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ABSTRACT: In this paper, we present development of a simulator for multidimensional, 

multiphase and multicomponent surfactant flooding concerned with the characteristics of the 

chemical slugs for an enhanced oil recovery process. The development starts with the description 

of the fluid flow in permeable media from the basic conservation laws and with linear 

constitutive theory. From this physical basis a mathematical formulation of the flow problem 

may be posed in the form of an initial-boundary value system of partial differential equations. 

The form is presented in detail for the general multicomponent, multiphase system and several 

special cases. A surfactant flood model for a two or three dimensions, two fluid phases (aqueous, 

oleic) and one adsorbent phase and four components (oil, water, surfactants 1 and 2) system is 

presented and analyzed. It is ruled by a system of non-linear, partial, differential equations; the 

continuity equation for the transport of each component, Darcy’s equation for the flow of each 

phase and algebraic equations. This system is numerically solved in the one-dimensional case. 

The orthogonal collocation and finite difference techniques were used in solving the equations 

that characterized the multidimensional, multiphase and multicomponent flow problem. The 

simulator is fed with the physical properties that are concentration dependent functions. The 

material transport equations are decoupled from the momentum transport equations and the 

complex, time changing flow-field requires a numerical solution. Matlab computer programs 

were used for the numerical solution of the model equations. The results of the orthogonal 

collocation solution were compared with those of finite difference solutions. The results indicate 

that the concentration of surfactants for orthogonal collocation show more features than the 

predictions of the finite difference, offering more opportunities for further understanding of the 

physical nature of the complex problem and chemical effectiveness. Also, comparison of the 

orthogonal collocation solution with computations based on finite difference method offers 

possible explanation for the observed differences especially between the methods and the two 

reservoirs.  

KEYWORDS: Chemical flooding, Surfactant, Multicomponent, Multidimensional and 

Multiphase System, Orthogonal Collocation Technique, Finite Difference Method 
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 INTRODUCTION 

 

The study of displacement process required the understanding of the porous formation of 

complex reservoir and multiphase and multicomponent flow taking place in the reservoir. This is 

essential for development of a simulator of a reservoir in a surfactant assisted waterflood. 

 

In order to maximize oil recovery from reservoirs, operators consider Enhanced Oil Recovery as 

effective method. Also  increasing high oil prices and declining production in many regions 

around the globe makes this advance technologies called “Enhanced Oil Recovery“(EOR) of 

recovering  trapped oil in reservoir attractive for exploration and production operations.This 

implies the injection of a fluid or fluids or materials into a reservoir to supplement the natural 

energy present in a reservoir, where the injected fluids interact with the reservoir rock /oil /brine 

system to create favourable conditions for maximum oil recovery [1,2] 

 

The technical insights into enhanced oil recovery technologies are developed to increase the 

extraction of crude oil from reservoirs after primary production. Since not all the original oil in 

place can be recovered by the primary and secondary processes. Chemical enhanced oil recovery 

is used to mobilize the trapped oil in reservoir pores after a secondary recovery after water 

flooding. Surfactant flooding is a form of chemical flooding process. Surfactants are injected to 

decrease the interfacial tension between oil and water in order to mobilize the oil trapped after 

secondary recovery by water flooding.This is achieved by lowering the oil-water interfacial 

tension and allowing oil to flow within the pores of reservoir rock and into the well bores. 

 

In a surfactant flood, a multi-component multiphase system is involved. The theory of multi- 

component, multiphase flow has been presented by several authors.The surfactant flooding is 

represented by a system of nonlinear partial differential equations: the continuity equation for the 

transport of the components and Darcy‟s equation for the phase flow [3]. The present work 

describes the development of a simulator for an Enhanced Oil Recovery process for surfactant 

assisted waterflooding by applying different mathematical methods, orthogonal collocation 

method and finite difference methods to solve the basic model transport equations.The approach 

adopted here involves the use of different mathematical techniques; orthogonal collocation 

method and finite difference for the development and simulation of the relevant nonlinear partial 

differential equations. The two mathematical techniques further less the burden in this complex 

problem because of the multi-component, multiphase, multidimensional displacement 

phenomena in porous systems. 

