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Abstract - The need for secure data transactions has become a necessity of our time. 
Medical records, financial records, legal information and payment gateway are all in need of 
secure data transaction process. There have been several methods proposed to perform 
secure, fast and scalable data transactions in web services. As the web servers deals with the 
huge amount of query it becomes really difficult to handle all the query to perform in the 
limited amount of time , and the failure of this can crash the web service or it may cause 
transaction failures, which can cause a huge financial losses to the organizations. Batched 
stream processing is a new distributed data processing paradigm that models recurring batch 
computations on incrementally bulk-appended data streams. The model is inspired by our 
empirical study on a trace from large-scale production data-processing clusters at the web 
server end; it allows a set of effective query optimizations that are not possible in a 
traditional batch processing model. By applying Bayesian Networks concept we stream the 
query so that similar queries are batched as cluster of queries which we called them as jumbo 
query. These batched queries are then commit for the transaction so that the complete 
process runs without any much load on the servers and they can handle heavy amount of 
transactions without any failures which lead to any fuss. 
 
Keywords: Bayesian Networks, Web Server, Batched Stream processing, Query Series, 
Jumbo Query. 

 
 

 
INTRODUCTION 
At the web servers end where each query specifies computation on a large bulk of data. These 
systems tend to process queries individually. In reality, we face the challenging problem of 
executing a large number of complicated queries on a large amount of data every day across 
thousands of servers. Optimization of query executions is essential for effective resource 
utilization and high throughput. 
 
Our study further reveals that the redundancy in the web server transactions is due to 
correlations among queries. The workload exhibits temporal correlations, where it is common 
to have a series of queries involving the same recurring computations on the same data 
stream in different time windows. The workload further exhibits spatial correlations, where a 
data stream is often the target of multiple queries involving different but somewhat 
overlapping computations. For example, one data stream might store web search logs and is 
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appended daily with new entries. A query might be issued daily to retrieve the top ten hottest 
keywords from the search logs over a sliding window of the last 7 days. These daily queries 
have clear temporal correlations. Another set of daily queries might probe the geographical 
distribution of search entries in the same 7-day window, thereby exhibiting spatial 
correlations with the first set of queries. 
 
To expose temporal correlations among queries, we introduce Batched Stream Processing 
(BSP) to model recurring (batch) computations on incrementally bulk-appended data streams, 
which is a dominant pattern that we observed in the studied trace. Recurring computations on 
the same data stream form a query series. An example query series consists of the daily 
queries for the hottest keywords in the last 7 days, as described earlier. With query series, an 
execution of an earlier query in a query series could help the execution of later queries in the 
same query series. First, it could preserve intermediate results that are needed by later 
queries; for example, for the hottest-keyword query series, it might be beneficial to create a 
daily keyword count because it will be used by the next 6 days of queries in the same query 
series. Those intermediate results resemble materialized views [1] in database systems. 
Second, profiling the execution of an earlier query could help guide optimizations of later 
queries in the same query series. 
 
Later queries in a query series are driven by bulk updates to input data streams, rather than 
being triggered by query submission from users. This has significant implications. Queries 
from multiple query series operating on the same input data stream can now be aligned to 
execute together when new bulk updates occur. This maximizes opportunities to remove 
redundant computations or I/O across those queries; such redundancy arises from spatial 
correlations among those queries. With the Batched Stream Processing model, traditional 
database optimization techniques, especially those for continuous queries [2] and multiple 
queries [3], become relevant. 
We have studied the temporal stability of data streams to check the feasibility of guiding the 
optimization of a query based on profiling of the previous executions, especially from those 
in the same query series. We have found data distributions of newly appended up dates are 
stable across different days.    
 
In summary, our study of the trace reveals strong temporal and spatial correlations among 
queries; those correlations lead to significant I/O redundancies and temporal load imbalance. 
There is a clear indication that queries are mostly driven by new updates. Recurring queries 
are expected to exhibit similar behavior because of the stability observed on data stream 
properties: this lays the foundation for optimizing recurring queries based on the profiling of 
an earlier execution. All these results argue for the batched stream processing model, as well 
as hinting at the potential benefits of such a model. 
 
We have built a system to support Batched Stream Processing: our System allows users to 
submit query series and implements a set of global optimizations that take advantage of the 
notion of query series. Query execution in our system is triggered by arrivals of new bulk 
updates to streams. A query is decomposed into a number of sub queries, each of which is 
performed on a new bulk update. Our System aligns sub-queries from different query series 
into a single jumbo query and optimizes the jumbo query to remove redundancies and 
improve performance. 
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The rest of the paper is organized as follows: section 2 will introduce about related work done 
so far.  Section 3 will give proposed work, section 4 will explain about results. Section5 will 
conclude this paper. 
 
