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ABSTRACT: In this work, we proposed a computational technique called the Double 

Perturbation Collocation Method (DPCM) for the numerical solution of fractional Riccati 

differential equation. The DPCM requires the addition of a perturbation term to the 

approximate solution in terms of the shifted Chebyshev polynomials basis function. This 

function is substituted into a slightly perturbed fractional Riccati equation. The fractional 

derivative is in the Caputo sense. The resulting equation is simplified and then collocated at 

some equally spaced points. Thus resulted into system of equations which are then solved by 

implementing Gaussian elimination method for linear to obtain the unknown constants and for 

the case of nonlinear, Newton linearization scheme of appropriate orders are used to linearize. 

The values of the constants obtained are then substituted back into the perturbed approximate 

solution. Results obtained with DPCM compared favourably well with existing results in 

literature and the exact solutions where such existed in closed form. Some numerical examples 

are included to illustrate the accuracy, simplicity and computational cost of the method. 
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INTRODUCTION 

Recently, considerable attention with keen interest has been drawn to the study of fractional 

differential equations. This is mainly due to the fact that physical phenomena are successfully 

modeled using fractional order differential equations. Hashimet. al (2009) stated that fractional 

differential equations have found applications in many problems in physics, mathematics and 

engineering. 

These areas include signal processing, control engineering, biosciences, fluid mechanics, 

electro-chemistry, diffusion processes, viscoelastic materials and so on. Podlubny (1999) 

observed that many researchers are attracted to this field of study because of its wide application 

areas in mathematics, economics and engineering. He (1999) stated that the fluid-dynamic 

traffic is modeled using fractional derivatives. For more details on fractional differential and 

integral equations see ( Podlubny, 1999). 

The Riccati differential equation was named after an Italian Nobleman called Count Jacopo 

Francesco Riccati (1676-1754) (Sweilam et. al 2014). Riccati equations are applicable in the 

random processing, optimal control and diffusion problems, stochastic realization theory, 

robust stabilization, network synthesis, financial mathematics. Reid (1972) gives detailed 

fundamental theory and applications of Riccati differential equations in the book entitled 

Riccati differential equations. 
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Fractional Riccati differential equations arise in mathematical modeling of many physical and 

engineering phenomena such as heat conduction, fluid flow, optical control, financial 

mathematics, acoustics, electro-magnetics, hydrology and biology processes (Bhrawy,(2014), 

Khader et. al (2014)). Consequently, getting accurate and efficient methods for solving 

problems of fractional derivatives has become an active research undertaking ( Abdulaziz et 

al., (2008)).A good number of scientists has proposed different numerical methods for solving 

fractional derivatives. 

He (1999, 2000) proposed the Variational Iterative Method for the solutions of linear and 

nonlinear problems of fractional order. Momani and Aslam (2006) employed the popular 

Adomian Decomposition Method to derive the analytic approximate solutions of the linear and 

nonlinear boundary value problems for fourth order fractional integral equations. Taiwo and 

Odetunde (2009) used iterative decomposition method to find the numerical approximation of 

one dimensional Biharmonic equations. Homotopy Perturbation and Homotopy Analysis 

methods were applied to solve initial value problems by Hashim et al., (2009). Taiwo (2013) 

applied two collocation methods for the solutions of integral equations by cubic spline. Mittal 

and Nigam (2008) solved integro-differential equations with Adomian Decomposition method. 

Recently, Khader et al. (2014) used the Chebyshev collocation method for solving fractional 

order Klein-Gordon equation. Bhrawy (2014) used a new Legendre collocation method for 

solving a two- dimensional fractional Riccati equation. the work of the above mentioned 

researchers motivated us to investigate this field of study. Here we proposed a Double 

Perturbation Collocation Method (DPCM) for the approximate solution of fractional Riccati 

equation. 

 

DEFINITIONS OF RELEVANT TERMS 

Definition 2.1: 

Fractional derivatives refer to differential and integral equations that involve non-integer order. 

The general form is; 

𝐷𝛼𝑦(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) (2.1) 

subject to the conditions 

𝐷𝛼𝑦(0) = 𝑏𝑘  , 𝑘 = 0,1,2,⋯ (2.2) 

whereDα represents the fractional derivative in the Caputo sense and 𝛼 >  0 is the order of the 

non-integer order derivative, and 𝑓(𝑥, 𝑦(𝑥)) is a continuous arbitrary smooth function. 

The 𝑏𝑘;   𝑘 = 0,1,2,⋯ are constants. 

Definition 2.2: 

Fractional Riccati differential Equation: this is of the form 

𝐷𝛼𝑦(𝑡) = 𝑃(𝑡) + 𝑄(𝑡)𝑦(𝑡) + 𝑅(𝑡)𝑦2(𝑡), 𝑡 > 0, (0 < 𝛼 ≤ 1 (2.3) 

subject to the initial condition: 
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𝑦(0) = 𝑦0 

 
(2.4) 

where𝑃(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are real functions, also y0 is a constant and α is a real number. 

Definition 2.3: 

A real function 𝑓(𝑥), 𝑥 >  0 ∈  𝑁is said to be in space 𝐶𝛼, 𝛼 ∈  𝑅if there exist a real number 

𝜌 >  𝛼 , such that 

𝑓(𝑥)  =  𝑥𝜌𝑓1(𝑥) (2.5) 

where𝑓1(𝑥)  =  𝐶[0,∞]. If 𝛽 ≤  𝛼, then𝐶𝛼 ∈  𝐶𝛽 . 

Definition 2.4: 

A function 𝑓(𝑥), 𝑥 >  0 is said to be in space  𝐶𝑚
𝛼 , 𝑛 ∈ 𝑁0, 𝑁0 = 1,2,⋯, if 𝑓(𝑛)is in 𝐶𝛼. 

Definition 2.5: 

The gamma function is the generalization of the factorial for all positive real numbers. This is 

written as; 

Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
𝛼

0

 (2.6) 

 

Definition 2.6: 

The fractional derivative of 𝑓(𝑡) in the Caputo sense is defined as Podlubny (1999), Azizi and 

Loghmani  (2013). 

𝐷∗
𝛼𝑓(𝑡) =

1

Γ(𝑚 − 𝑎)
∫ (𝑡 − 𝜏)𝑚−𝛼−1𝑓(𝑚)(𝜏)𝑑𝜏
𝑡

0

 (2.7) 

for𝑚 −  1 <  𝛼 ≤  𝑚,𝑚 ∈  𝑁 , 𝑡 >  0 ; 

stated here are basic properties of Caputo derivatives if 𝑘 is a constant, then; 

𝐷∗
𝛼𝑓(𝑘) = 0 (2.8) 

𝐷∗
𝛼𝐽𝛼𝑓(𝑡) = 𝑓(𝑡) (2.9) 

𝐷∗
𝛼𝐽𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓(𝑗)(0+)

𝑚−1

𝑗=0

𝑡𝑗

𝑗!
, 𝑡 > 0  (2.10) 

𝐷∗
𝛼(𝑘1𝑓(𝑡) + 𝑘2𝑓(𝑡)) = 𝑘1𝐷∗

𝛼𝑓(𝑡) + 𝑘2𝐷∗
𝛼𝑓(𝑡) (2.11) 
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Chebyshev Polynomials 

Here, basic properties of the Chebyshev polynomials needed for our work are stated. 