 

The different mathematical techniques; orthogonal collocation method and finite difference  are 

to be utilized to identify a particular type of physical behaviour and enable the understanding of 

the involved propagation phenomena in terms of cause and effects. More so, the techniques will 

in particular be utilized to predict what happens in EOR process and show the complexity of the 

problem can be reduced by intensive calculation. 
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This work applied different techniques; orthogonal collocation method and finite difference to 

solve the basic model transport equations. The approach is multidimensional. It involved at least 

three independent variables, which mean that the various composition path spaces required to 

map the composition routes of the system are at most two dimensional, allowing for a great 

simplification in complexity. 

 

Systems of coupled, first-order, nonlinear hyperbolic partial differential equations (p.d.e.s) 

govern the transient evolution of a chemical flooding process for enhanced recovery. The method 

of characteristics (MOC) provides a way in which such systems of hyperbolic p.d.e.s can be 

solved by converting them to an equivalent system of ordinary differential equations. In some 

cases, the characteristic solution has been used to track the flood-front in two-dimensional 

reservoir problems [4]. The characteristic method was combined with a finite element approach 

to solve the problems [5]. The MOC and an adjustable number of moving particles were used to 

track three-dimensional solute fronts in groundwater systems; adjusting the number of particles 

serves to maintain an accurate material balance and save computational time [6].  

 

At the simple level, the results of simulation using these techniques are analogous to the 

Buckley-Leverett theory for waterflooding, the latter being evident in the work for polymer 

flooding [7], for dilute surfactant flooding [8], for carbonated waterflooding [9], and for miscible 

and immiscible surfactant flooding [10,11], for isothermal, multiphase, multicomponent fluid 

flow in permeable media [12]. Also, Case studies for the feasibility of sweep improvement in 

surfactant-assisted waterflooding [17].  

 

High oil prices and declining production in many regions around the globe, makes enhanced oil 

recovery (EOR) increasingly attractive for researchers. As evident in the work for a new class of 

viscoelastic surfactants for EOR [14], for microbially enhanced oil recovery at simulated 

reservoir conditions by use of engineered bacteria [15], for co-optimization of enhanced oil 

recovery and carbon sequestration [16], for development of improved surfactants and EOR 

methods for small operators [17].. 

 

The present work describes the design of a simulator of reservoir using the effect of surfactant 

mixture assisted water flooding an Enhanced Oil Recovery process by applying two different 

mathematical methods, orthogonal collocation and finite difference method, to solve the basic 

model transport equations. The approach is multidimensional and involves at least three 

independent variables. 

 

METHODOLOGY 

 

This work considered the solution of a multidimensional, multicomponent and multiphase flow 

problem associated with enhanced oil recovery process in petroleum engineering. The process of 

interest involves the injection of surfactant of different concentrations and pore volume to 

displace oil from the reservoir. 

http://academic.research.microsoft.com/Publication/49451950/co-optimization-of-enhanced-oil-recovery-and-carbon-sequestration
http://academic.research.microsoft.com/Publication/49451950/co-optimization-of-enhanced-oil-recovery-and-carbon-sequestration
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The methodology used here is illustrated by the steps utilized in executing the solution using the 

developed mathematical models describing the physics of reservoir depletion and fluid flow in 

which one of the main aims is the determination of the areal distribution of fluids in the flooded 

reservoir. The system is for two or three dimensions, two fluid phases (aqueous, oleic) and one 

adsorbent phase, four components (oil, water, surfactants 1 and 2). 

 

The reservoir may be divided into discrete grid blocks which may each be characterized by 

having different reservoir properties. The flow of fluids from a block is governed by the principle 

of mass conservation coupled with Darcy‟s law. The following are taken into consideration in 

the modeling effort: (i) the simultaneous flow of oil, gas, and water in three dimensions, (ii) the 

effects of natural water influx, fluid compressibility, mass transfer between gas and liquid phases 

and (iii) the variation of such parameters as porosity and permeability, as functions of pressure.  

