally bulk-appended data streams,
which is a dominant pattern that we observed in the studied trace. Recurring computations on
the same data stream form a query series. An example query series consists of the daily
queries for the hottest keywords in the last 7 days, as described earlier. With query series, an
execution of an earlier query in a query series could help the execution of later queries in the
same query series. First, it could preserve intermediate results that are needed by later
queries; for example, for the hottest-keyword query series, it might be beneficial to create a
daily keyword count because it will be used by the next 6 days of queries in the same query
series. Those intermediate results resemble materialized views [1] in database systems.
Second, profiling the execution of an earlier query could help guide optimizations of later
queries in the same query series.

Later queries in a query series are driven by bulk updates to input data streams, rather than
being triggered by query submission from users. This has significant implications. Queries
from multiple query series operating on the same input data stream can now be aligned to
execute together when new bulk updates occur. This maximizes opportunities to remove
redundant computations or I/O across those queries; such redundancy arises from spatial
correlations among those queries. With the Batched Stream Processing model, traditional
database optimization techniques, especially those for continuous queries [2] and multiple
queries [3], become relevant.
We have studied the temporal stability of data streams to check the feasibility of guiding the
optimization of a query based on profiling of the previous executions, especially from those
in the same query series. We have found data distributions of newly appended up dates are
stable across different days.

In summary, our study of the trace reveals strong temporal and spatial correlations among
queries; those correlations lead to significant I/O redundancies and temporal load imbalance.
There is a clear indication that queries are mostly driven by new updates. Recurring queries
are expected to exhibit similar behavior because of the stability observed on data stream
properties: this lays the foundation for optimizing recurring queries based on the profiling of
an earlier execution. All these results argue for the batched stream processing model, as well
as hinting at the potential benefits of such a model.

We have built a system to support Batched Stream Processing: our System allows users to
submit query series and implements a set of global optimizations that take advantage of the
notion of query series. Query execution in our system is triggered by arrivals of new bulk
updates to streams. A query is decomposed into a number of sub queries, each of which is
performed on a new bulk update. Our System aligns sub-queries from different query series
into a single jumbo query and optimizes the jumbo query to remove redundancies and
improve performance.

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

27

The rest of the paper is organized as follows: section 2 will introduce about related work done
so far. Section 3 will give proposed work, section 4 will explain about results. Section5 will
conclude this paper.

PROPOSED METHOD

 PART I: BUILDING BAYESIAN NETWORK

A Bayesian network is a graphical structure that allows us to represent and reason about an
uncertain domain. The nodes in a Bayesian network represent a set of random variables, X =
X1; Xi; Xn, from the domain. A set of directed arcs (or links) connects pairs of nodes, Xi! Xj,
representing the direct dependencies between variables.
Assuming discrete variables, the strength of the relationship between variables is quantified
by conditional probability distributions associated with each node. The only constraint on the
arcs allowed in a BN is that there must not be any directed cycles: There are a number of
steps that a knowledge engineer1 must undertake when building a Bayesian network. At this
stage we will present these steps as a sequence;

Throughout the remainder of this section we will use the following simple Query diagnosis
problem.Example problem: A Database DELTE Query at web server may occur before it
may be insert or update from other client panel, In the same way a select query may also
occurs before its been Insert or update from other client panel. When this kind of scenario
occurs in maintaining huge amount data, a big transaction failures may can lead data loosing
or any other threat to the system. So in short all the basic database queries like Insert, Update,
Delete and Select are largely depend on arrival of insert query at the server’s end. So its
Probability is more. So Bayesian Network is very good option to judge the probability and
handle all the queries according to priority and executes the query in bulk to reduce the web
servers load.

Nodes and values
First, the knowledge engineer must identify the variables of interest. This involves answering
the question: what are the nodes to represent and what values can they take, or what state can
they be in? For now we will consider only nodes that take discrete values. The values should
be both mutually exclusive and exhaustive, which means that the variable must take on
exactly one of these values at a time. Common types of discrete nodes include:

� Boolean nodes, which represent propositions, taking the binary values true (T) and
false (F). In a domain Database query represents nodes of our system.

� Ordered values. For example, a node Insert represents its dependency on the other
query as {low, medium, high}.