The Chebyshev polynomials of the first kind and of degree k are defined on the interval [−1,1] 
(see Snyder,1966) as; 

𝑇𝑘(𝑡) = cos
−1(𝑘 cos(𝑡)) (3.1) 

𝑇0(𝑡) = 1, 𝑇1(𝑡) = 𝑡, 𝑇2(𝑡) = 2𝑡
2 − 1. (3.2) 

and the recurrence relation is given as 

𝑇𝑘+1(𝑡) = 2𝑡𝑇𝑘(𝑡) − 𝑇𝑘−1(𝑡), 𝑘 = 2,3,⋯ (3.3) 

The analytic form of the Chebyshev polynomial is: 

𝑇𝑘(𝑡) =∑(−1)𝑗
𝑝

𝑗=0

2𝑘−2𝑗−1
𝑘(𝑘 − 𝑗 − 1)!

𝑗! (𝑘 − 2𝑗)!
𝑡𝑘−2𝑗 (3.4) 

where𝑝 =
𝑘

2
 is the integer part of . The orthogonality condition is given by 

∫
𝑇𝑗(𝑡)𝑇𝑘(𝑡)

𝑤(𝑡)

1

−1

𝑑𝑡 = {

𝜋,       for 𝑗 = 𝑘 = 0 ;          
𝜋

2
,      for  𝑗 = 𝑘 ≠ 0;         

0,       for  𝑗 ≠ 𝑘.                  

 (3.5) 

 

 The weight function 

𝑤(𝑡) = √1 − 𝑡2 (3.6) 

 

Shifted Chebyshev Polynomials 

Snyder(1966) stated shifted Chebyshev polynomials of degree n on the closed interval [0 ,L ] 

as; 

𝑇𝑛
∗(𝑡) = 𝑇𝑛 (

2𝑡

𝐿
− 1) (3.7) 

The recurrence formula on the closed interval [0,1]is; 

𝑇𝑛+1
∗ (𝑡) = 2(2𝑡 − 1)𝑇𝑛

∗(𝑡) − 𝑇𝑛−1
∗ (𝑡) (3.8) 

Also, 

𝑇0
∗(𝑡) = 1, 𝑇1

∗(𝑡) = 2𝑡 − 1, 𝑇2
∗(𝑡) = 8𝑡2 − 8𝑡 + 1 (3.9) 
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Thus, the analytic form of the shifted Chebyshev polynomials is; 

𝑇𝑛
∗(𝑡) =∑(−1)𝑛−𝑗

22𝑗𝑛(𝑛 + 𝑗 − 1)!

𝐿𝑗(2𝑗)! (𝑛 − 𝑗)!

∞

𝑗=0

 (3.10) 

𝑛 =  1,2,3,⋯.  The function 𝑦(𝑡) in 𝐿2[0, 𝐿] i.e. 𝑦(𝑡) belongs to the space of square integrable 

in [0, 𝐿] can be written in terms of shifted Chebyshev Polynomials as; 

𝑦(𝑡) = ∑𝑐𝑘𝑇𝑘
∗(𝑡)

∞

𝑘=0

 (3.11) 

where𝑦(𝑡) denotes the approximate solution of the given equation 𝑐𝑘is constant. 𝑐𝑘is defined 

for 𝑘 =  0,1,2,⋯ as: 

𝑐0 =
2

𝜋
∫ 𝑦(𝑡)𝑇0

∗(𝑡)𝑤∗(𝑡)𝑑𝑡
𝐿

0

 (3.12) 

and 

𝑐𝑘 =
2

𝜋
∫ 𝑦(𝑡)𝑇𝑘

∗(𝑡)𝑤∗(𝑡)𝑑𝑡
𝐿

0

 (3.13) 

Where𝑤∗(𝑡) =
1

√𝐿𝑡−𝑡2
.  We consider only the first (𝑚 +  1)-terms of the shifted Chebyshev 

polynomials and the added perturbed part for the approximate solution of the given 

problem(2.3), so we write; 

𝑦𝑚(𝑡) = ∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

∞

𝑘=0

 (3.14) 

Khader et al., (2014) proposed the formula below for the approximation of the fractional part 

of fractional derivative. 

 

Theorem: Let 𝑦(𝑡) be approximated by the Chebyshev polynomials and also let >  0 , then, 

𝐷𝛼𝑦(𝑡) = ∑ ∑ (𝑐𝑗𝑤𝑗,𝑘
𝛼 𝑡𝑘−𝛼 + 𝜏𝑗𝑤𝑗,𝑘

𝛼 𝑡𝑘−𝛼)

∞

𝑘=[𝛼]

∞

𝑗=[𝛼]

 (3.15) 

where, 

𝑤𝑗,𝑘
(𝛼)
= (−1)𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
 (3.16) 

From the linear operator property of Caputo’s fractional derivative, we can write 
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𝐷𝛼(𝑦𝑚(𝑡)) =∑𝑐𝑗𝐷
𝛼 (𝑇𝑗

∗(𝑡))

𝑚

𝑗=0

+∑𝜏𝑗𝐷^𝛼 (𝑇𝑗
∗(𝑡))

𝑚

𝑗=0

 
(3.17) 

𝐷𝛼(𝑇𝑗
∗(𝑡)) = (−1)𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼 

(3.18) 

 

METHODOLOGY 

In this section, we present the Double Perturbation Collocation Method (DPCM) for the 

approximate solution of fractional Riccati differential equations. We consider Riccati fractional 

differential equation of the type in equation (2.3) with condition in equation (2.4). We use the 

trial double perturbation approximate solution 

𝑦𝑚(𝑡) = ∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

 (3.19) 

where𝑐0, 𝑐1, 𝑐2⋯ , 𝑐𝑚and 𝜏0, 𝜏1, 𝜏2⋯ , 𝜏𝑚 are constants. 𝑇𝑘
∗are shifted Chebyshev Polynomials 

defined in equation (3.8). 

In this method, two cases of equation (2.3) are considered. 