 
PROPOSED METHOD 

 PART I: BUILDING BAYESIAN NETWORK 

A Bayesian network is a graphical structure that allows us to represent and reason about an 
uncertain domain. The nodes in a Bayesian network represent a set of random variables, X = 
X1; Xi; Xn, from the domain. A set of directed arcs (or links) connects pairs of nodes, Xi! Xj, 
representing the direct dependencies between variables.  
Assuming discrete variables, the strength of the relationship between variables is quantified 
by conditional probability distributions associated with each node. The only constraint on the 
arcs allowed in a BN is that there must not be any directed cycles: There are a number of 
steps that a knowledge engineer1 must undertake when building a Bayesian network. At this 
stage we will present these steps as a sequence; 
 
Throughout the remainder of this section we will use the following simple Query diagnosis 
problem.Example problem: A Database DELTE Query at web server may occur before it 
may be insert or update from other client panel, In the same way a select query may also 
occurs before its been Insert or update from other client panel. When this kind of scenario 
occurs in maintaining huge amount data, a big transaction failures may can lead data loosing 
or any other threat to the system. So in short all the basic database queries like Insert, Update, 
Delete and Select are largely depend on arrival of insert query at the server’s end. So its 
Probability is more. So Bayesian Network is very good option to judge the probability and 
handle all the queries according to priority and executes the query in bulk to reduce the web 
servers load. 
 
Nodes and values 
First, the knowledge engineer must identify the variables of interest. This involves answering 
the question: what are the nodes to represent and what values can they take, or what state can 
they be in? For now we will consider only nodes that take discrete values. The values should 
be both mutually exclusive and exhaustive, which means that the variable must take on 
exactly one of these values at a time. Common types of discrete nodes include: 
 

� Boolean nodes, which represent propositions, taking the binary values true (T) and 
false (F). In a domain Database query represents nodes of our system. 

� Ordered values. For example, a node Insert represents its dependency on the other 
query as {low, medium, high}. 

� Integral values. For example, a node called commit represent integral value. 
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Below table shows preliminary choices of nodes 

Node 
name 

Type Values 

Insert 
 
Select 
 
Update 
 
Delete 
 

Boolean 
 
Boolean 
 
Boolean 
 
Boolean 

{high} 
 
{high,medium,low} 
 
{high,medium,low} 
 
{high,medium,low} 
 

Table1: Node Priority List 
 
Bayesian Structure 
The structure, or topology, of the network should capture qualitative relationships between 
variables. In particular, two nodes should be connected directly if one affects or causes the 
other, with the arc indicating the direction of the effect. it can be see in the below fig 
 
 

 
Figure 1: A BN for Query Solving problem 

 
 
3.1.3 Reasoning with Bayesian networks 
   Now that we know how a domain and its 
uncertainty may be represented in a 
Bayesian network, we will look at how to 
use the Bayesian network to reason about 
the domain. In particular, when we observe 
the value of some variable, we would like to 
condition upon the new information. The 

process of conditioning (also called probability propagation or inference or belief updating) is 
performed via a “flow of information” through the network. Note that this information flow is 
not limited to the directions of the arcs. In our probabilistic system, this becomes the task of 
computing the posterior probability distribution for a set of query nodes, given values for 
some evidence (or observation) nodes. 
 
3.1.4 Types of reasoning 
 
    Bayesian networks provide full representations of probability distributions over their 
variables. That implies that they can be conditioned upon any subset of their variables, 
supporting any direction of reasoning. 
 For example,  

� Diagnostic reasoning, i.e., reasoning from one query to another query then updates 
his belief. Note that this reasoning occurs in the opposite direction to the network 
arcs.( D-Delete , C-Commit ) 
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� Predictive reasoning, reasoning 
from new information about causes 
to new beliefs about effects, 
following the directions of the 
network arcs.  

       (P- Probability) 
 
 
 
            
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
Conditional probabilities 
Once the topology of the BN is specified, the next step is to quantify the relationships 
between connected nodes – this is done by specifying a conditional probability distribution 
for each node. As we are only considering discrete variables at this stage, this takes the form 
of a conditional probability table (CPT). 
 
First, for each node we need to look at all the possible combinations of values of those parent 
nodes. Each such combination is called an instantiation of the parent set. For each distinct 
instantiation of parent node values, we need to specify the probability that the child will take 
each of its values. 
 