� Integral values. For example, a node called commit represent integral value.

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

28

Below table shows preliminary choices of nodes

Node
name

Type Values

Insert

Select

Update

Delete

Boolean

Boolean

Boolean

Boolean

{high}

{high,medium,low}

{high,medium,low}

{high,medium,low}

Table1: Node Priority List

Bayesian Structure
The structure, or topology, of the network should capture qualitative relationships between
variables. In particular, two nodes should be connected directly if one affects or causes the
other, with the arc indicating the direction of the effect. it can be see in the below fig

Figure 1: A BN for Query Solving problem

3.1.3 Reasoning with Bayesian networks
 Now that we know how a domain and its
uncertainty may be represented in a
Bayesian network, we will look at how to
use the Bayesian network to reason about
the domain. In particular, when we observe
the value of some variable, we would like to
condition upon the new information. The

process of conditioning (also called probability propagation or inference or belief updating) is
performed via a “flow of information” through the network. Note that this information flow is
not limited to the directions of the arcs. In our probabilistic system, this becomes the task of
computing the posterior probability distribution for a set of query nodes, given values for
some evidence (or observation) nodes.

3.1.4 Types of reasoning

 Bayesian networks provide full representations of probability distributions over their
variables. That implies that they can be conditioned upon any subset of their variables,
supporting any direction of reasoning.
 For example,

� Diagnostic reasoning, i.e., reasoning from one query to another query then updates
his belief. Note that this reasoning occurs in the opposite direction to the network
arcs.(D-Delete , C-Commit)

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

29

� Predictive reasoning, reasoning
from new information about causes
to new beliefs about effects,
following the directions of the
network arcs.

 (P- Probability)

Conditional probabilities
Once the topology of the BN is specified, the next step is to quantify the relationships
between connected nodes – this is done by specifying a conditional probability distribution
for each node. As we are only considering discrete variables at this stage, this takes the form
of a conditional probability table (CPT).

First, for each node we need to look at all the possible combinations of values of those parent
nodes. Each such combination is called an instantiation of the parent set. For each distinct
instantiation of parent node values, we need to specify the probability that the child will take
each of its values.

Bayesian Execution Plan

A central Bayesian Network was first obtained using the whole query feature occurred in the
past by studying web log file at server end. We then split these features into two sets
corresponding to the respective scenario in the web server. and then by applying Bayesian
Network theorem we will query priority based on that we are implementing our batched
Stream model that we discussed in the below section.

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

30

Batched Stream Processing

Our study on the production trace indicates that a significant portion of queries follow the
Batched Stream Processing model, where source input data are modeled as periodically
appended streams with recurring queries triggered upon bulk appends to these streams. Each
single bulk update creates a segment of the data stream; different segments are differentiated
with their timestamps that indicate their arrival times. Recurring computations form a query
series, where each query instance in a query series is triggered when new segment(s) are
appended. In the batched stream processing model, users can submit query series that
explicitly convey temporary correlations among individual queries; while in a traditional
batch processing system these queries would have to be submitted separately. This seemingly
simple notion of query series enables a set of new optimizations that are not available or hard
to implement in current batch-processing systems.

With query series, execution of an earlier query in a query
series is aware of future query executions in the same query series, thereby offering
opportunities for optimizations. First, an execution of an earlier query could piggyback
statistical properties of input data streams or intermediate data; such statistical information
could guide effective optimizations of later queries. As we have already seen in the empirical
study, important statistical properties such as the data distributions of stream and filter
selectivity tend to be stable as a data stream grows over time. Previous executions are also
effective in estimating the cost of custom functions, which are an important part of data
processing queries. Such estimation
Would have been difficult otherwise.

More importantly, with query series, query
execution is now mostly driven by bulk updates to
input streams rather than by submissions from
users. Queries in different query series that operate
on the same input stream can now be aligned and
optimized together as one aggregated query. This
helps remove redundancies, which are spatial
correlations across query series. Given the power-
law distribution on data stream accesses that we
observe, a significant number of query series would access the most popular data streams and
offer opportunities for optimizations when aligned and combined. To increase chances of
sharing across query series, a query might be further decomposed into a series of smaller
queries, each on a subset of input stream segments, followed by a final step of aggregating
the results of the smaller queries to obtain the final result. Query decomposition ensures that
all queries on the same stream process the data on aligned segment windows, even if some
queries originally process data over multiple segment windows.