Case I 

𝐷𝛼𝑦(𝑡) = 𝑃(𝑡) + 𝑄(𝑡)𝑦(𝑡) (3.20) 

Using equation (3.14) in equation (3.19), we have 

𝐷𝛼 [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] = 𝑄(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝑃(𝑡) (3.21) 

𝐷𝛼 [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝐷𝛼 [∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

]

= 𝑄(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝑄(𝑡) [∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝑃(𝑡) 

(3.22) 

Using the properties of Caputo’s derivative, we have; 

∑𝑐𝑘𝐷
𝛼𝑇𝑘

∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝐷
𝛼𝑇𝑘

∗(𝑡)

𝑚

𝑘=0

 

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.23) 
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∑𝑐𝑘𝐷
𝛼 {∑(−1)𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)!

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)!
𝑡𝑘

𝑗

𝑘=1

}

𝑚

𝑗=1

+∑𝜏𝑘𝐷
𝛼 {(−1)𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)!

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)!
𝑡𝑘}

𝑚

𝑗=1

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.24) 

𝑐𝑘∑∑{(−1)𝑗−𝑘
22𝑘𝑗(𝑗 + 𝑘 − 1)!

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)!
𝐷𝛼𝑡𝑘}

𝑗

𝑘=1

𝑚

𝑗=1

+ 𝜏𝑘∑∑{(−1)𝑗−𝑘
22𝑘𝑗(𝑗 + 𝑘 − 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)!
𝐷𝛼𝑡𝑘}

𝑗

𝑘=1

𝑚

𝑗=1

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.25) 

∑∑𝑐𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=1

𝑚

𝑗=1

+∑∑𝜏𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=1

𝑚

𝑗=1

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.26) 

∑{𝑐1(−1)
𝑗−1

22⋅1𝑗(𝑗 + 1 − 1)! Γ(1 + 1)

𝐿1(𝑗 − 1)! (2 ⋅ 1)! Γ(1 + 1 − 𝛼)
𝑡1−𝛼

𝑚

𝑗=1

+ 𝑐2(−1)
𝑗−2

22⋅2𝑗(𝑗 + 2 − 1)! Γ(2 + 1)

𝐿1(𝑗 − 2)! (2 ⋅ 2)! Γ(2 + 1 − 𝛼)
𝑡2−𝛼

+⋯+ 𝑐𝑚(−1)
𝑗−𝑚

22⋅𝑚𝑗(𝑗 + 𝑚 − 1)! Γ(𝑚 + 1)

𝐿𝑚(𝑗 − 𝑚)! (2 ⋅ 𝑚)! Γ(𝑚 + 1 − 𝛼)
𝑡𝑚−𝛼} 

+∑{𝜏1(−1)
𝑗−1

22⋅1𝑗(𝑗 + 1 − 1)! Γ(1 + 1)

𝐿1(𝑗 − 1)! (2 ⋅ 1)! Γ(1 + 1 − 𝛼)
𝑡1−𝛼

𝑚

𝑗=1

+ 𝜏2(−1)
𝑗−2

22⋅2𝑗(𝑗 + 2 − 1)! Γ(2 + 1)

𝐿1(𝑗 − 2)! (2 ⋅ 2)! Γ(2 + 1 − 𝛼)
𝑡2−𝛼

+⋯+ 𝜏𝑚(−1)
𝑗−𝑚

22⋅𝑚𝑗(𝑗 + 𝑚 − 1)! Γ(𝑚 + 1)

𝐿𝑚(𝑗 − 𝑚)! (2 ⋅ 𝑚)! Γ(𝑚 + 1 − 𝛼)
𝑡𝑚−𝛼}

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.27) 
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∑{𝑐1𝑎1(𝑗)𝑡
1−𝛼 + 𝑐2𝑎2(𝑗)𝑡

2−𝛼 +⋯+ 𝑐𝑚𝑎𝑚(𝑗)𝑡
𝑚−𝛼}

𝑚

𝑗=1

+∑{𝜏1𝑎1(𝑗)𝑡
1−𝛼 + 𝜏2𝑎2(𝑗)𝑡

2−𝛼 +⋯+ 𝜏𝑚𝑎𝑚(𝑗)𝑡
𝑚−𝛼}

𝑚

𝑗=1

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.28) 

𝑐1𝑎11(𝑗)𝑡
1−𝛼 + 𝑐2𝑎12(𝑗)𝑡

2−𝛼 +⋯+ 𝑐𝑚𝑎1𝑚(𝑗)𝑡
𝑚−𝛼 + 𝑐1𝑎21(𝑗)𝑡

1−𝛼

+ 𝑐2𝑎22(𝑗)𝑡
2−𝛼 +⋯+ 𝑐𝑚𝑎2𝑚(𝑗)𝑡

𝑚−𝛼 +⋯+ 𝑐1𝑎𝑚1(𝑗)𝑡
1−𝛼

+ 𝑐2𝑎𝑚2(𝑗)𝑡
2−𝛼 +⋯+ 𝑐𝑚𝑎𝑚𝑚(𝑗)𝑡

𝑚−𝛼 + 𝜏1𝑎11(𝑗)𝑡
1−𝛼

+ 𝜏2𝑎12(𝑗)𝑡
2−𝛼 +⋯+ 𝜏𝑚𝑎1𝑚(𝑗)𝑡

𝑚−𝛼 + 𝜏1𝑎21(𝑗)𝑡
1−𝛼

+ 𝜏2𝑎22(𝑗)𝑡
2−𝛼 +⋯+ 𝜏𝑚𝑎2𝑚(𝑗)𝑡

𝑚−𝛼 +⋯+ 𝜏1𝑎𝑚1(𝑗)𝑡
1−𝛼

+ 𝜏2𝑎𝑚2(𝑗)𝑡
2−𝛼 +⋯+ 𝜏𝑚𝑎𝑚𝑚(𝑗)𝑡

𝑚−𝛼

= 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)] + 𝑃(𝑡) 

(3.29) 

− 𝑄(𝑡)𝑇0
∗(𝑡)𝑐0 + ((𝑎11(𝑗) + 𝑎21(𝑗) + ⋯+ 𝑎𝑚1(𝑗))   −  𝑄(𝑡)𝑇1

∗(𝑡))𝑐1𝑡
1−𝛼

+ ((𝑎12(𝑗) + 𝑎22(𝑗) + ⋯+ 𝑎𝑚2(𝑗)) −  𝑄(𝑡)𝑇2
∗(𝑡))𝑐2𝑡

2−𝛼 +⋯

+ ((𝑎1𝑚(𝑗) + 𝑎2𝑚(𝑗) + ⋯+ 𝑎𝑚𝑚(𝑗)) −  𝑄(𝑡)𝑇𝑚
∗ (𝑡))𝑐𝑚𝑡

𝑚−𝛼  

− 𝑄(𝑡)𝑇0
∗(𝑡)𝜏0 + ((𝑎11(𝑗) + 𝑎21(𝑗) + ⋯+ 𝑎𝑚1(𝑗))   −  𝑄(𝑡)𝑇1

∗(𝑡))𝜏1𝑡
1−𝛼

+ ((𝑎12(𝑗) + 𝑎22(𝑗) + ⋯+ 𝑎𝑚2(𝑗)) −  𝑄(𝑡)𝑇2
∗(𝑡))𝜏2𝑡

2−𝛼 +⋯

+ ((𝑎1𝑚(𝑗) + 𝑎2𝑚(𝑗) + ⋯+ 𝑎𝑚𝑚(𝑗)) −  𝑄(𝑡)𝑇𝑚
∗ (𝑡))𝜏𝑚𝑡

𝑚−𝛼

− 𝑃(𝑡) = 0 
 

(3.30) 