Bayesian Execution Plan 
 
A central Bayesian Network was first obtained using the whole query feature occurred in the 
past by studying web log file at server end. We then split these features into two sets 
corresponding to the respective scenario in the web server. and then by applying Bayesian 
Network theorem we will query priority based on that we are implementing our batched 
Stream model that we discussed in the below section. 
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Batched Stream Processing 
 
Our study on the production trace indicates that a significant portion of queries follow the 
Batched Stream Processing model, where source input data are modeled as periodically 
appended streams with recurring queries triggered upon bulk appends to these streams. Each 
single bulk update creates a segment of the data stream; different segments are differentiated 
with their timestamps that indicate their arrival times. Recurring computations form a query 
series, where each query instance in a query series is triggered when new segment(s) are 
appended. In the batched stream processing model, users can submit query series that 
explicitly convey temporary correlations among individual queries; while in a traditional 
batch processing system these queries would have to be submitted separately. This seemingly 
simple notion of query series enables a set of new optimizations that are not available or hard 
to implement in current batch-processing systems.  
 
With query series, execution of an earlier query in a query 
series is aware of future query executions in the same query series, thereby offering 
opportunities for optimizations. First, an execution of an earlier query could piggyback 
statistical properties of input data streams or intermediate data; such statistical information 
could guide effective optimizations of later queries. As we have already seen in the empirical 
study, important statistical properties such as the data distributions of stream and filter 
selectivity tend to be stable as a data stream grows over time. Previous executions are also 
effective in estimating the cost of custom functions, which are an important part of data 
processing queries. Such estimation 
Would have been difficult otherwise. 
 
More importantly, with query series, query 
execution is now mostly driven by bulk updates to 
input streams rather than by submissions from 
users. Queries in different query series that operate 
on the same input stream can now be aligned and 
optimized together as one aggregated query. This 
helps remove redundancies, which are spatial 
correlations across query series. Given the power-
law distribution on data stream accesses that we 
observe, a significant number of query series would access the most popular data streams and 
offer opportunities for optimizations when aligned and combined. To increase chances of 
sharing across query series, a query might be further decomposed into a series of smaller 
queries, each on a subset of input stream segments, followed by a final step of aggregating 
the results of the smaller queries to obtain the final result. Query decomposition ensures that 
all queries on the same stream process the data on aligned segment windows, even if some 
queries originally process data over multiple segment windows. 
 

We have developed Batched query processing engine that supports the BSP model and 
enables new optimizations. Our System allows users to submit a query series by specifying 
the period and the number of recurrences of the computations. We use the following terms to 
define the computation units in an execution: 
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� S-query. An S-query is a single query occurrence of a query series; it can access one 

or more segments on one or more streams.  
�  SS-query. Intuitively, an SS-query is a sub-computation of an S-query that can be 

executed when a new segment arrives. We associate with each SS-query a timestamp 
indicating its planned execution time. It is usually equal to the maximum timestamp 
of the segments it accesses: arrival of the segment with the maximum timestamp 
triggers execution of the SS-query. An S query can be decomposed into one or more 
SS-queries in a normalization process. 

� Jumbo-query. A jumbo-query is a set of SS-queries with the same timestamp; that is, 
a jumbo query includes all SS-queries that can be executed together, thereby 
leveraging any common I/O and computations among these SS-queries. 

 
Figure 4 shows how query series are processed in OUR proposed system .When a query 
series is submitted, BSP normalizes it into a sequence of SS-queries and combines them with 
their corresponding jumbo-queries. This allows BSP to align query series based on the 
segments they involve. 
 

RESULTS 

As with the stream processing model [4], computation in the BSP model is triggered by new 
updates to data streams,but without resource and timing constraints normally associated with 
stream processing; as with the batch processing model, each query in a query series is a batch 
job, but computations are recurring, as it is triggered by a (bulk) update to data streams. 

Batch processing: There is a large body of research on query optimizations for batch 
processing in traditional (parallel) databases [5]. Shared-nothing database systems like 
Gamma [6] and Bubba [7] focus mainly on parallelizing a single query. As for multiple query 
optimizations, materialized views are an effective mechanism in exploiting the result of 
common sub expressions within a single query or among multiple queries. 
 

CONCLUSION   

Bayesian Network: Bayes’ theorem allows us to update the probabilities of variables whose 
state has not been observed given some set of new observations. Bayesian networks automate 
this process, allowing reasoning to proceed in any direction across the network of variables. 
They do this by combining qualitative information about direct dependencies (perhaps causal 
relations) in arcs and quantitative information about the strengths of those dependencies in 
conditional probability distributions. Computational speed gains in updating accrue when the 
network is sparse, allowing d-separation to take advantage of conditional independencies in 
the domain 
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Stream processing. Stream processing systems such as STREAM [8] and NiagaraCQ [9] 
usually process real-time and continuous data streams. Due to resource and time constraints, 
stream data are usually not stored persistently.  
Continuous queries run on a stream for a period of time, and return new results as new data 
arrives. Query processing algorithms for incremental computation [10] and for identifying 
common sub-queries among continuous queries are proposed to process streams efficiently. 
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