We have developed Batched query processing engine that supports the BSP model and
enables new optimizations. Our System allows users to submit a query series by specifying
the period and the number of recurrences of the computations. We use the following terms to
define the computation units in an execution:

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

31

� S-query. An S-query is a single query occurrence of a query series; it can access one

or more segments on one or more streams.
� SS-query. Intuitively, an SS-query is a sub-computation of an S-query that can be

executed when a new segment arrives. We associate with each SS-query a timestamp
indicating its planned execution time. It is usually equal to the maximum timestamp
of the segments it accesses: arrival of the segment with the maximum timestamp
triggers execution of the SS-query. An S query can be decomposed into one or more
SS-queries in a normalization process.

� Jumbo-query. A jumbo-query is a set of SS-queries with the same timestamp; that is,
a jumbo query includes all SS-queries that can be executed together, thereby
leveraging any common I/O and computations among these SS-queries.

Figure 4 shows how query series are processed in OUR proposed system .When a query
series is submitted, BSP normalizes it into a sequence of SS-queries and combines them with
their corresponding jumbo-queries. This allows BSP to align query series based on the
segments they involve.

RESULTS

As with the stream processing model [4], computation in the BSP model is triggered by new
updates to data streams,but without resource and timing constraints normally associated with
stream processing; as with the batch processing model, each query in a query series is a batch
job, but computations are recurring, as it is triggered by a (bulk) update to data streams.

Batch processing: There is a large body of research on query optimizations for batch
processing in traditional (parallel) databases [5]. Shared-nothing database systems like
Gamma [6] and Bubba [7] focus mainly on parallelizing a single query. As for multiple query
optimizations, materialized views are an effective mechanism in exploiting the result of
common sub expressions within a single query or among multiple queries.

CONCLUSION

Bayesian Network: Bayes’ theorem allows us to update the probabilities of variables whose
state has not been observed given some set of new observations. Bayesian networks automate
this process, allowing reasoning to proceed in any direction across the network of variables.
They do this by combining qualitative information about direct dependencies (perhaps causal
relations) in arcs and quantitative information about the strengths of those dependencies in
conditional probability distributions. Computational speed gains in updating accrue when the
network is sparse, allowing d-separation to take advantage of conditional independencies in
the domain

International Journal of Engineering and Advance Technology Studies

Vol.1, No.1, pp.25-32, March 2013

Published European Centre for Research Training and Development UK (www.ea-journals.org)

32

Stream processing. Stream processing systems such as STREAM [8] and NiagaraCQ [9]
usually process real-time and continuous data streams. Due to resource and time constraints,
stream data are usually not stored persistently.
Continuous queries run on a stream for a period of time, and return new results as new data
arrives. Query processing algorithms for incremental computation [10] and for identifying
common sub-queries among continuous queries are proposed to process streams efficiently.

 References

[1] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared scans of large data files. Proc.
VLDB Endow. 1(1):958–969, 2008.
[2] D. Terry, D. Goldberg, D. Nichols, and B.Oki.Continuous queries over append-only
databases. In
ACM SIGMOD, 1992.
[3] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, 1988.
[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In ACM PODS, 2002.

[5] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.
[6] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen. The Gamma database machine project. IEEE
Trans. On Knowl. and Data Eng., 2(1):44–62, 1990.
[7] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M.
Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system. IEEE Trans.
on Knowl. and Data Eng., 2(1):4–24, 1990.
[8] The Stanford STREAM Group. STREAM: The Stanford stream data manager. IEEE Data
Engineering Bulletin, 26(1), 2003.
[9] J. Chen, D. J. Dewitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query
system for internet databases. In ACM SIGMOD, 2000.
[10] D. Terry, D. Goldberg, D. Nichols, and B. Oki.
Continuous queries over append-only databases. In
ACM SIGMOD, 1992.

(deventhakur@yahoo.com, kamleshkadu@rediff.com)