We then collocated equation (3.30) at 𝑡 =  𝑡𝑟where 

𝑡𝑟 = 𝑎 + (
𝑏 − 𝑎

𝑚 − 1
) 𝑟, 𝑟 = 0,1,2,⋯ ,𝑚 − 2 (3.31) 

to get 

− 𝑄(𝑡𝑟)𝑇0
∗(𝑡𝑟)𝑐0 + ((𝑎11(𝑗) + 𝑎21(𝑗) + ⋯+ 𝑎𝑚1(𝑗))𝑡

1−𝛼 −  𝑄(𝑡𝑟)𝑇1
∗(𝑡𝑟))𝑐1

+ ((𝑎12(𝑗) + 𝑎22(𝑗) + ⋯+ 𝑎𝑚2(𝑗))𝑡
2−𝛼 −  𝑄(𝑡𝑟)𝑇2

∗(𝑡𝑟))𝑐2 +⋯

+ ((𝑎1𝑚(𝑗) + 𝑎2𝑚(𝑗) + ⋯+ 𝑎𝑚𝑚(𝑗))𝑡
𝑚−𝛼 −  𝑄(𝑡𝑟)𝑇𝑚

∗ (𝑡𝑟))𝑐𝑚 

− 𝑄(𝑡𝑟)𝑇0
∗(𝑡𝑟)𝜏0 + ((𝑎11(𝑗) + 𝑎21(𝑗) + ⋯+ 𝑎𝑚1(𝑗))𝑡

1−𝛼 −  𝑄(𝑡𝑟)𝑇1
∗(𝑡𝑟))𝜏1

+ ((𝑎12(𝑗) + 𝑎22(𝑗) + ⋯+ 𝑎𝑚2(𝑗))𝑡
2−𝛼 −  𝑄(𝑡𝑟)𝑇2

∗(𝑡𝑟))𝜏2 +⋯

+ ((𝑎1𝑚(𝑗) + 𝑎2𝑚(𝑗) + ⋯+ 𝑎𝑚𝑚(𝑗))𝑡
𝑚−𝛼 −  𝑄(𝑡𝑟)𝑇𝑚

∗ (𝑡𝑟))𝜏𝑚
− 𝑃(𝑡𝑟) = 0 

(3.32) 
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(

 
 
 
 
 

𝐴11 𝐴12 ⋯ 𝐴1𝑚 𝜏11 𝜏12 ⋯ 𝜏1𝑚
𝐴21 𝐴22 ⋯ 𝐴2𝑚 𝜏21 𝜏22 ⋯ 𝜏2𝑚
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐴𝑚1 𝐴𝑚2 ⋯ 𝐴𝑚𝑚 𝜏𝑚1 𝜏𝑚2 ⋯ 𝜏𝑚𝑚)

 
 
 
 
 

(

 
 
 
 
 

𝑐0
𝑐1
⋮
𝑐𝑚
𝜏1
𝜏2
⋮
𝜏𝑚)

 
 
 
 
 

=

(

 
 
 
 
 

𝐵1
𝐵2
⋮
𝐵𝑚
⋮ 
⋮
⋮

𝐵𝑚+1)

 
 
 
 
 

 

 

𝐴11 = − 𝑄(𝑡1)𝑇0
∗(𝑡1)𝑐0,

𝐴12 = ((𝑎11(1) + 𝑎21(1) + ⋯+ 𝑎𝑚1(1))𝑡
1−𝛼 −  𝑄(𝑡1)𝑇1

∗(𝑡1)), 

𝐴1𝑚 = ((𝑎1𝑚(1) + 𝑎2𝑚(1) + ⋯+ 𝑎𝑚𝑚(1))𝑡
𝑚−𝛼 −  𝑄(𝑡1)𝑇𝑚

∗ (𝑡1)) 

𝐴21 = − 𝑄(𝑡2)𝑇0
∗(𝑡2)𝑐0,

𝐴22 = ((𝑎11(2) + 𝑎21(2) + ⋯+ 𝑎𝑚1(2))𝑡
2−𝛼 −  𝑄(𝑡2)𝑇2

∗(𝑡2)) 

𝐴2𝑚 = ((𝑎1𝑚(2) + 𝑎2𝑚(2) + ⋯+ 𝑎𝑚𝑚(2))𝑡
𝑚−𝛼 −  𝑄(𝑡2)𝑇2

∗(𝑡2)) 

⋮⋮ 

𝐴𝑚1 = − 𝑄(𝑡𝑚)𝑇0
∗(𝑡𝑚)𝑐0,

𝐴𝑚2 = ((𝑎11(𝑚) + 𝑎21(𝑚) + ⋯+ 𝑎𝑚1(𝑚))𝑡
1−𝛼 −  𝑄(𝑡𝑚)𝑇1

∗(𝑡𝑚)) 

𝐴𝑚𝑚 = ((𝑎1𝑚(𝑚) + 𝑎2𝑚(𝑚) +⋯+ 𝑎𝑚𝑚(𝑚))𝑡
𝑚−𝛼 −  𝑄(𝑡𝑚)𝑇𝑚

∗ (𝑡𝑚)) 

𝜏11 = −𝑎11(1)𝑡1
1−𝛼, 𝜏12 = −𝑎22(1)𝑡1

2−𝛼, 
𝜏13 = −𝑎33(1)𝑡1

3−𝛼, 𝜏14 = −𝑎𝑚𝛼(1) 

𝜏21 = −𝑎11(2)𝑡2
1−𝛼, 𝜏22 = −𝑎22(2)𝑡2

2−𝛼, 
𝜏23 = −𝑎33(2)𝑡2

3−𝛼, 𝜏24 = −𝑎𝑚𝛼(2) 

⋮⋮ 

𝜏𝑚1 = −𝑎11(𝑚)𝑡𝑚
1−𝛼, 𝜏𝑚2 = −𝑎22(𝑚)𝑡𝑚

2−𝛼, 
𝜏𝑚3 = −𝑎33(1)𝑡𝑚

3−𝛼, 𝜏𝑚4 = −𝑎𝑚𝛼(𝑚) 

 

Case II 

Substituting equations (3.14), and (3.15) into equation (2.3) we have 

𝐷𝛼 [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] = 𝑃(𝑡) + 𝑄(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] 

+𝑅(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

]

2
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𝐷𝛼 [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝐷𝛼 [∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] = 𝑃(𝑡) + 𝑄(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] 

+𝑄(𝑡) [∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

] + 𝑅(𝑡) [∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

]

2

 

(3.33) 

∑{∑∑𝑐𝑘𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=0

𝑚

𝑗=0

}

𝑚

𝑘=0

+∑{∑∑𝜏𝑘𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=0

𝑚

𝑗=0

}

𝑚

𝑘=1

 

= 𝑃(𝑡) + 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑅(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡) + 𝜏0𝑇0

∗(𝑡) + 𝜏1𝑇1
∗(𝑡)

+ ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]2 

(3.34) 

∑∑∑𝑐𝑘𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=0

+∑∑∑𝜏𝑘𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=1

 

= 𝑃(𝑡) + 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑅(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡) + 𝜏0𝑇0

∗(𝑡) + 𝜏1𝑇1
∗(𝑡)

+ ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]2

+ 2𝑅(𝑡)[(𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡))(𝜏0𝑇0

∗(𝑡)

+ 𝜏1𝑇1
∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚

∗ (𝑡))]

+ 𝑅(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]2 

(3.35) 

∑∑∑𝑐𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=0

+∑∑∑𝜏𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=1

= 𝑃(𝑡) + 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑅(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡) + 𝜏0𝑇0

∗(𝑡) + 𝜏1𝑇1
∗(𝑡)

+ ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]2

+ 2𝑅(𝑡)[(𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡))(𝜏0𝑇0

∗(𝑡)

+ 𝜏1𝑇1
∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚

∗ (𝑡))]

+ 𝑅(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]2 

(3.36) 
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∑∑∑𝑐𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=0

+∑∑∑𝜏𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=1

= 𝑃(𝑡) + 𝑄(𝑡)[𝑐0𝑇0
∗(𝑡) + 𝑐1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑄(𝑡)[𝜏0𝑇0
∗(𝑡) + 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡)]

+ 𝑅(𝑡)[𝑐0
2𝑇0

∗2(𝑡) + 2𝑐0𝑐1𝑇0
∗(𝑡)𝑇1

∗(𝑡) + 2𝑐0𝑐3𝑇0
∗(𝑡)𝑇3

∗(𝑡) + ⋯
+ 𝑐1

2𝑇1
∗2(𝑡) + 2𝑐1𝑐2𝑇1

∗(𝑡)𝑇2
∗(𝑡) + 2𝑐3𝑐4𝑇3

∗(𝑡)𝑇4
∗(𝑡) + ⋯

+ 2𝑐𝑛−1𝑐𝑛𝑇𝑛−1
∗ (𝑡)𝑇𝑛

∗(𝑡) + ⋯+ 𝑐𝑛
2𝑇𝑛

∗2(𝑡)]
+ 𝑅(𝑡)[𝜏0

2𝑇0
∗2(𝑡) + 2𝜏0𝜏1𝑇0

∗(𝑡)𝑇1
∗(𝑡) + 2𝜏0𝜏3𝑇0

∗(𝑡)𝑇3
∗(𝑡) + ⋯

+ 𝜏1
2𝑇1

∗2(𝑡) + 2𝜏1𝜏2𝑇1
∗(𝑡)𝑇2

∗(𝑡) + 2𝜏3𝜏4𝑇3
∗(𝑡)𝑇4

∗(𝑡) + ⋯
+ 2𝜏𝑛−1𝜏𝑛𝑇𝑛−1

∗ (𝑡)𝑇𝑛
∗(𝑡) + ⋯+ 𝜏𝑛

2𝑇𝑛
∗2(𝑡)]

+ 2(𝑡)[(𝑐0𝑇0
∗(𝑡) ⋅ 𝜏0𝑇0

∗(𝑡) + 𝑐1𝑇1
∗(𝑡) ⋅ 𝜏1𝑇1

∗(𝑡) + ⋯+ 𝑐𝑛𝑇𝑛
∗(𝑡)

⋅ 𝜏𝑛𝑇𝑛
∗(𝑡))], 1 ≤ 𝑛 ≤ 𝑚 

(3.37) 

We then collocated equation (3.37) at 𝑡 =  𝑡𝑟where 

𝑡𝑟 = 𝑎 + (
𝑏 − 𝑎

𝑚 − 1
) 𝑟, 𝑟 = 0,1,2,⋯ ,𝑚 − 2  

to get 

∑∑∑𝑐𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑟
𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=0

+∑∑∑𝜏𝑘 {(−1)
𝑗−𝑘

22𝑘𝑗(𝑗 + 𝑘 − 1)! Γ(𝑘 + 1)

𝐿𝑘(𝑗 − 𝑘)! (2𝑘)! Γ(𝑘 + 1 − 𝛼)
𝑡𝑟
𝑘−𝛼}

𝑗

𝑘=0

𝑚

𝑗=0

𝑚

𝑘=1

= 𝑃(𝑡𝑟) + 𝑄(𝑡𝑟)[𝑐0𝑇0
∗(𝑡𝑟) + 𝑐1𝑇1

∗(𝑡𝑟) + ⋯+ 𝑐𝑚𝑇𝑚
∗ (𝑡𝑟)]

+ 𝑄(𝑡𝑟)[𝜏0𝑇0
∗(𝑡𝑟) + 𝜏1𝑇1

∗(𝑡𝑟) + ⋯+ 𝜏𝑚𝑇𝑚
∗ (𝑡𝑟)]

+ 𝑅(𝑡𝑟)[𝑐0
2𝑇0

∗2(𝑡𝑟) + 2𝑐0𝑐1𝑇0
∗(𝑡)𝑇1

∗(𝑡𝑟) + 2𝑐0𝑐3𝑇0
∗(𝑡𝑟)𝑇3

∗(𝑡𝑟) + ⋯
+ 𝑐1

2𝑇1
∗2(𝑡𝑟) + 2𝑐1𝑐2𝑇1

∗(𝑡𝑟)𝑇2
∗(𝑡) + 2𝑐3𝑐4𝑇3

∗(𝑡𝑟)𝑇4
∗(𝑡𝑟) + ⋯

+ 2𝑐𝑛−1𝑐𝑛𝑇𝑛−1
∗ (𝑡𝑟)𝑇𝑛

∗(𝑡𝑟) + ⋯+ 𝑐𝑛
2𝑇𝑛

∗2(𝑡𝑟)]
+ 𝑅(𝑡𝑟)[𝜏0

2𝑇0
∗2(𝑡𝑟) + 2𝜏0𝜏1𝑇0

∗(𝑡𝑟)𝑇1
∗(𝑡𝑟) + 2𝜏0𝜏3𝑇0

∗(𝑡𝑟)𝑇3
∗(𝑡𝑟) +⋯

+ 𝜏1
2𝑇1

∗2(𝑡𝑟) + 2𝜏1𝜏2𝑇1
∗(𝑡𝑟)𝑇2

∗(𝑡𝑟) + 2𝜏3𝜏4𝑇3
∗(𝑡𝑟)𝑇4

∗(𝑡𝑟) + ⋯
+ 2𝜏𝑛−1𝜏𝑛𝑇𝑛−1

∗ (𝑡𝑟)𝑇𝑛
∗(𝑡𝑟) + ⋯+ 𝜏𝑛

2𝑇𝑛
∗2(𝑡𝑟)]

+ 2(𝑡𝑟)[(𝑐0𝑇0
∗(𝑡𝑟) ⋅ 𝜏0𝑇0

∗(𝑡𝑟) + 𝑐1𝑇1
∗(𝑡𝑟) ⋅ 𝜏1𝑇1

∗(𝑡𝑟) + ⋯+ 𝑐𝑛𝑇𝑛
∗(𝑡𝑟)

⋅ 𝜏𝑛𝑇𝑛
∗(𝑡𝑟))], 1 ≤ 𝑛 ≤ 𝑚 

(3.38) 

Similarly, equation (3.38) is put into matrix form as in the case of its linear counterpart. 
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(

 
 
 
 
 

𝐴11
∗ 𝐴12

∗ ⋯ 𝐴1𝑚
∗ 𝜏11

∗ 𝜏12
∗ ⋯ 𝜏1𝑚

∗

𝐴21
∗ 𝐴22

∗ ⋯ 𝐴2𝑚
∗ 𝜏21

∗ 𝜏22
∗ ⋯ 𝜏2𝑚

∗

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐴𝑚1
∗ 𝐴𝑚2

∗ ⋯ 𝐴𝑚𝑚
∗ 𝜏𝑚1

∗ 𝜏𝑚2
∗ ⋯ 𝜏𝑚𝑚

∗ )

 
 
 
 
 

(

 
 
 
 
 

𝑐0
𝑐1
⋮
𝑐𝑚
𝜏1
𝜏2
⋮
𝜏𝑚)

 
 
 
 
 

=

(

 
 
 
 
 

𝐵1
∗

𝐵2
∗

⋮
𝐵𝑚
∗

⋮ 
⋮
⋮

𝐵𝑚+1
∗ )

 
 
 
 
 

 

 

NUMERICAL EXAMPLES BASED ON DOUBLE PERTURBATION 

COLLOCATION METHOD (DPCM) 

Three numerical examples are presented to demonstrate the accuracy, effectiveness and 

efficiency of the proposed method. 

Numerical Example 1 

Consider the linear fractional differential equation (Abdulaziz et, al(2008)). 

𝐷𝛼𝑦(𝑡)  =  𝑦(𝑡), 𝑡 >  0, (0 <  𝛼 ≤  2) (4.1) 

𝑦(0)  =  1, 𝑦 (0) =  −1 (4.2) 

the second condition is for 𝛼 >  0 the exact solution is 𝑦(𝑡)  =  𝑒−𝑡 

Substituting equations (3.14) and (3.15) into equation (4.1) to get 

∑∑𝑐𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

𝑚

𝑗=1

+∑∑𝜏𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

𝑚

𝑗=1

−∑𝑐𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

𝑚

𝑘=0

= 0 (4.3) 

We consider the case m = 5 in (4.3) above for the approximation: 

∑∑𝑐𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

+∑∑𝜏𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

−∑𝑐𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

= 0 (4.4) 

We expand and simplify equation (4.4) to get: 

−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 − 𝑐5 + 𝜏1 − 𝜏2 + 𝜏3 − 𝜏4 + 𝜏5 −  8𝑐2𝑡 + 1𝑐3𝑡 
+  32𝑐3𝑡

3 −  400𝑐5𝑡
2 +  1120𝑐5𝑡

3 −  1280𝑐5𝑡
4 +  2𝑐1𝑡

+ 8𝑐2𝑡
2 −  48𝑐3𝑡

2 −  32𝑐4𝑡 +  160𝑐4𝑡
2 −  256𝑐4𝑡

3

+  50𝑐5𝑡 +  𝑐0 + 128𝑐4𝑡
4 +  512𝑐5𝑡

5 − 𝜏0  −  2𝜏1𝑡 
−  8𝜏2𝑡

2 +  8𝜏2𝑡 −  32𝜏3𝑡
3 + 48𝜏3𝑡

2 −  18𝜏3𝑡 −  128𝜏4𝑡
4

+  256𝜏4𝑡
3 −  160𝜏4𝑡

2 +  32𝜏4𝑡 − 512𝜏5𝑡
5 +  1280𝜏5𝑡

4

−  1120𝜏5𝑡
3 +  400𝜏5𝑡

2 −  50𝜏5𝑡 

(4.5) 

Substituting the initial condition into the approximate solution in (3.31) gives; 
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−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 − 𝑐5 + 𝑐0 − 𝜏0 + 𝜏1 − 𝜏2 + 𝜏3 − 𝜏4 + 𝜏5 = 1 (4.6) 

𝑥𝑖 =
𝑖

11
, 𝑖 = 1,2,3,⋯ ,11 (4.7) 

We then collocated (4.5) using the values of 𝑥𝑖defined by to get eleven more equations, these 

twelve equations above were solved implementing Gaussian elimination method to obtain the 

values for the twelve unknown constants which were then substituted into the perturbed 

approximate solution in (3.14) to get; 

𝑦(𝑡)  =  1.000000 −  0.9999214570𝑡 +  0.4994227054𝑡2

− 0.1647069987𝑡3 +  0.003817244034𝑡4

−  0.005089658679𝑡5 
(4.19) 

Similarly, taking 𝑚 =  6, we obtained fourteen equations in fourteen unknowns: These 

equations were then solved with Gaussian elimination method to obtain the values unknown 

constants which were equally substituted into (2.14) to have the approximate solution as; 

𝑦(𝑡)  =  0.9999999999 −  0.9999948133𝑡 +  0.4999529330𝑡2

− 0.1664599129𝑡3 +  0.04116099974𝑡4

−  0.007626895554𝑡5 +  0.0008479342078𝑡6 
(4.20) 

These numerical results for 𝑚 =  5 and 𝑚 =  6 when evaluated at some equidistant points, 

were compared with the exact solutions in Tables 1 and 2 below. 

Table 1: Numerical Results and Errors for Example 1 for case m =5 

t Exact Approximate Error 

0.0 1.0000000000 1.0000000000 0.00000000 

0.1 0.9048411407 0.9048411407 0.00000000 

0.2 0.8187344080 0.8187344080 0.00000000 

0.3 0.7408213463 0.7408213463 0.00000000 

0.4 0.6703228986 0.6703228986 0.00000000 

0.5 0.6065332988 0.6065332988 0.00000000 

0.6 0.5488139644 0.5488139644 0.00000000 

0.7 0.4965873892 0.4965873892 0.00000000 

0.8 0.4493310348 0.4493310348 0.00000000 

0.9 0.4065712235 0.4065712235 0.00000000 

1.0 0.3678770313 0.3678770313 0.00000000 
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Table 2: Numerical Results and Errors for Example 1 for case m=6 

t Exact Approximate Error 

0.0 1.0000000000 0.9999999999 1.0000E-10 

0.1 0.9048411407 0.9048411407 0.00000000 

0.2 0.8187344080 0.8187344080 0.00000000 

0.3 0.7408213463 0.7408213463 0.00000000 

0.4 0.6703228986 0.6703228986 0.00000000 

0.5 0.6065332988 0.6065332988 0.00000000 

0.6 0.5488139644 0.5488139644 0.00000000 

0.7 0.4965873892 0.4965873892 0.00000000 

0.8 0.4493310348 0.4493310348 0.00000000 

0.9 0.4065712235 0.4065712235 0.00000000 

1.0 0.3678770313 0.3678770313 0.00000000 

 

Numerical Example 2 

Consider the fractional nonlinear Riccati differential equation (Khader et al,(2014)). 

𝐷𝛼𝑦(𝑡) + 𝑦2(𝑡) − 1 = 0, 𝑡 > 0, 𝛼 ∈ (0,1] (4.21) 

Subject to the initial condition; 

𝑦(0)  =  0 

when𝛼 =  1,we get the Riccati differential equation with the exact solution 

𝑦(𝑡) =
𝑒2𝑡 − 1

𝑒2𝑡 + 1
 (4.22) 

To solve the problem (4.21) using Newton linearization method we proceed as follows. We 

approximate the function ym(t) at m=5, using equations (3.14) and (3.15). 

∑∑𝑐𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

+∑∑𝜏𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

− (∑𝑐𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

)

2

− 1

= 0 

(4.23) 

Equation (4.23) is expanded using a modified program written in Maple 13 software. Also, the 

initial condition is substituted into (3.31) to have; 

∑𝑐𝑘𝑇𝑘
∗(0)

5

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(0)

5

𝑘=0

= 0 (4.25) 

We then collocated equation (4.24) at points 
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𝑥𝑖 =
𝑖

11
, 𝑖 = 1,2,3,⋯ ,11 (4.26) 

Equation (4.25) together with equation (4.26) constituted twelve systems of nonlinear equations 

with twelve unknown constants which are then solved for the twelve unknowns constants using 

Newton’s linearization scheme given below: 

(

𝑥1,𝑛+1
𝑥2,𝑛+2
⋮

𝑥𝑛,𝑛+𝑛

) = (

𝑥1,𝑛
𝑥2,𝑛
⋮
𝑥𝑛,𝑛

)

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 
 
 
 

−1

(

 
 

𝑓1(𝑥1,𝑛, 𝑥2,𝑛, ⋯ 𝑥𝑛,𝑛)

𝑓2(𝑥1,𝑛, 𝑥2,𝑛, ⋯ 𝑥𝑛,𝑛)

⋮
𝑓𝑛(𝑥1,𝑛, 𝑥2,𝑛, ⋯ 𝑥𝑛,𝑛))

 
 

 (4.27) 

This iterative procedure converges at the fifth iterations. Constants obtained were then 

substituted into equation (3.14) to obtain the approximate solution: 

𝑦5(𝑡) =  1.0050 × 10
−10 +  0.9993788403𝑡 +  0.0156030431𝑡2

−  0.04181689820𝑡3 + 0.1793761769𝑡4 +  0.01457934619𝑡5 
(4.28) 

Also for 𝑚 =  6 in equation (4.21), we obtained fourteen linear equations containing fourteen 

unknown constants which were also solved with Newton linearization scheme given in equation 

(4.27). The approximate solution for case 𝑚 =  6 is given as (4.29). 

𝑦6(𝑡) =  2.904 × 10
−11 +  1.000008670𝑡 −  0.00023248899𝑡2

−  0.3308565625𝑡3 − 0.01327514300𝑡4 +  0.173842917𝑡5

−  0.006854730555𝑡6 

(4.29) 

Results obtained after evaluated at some equidistant points are tabulated below: We noted here 

that the results are not available for 0 ≤ α <1. 

Table 3: Numerical Results and Errors for Example 2 for case m=5 

t Exact Approximate Error 

0.0 0.0000000000 1.005000E-10 1.00500E-10 

0.1 0.0996679945 0.0996935374 2.55429E-05 

0.2 0.1973753203 0.1974368745 6.15542E-05 

0.3 0.2913126124 0.2913448828 3.22704E-05 

0.4 0.3799489622 0.3799279458 2.10164E-05 

0.5 0.4621171573 0.4620744649 4.26924E-05 

0.6 0.5370495670 0.5370333622 6.20480E-05 

0.7 0.6043677771 0.6043965880 2.88109E-05 

0.8 0.6640367702 0.6640816230 4.48528E-05 

0.9 0.7162978702 0.7163139850 1.61148E-05 

1.0 0.7615941560 0.7616097327 1.55767E-05 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.4, pp.18-37, August 2017 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

33 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

Table 4: Numerical Results and Errors for Example 2 for case m=6 

t Exact Approximate Error 

0.0 0.0000000000 2.904000E-11 2.904000E-11 

0.1 0.0996679945 0.0996680281 3.350000E-08 

0.2 0.1973753203 0.1973755881 2.678000E-07 

0.3 0.2913126124 0.2913135160 9.036000E-07 

0.4 0.3799489622 0.3799511042 2.142000E-06 

0.5 0.4621171573 0.4621213411 4.183800E-06 

0.6 0.5370495670 0.5370567966 7.229600E-06 

0.7 0.6043677771 0.6043761555 8.378400E-06 

0.8 0.6640367702 0.6640213938 1.537640E-05 

0.9 0.7162978702 0.7161456036 1.572666E-05 

1.0 0.7615941560 0.7609514616 1.926944E-05 

 

Numerical Example 3 

Consider the fractional Riccati differential equation (Khader et al,(2014)). 

𝐷𝛼𝑦(𝑡) − 𝑦(𝑡)2 − 𝑡2 = 0, 𝛼 ∈ (0,1], 𝑡 > 0, 𝑦(0) = 1 (4.30) 

The exact solution for the problem at 𝛼 =  1 is 

𝑦(𝑡) =  1 + √2 tanh(√2𝑡 + (
1

2
) log (

√2 − 1

√2 + 1
)) (4.31) 

To solve the equation above using DPCM, we substitute equations (3.14) and (3.15) into 

equation (4.30) to get 

∑∑𝑐𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

+∑∑𝜏𝑗𝑤𝑗,𝑘
(𝛼)𝑡𝑘−𝛼

𝑗

𝑘=1

5

𝑗=1

− (∑𝑐𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

+∑𝜏𝑘𝑇𝑘
∗(𝑡)

5

𝑘=0

) − 𝑡2

= 0 

(4.32) 

We proceeded as before by expanding equation (4.32) and then collocating the slightly perturb 

resulting equation. This leads to eleven non-linear ordinary differential equations while the 

twelve equation is given by substituting the initial condition to the approximate solution 

equation (3.14). The approximate results is: 

𝑦5(𝑡)  =  1.006873741𝑡 + .8338272666𝑡
2 +  1.173327776𝑡3

− 1.952928176𝑡4 + .6281447803𝑡5 
(4.33) 

The results generated are tabulated in Table 5. 
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Table 5: Numerical Results and Errors for Example 3 for case m=5 

t Exact Approximate Error 

0.0 0.0000000000 0.0000000000 0.0000000000 

0.1 0.1102951967 0.1100099632 2.852335E-04 

0.2 0.2419767994 0.2411907823 7.860171E-04 

0.3 0.3951048483 0.3944940998 6.107485E-04 

0.4 0.5678121658 0.5676920780 1.200878E-04 

0.5 0.7560143927 0.7561311725 1.167798E-04 

0.6 0.9535662156 0.9534859065 8.030910E-05 

0.7 1.1529489660 1.1525126440 4.363220E-04 

0.8 1.3463636550 1.3458033650 5.602900E-04 

0.9 1.5269113130 1.5265394370 3.718760E-04 

1.0 1.6894983900 1.6892453880 2.530020E-04 

 

GRAPHICAL REPRESENTATION OF RESULTS 
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Graphical representation of results, Sweilamet. al,(2012) 
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Graphical representation of results,:Khader et. al. (2014) 

 

CONCLUSION 

In this work, we have applied Double Perturbation Collocation Method (DPCM) to solve 

fractional Riccati differential equations with the approximate solution assumed in equation 

(3.19). We solved both linear and nonlinear examples and compared our results with the exact 

solution for case α = 1. For these, we found that the proposed method produced very good 

results. The tables and graphical representation of results revealed the accuracy of the method. 

For linear cases considered, the approximate solutions coincided with the exact solutions. Also 

for the nonlinear examples, the results obtained agreed with the results obtained in the literature. 

The results also show, that the new method is performing better as m is increasing. 

 

REFERENCES 

Abdulaziz, O., Hashim, I. and Momani, S. (2008): Application of Homotopy Perturbation to 

Fractional IVPs. Journal of Computational and Applied Mathematics. 216, 572-584. 

Azizi, B. and Loghmani, G. B.(2013): Numerical Approximation for Space Fractional 

Diffusion Equation via Chebyshev Finite Difference Method. Journal of Fractional 

Calculus and Applications. 4(2),303-311. 

Bhrawy, A.H.(2014): A new Legendre Collocation method for solving a two-Dimensional 

Fractional diffusion equation. Abstract and Applied Analysis ID636191, 1-10. 

Caputo, M.(1967): Linear Models of dissipation whose Q is almost frequency part II, J. 

Communication in Nonlinear Science and Numerical Simulation. 14,674-684. 

Ertuk, V. S., Momani, S. and Odibat, Z. (2008): Application of Generalized Differential 

Transform Method to Multi-Order Fractional Differential Equa- tions. Communication 

in Nonlinear Science and numerical Simulation. 13, 1642-1654. 

Ertuk, V.S. and Momani, S.(2007): Solving systems of fractional differential equations using 

differential transform method. Journal of computational and Applied Mathematics. 215, 

142-151. 

Hashim, I., Abdulaziz, O. and Momani, S.(2009): Homotopy Analysis Method for IVPs. 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.5, No.4, pp.18-37, August 2017 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

37 
ISSN 2053-2229 (Print), ISSN 2053-2210 (Online) 

He, J. H. (1999): Variational Iteration Method: a kind of nonlinear analytic technique, some 

examples. Int. Journal of Nonlinear Mechanics, 34, 699- 708. 

He, J. H. (2000): Variational Iteration Method for Autonomous Ordinary Differential Systems. 

Appl. Mathematics Computer. 114,115-123. 

Khader, M.M., Sweilam, N. H. and Mahdy, A.M.A.(2014): The Chebyshev Collocation method 

for solving fractional order Klein-Gordon equation. WSEAS Transactions on 

Mathematics, 13,13-38. 

Khader, M.M.,Mahdy, A.M.S. and Mohamed,E.S.(2014): On approximate solutions for 

fractional fractionalRiccati differential equation.International Journal of Engineering and 

Applied Sciences. 4(9),1-10. 

Mittal, R. C. and Nigam, R. (2008): Solution of Fractional Integro-differential Equations by 

Adomian Decomposition Method. Int. Journal of Appl. Math.and Mech., 

Momani, S. and Aslam, N. (2006): Numerical Methods for Fourth-Order Fractional Integro-

Differential Equations. Applied Mathematics and Computations. 182, 754760. 

Momani, S. and Odibat, Z. (2007): Comparison Between the Homotopy Perturbation Method 

for Linear Fractional Partial Differential Equations. An International Journal Computers 

and Mathematics with Applications. 54,910-919. 

Oldham, K.B., and Spanier, J.(1974): The Fractional Calculus, Academic Press, New York. 

Podlubny, I. (1999): Fractional Differential Equations. 198. Academic Press, USA. 

Ried, W.T.(1972): Riccati differential equations. Mathematics in Science and engineering, 

New York Academic Press.86. 

Roy. Aust. Soc.13, 529-539. 

Snyder, M.A.(1966): Chebyshev Methods in Numerical Approximation. Prentice - Hall, Inc. 

Englewood Cliffs, N. J. 

Sweilam, N.H. ,Khader, M.M. and Mahdy, A.M.S.(2012): Numerical studies for solving 

fractional Riccati differential equation. Applications and Applied Mathematics, An 

International Journal. 7(2), 595-608. 

Taiwo, O. A. (2013): Comparison of Two Collocation Methods for the Solution of Integral 

Equations by Cubic Spline. J.of Math. Ass. of Nigeria. 34,289-294. 

Taiwo, O. A.,andOdetunde, O. S. (2009): Numerical Approximation of One Dimensional 

Biharmonic Equations by an Iterative Decomposition Method. Int. J. Math. Sci., 

20(1),37-44. 

Turut, V., and Guzel, N.(2013): On solving Partial Differential Equations of Fractional Order 

by using the Variational Iteration Method and Multivariate Pad´eApproximations. 

European Journal of Pure and Applied Maths. 6(2),147-171. 

 

http://www.eajournals.org/