The model is developed from the basic law of conservation of mass with the following 

assumptions [18].  

 

1. Fluid phases are incompressible, and individually obey Darcy‟s law. Fractional flows are 

unaffected by the presence of surfactants, due to their low concentrations. 

2. Relative permeabilities are given by simple power law relationships. Fractional flow 

relationships are derived from relative permeability equations. 

3. The effect of gravity and capillary forces are neglected. The effects of viscous fluid forces 

on the process will dominate by choosing a high oil viscosity, and by considering cases in which 

reservoir permeability variations are large.  

4. The reservoir minerals are water wet, leading to complete contact between the solid phase 

and the aqueous phase. Local phase equilibrium (adsorption, solubility) is attained by virtue of a 

small mobile phase velocity. Adsorption of each surfactant component individually obeys the 

Trogus model. There is negligible partitioning of surfactant into the oleic phase, since the 

aqueous phase concentrations are relatively low, and hydrophobic chain lengths are relatively 

short. 

5. Surfactant components react instantaneously and completely to form a pore blocking phase. 

Reaction occurs at a single interface; any solid or gel phase is deposited wherever it is formed. 

This leads to a permeability reduction of a fixed magnitude over the volume in which the phase 

separation occurs. The magnitude of this reduction is controllable by altering the concentrations 

at which the surfactants interact (and thus the amount of precipitate formed per unit volume).  

 

The following simplifications are also made: 

a. The presence of reservoir fractures is precluded, in order to investigate the  effects of 

rock matrix heterogeneity unambiguously.     

b. The effects of molecular diffusion and fluid dynamic dispersion on the process are 

secondary and significant. 

c. Temperature and pressure changes have negligible effects on physico-chemical 

equilibrium relationships. 

d. The breakdown of plugs under high pressure gradients, or dissolution and weakening 

of the plugs, is ignored. 
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e. No volume change occurs in the aqueous phase upon mixing or precipitation. Porosity 

relations are neglected. (The actual volume of precipitate formed is very small.)  

 The developed partial differential equation is converted to ordinary differential equation using 

finite difference and orthogonal collocation methods.  

 

The finite difference method is a technique that converts partial differential equations into a 

system of linear equations. There are essentially three finite difference techniques. The explicit, 

finite difference method converts the partial differential equations into an algebraic equation 

which can be solved by stepping forward (forward difference), backward (backward difference) 

or centrally (central difference). The orthogonal collocation method converts partial differential 

equations into a system of ordinary differential equations using the Lagrangian polynomial 

method. This set of ordinary differential equations generated is then solved with appropriate 

numerical technique such as the Runge Kutta. 

 

The rock and fluid properties such as density, porosity, viscosity, oil and water etc, and other 

parameters are listed in Tables 1, 2, 3 and 4. Table 1 is the reservoir characteristics [18]. Table 2 

is the reservoir characteristics used for the simulation [19]. Parameter values used in Trogus 

adsorption model.[20] for verification runs are shown in Table 3, while Table 4 contains 

additional reservoir parameters [18].In considering the more general form of the multiphase, 

multicomponent problem, the explicit Runge-Kutta method is chosen for the solution of the 

problem. The motivation for this explicit method is its simplicity and computational efficiency 

with regard to the reduction of truncation errors more effectively than other methods. The 

MATLAB computer program was used to obtain the solutions. 

 

The model encompasses two fluid phases (aqueous and oleic), one adsorbent phase (rock), and 

four components (oil, water, surfactants 1 and 2). The oil is displaced by water flooding. In-situ 

interaction of surfactant slugs may occur, with consequent phase separation and local 

permeability reduction. The model accommodates two (or three) physical dimensions and an 

arbitrary, nonisotropic description of absolute permeability variation and porosity.For most of 

the simulated cases [18], the reservoir consisted of a rectangular composite of horizontal oil 

bearing strata, sandwiched above and below by two impervious rocks. Oil is produced from the 

reservoir by means of water injection at one end and a production well at the other. Data for the 

hypothetical reservoir simulated are given in Table 1 [18]. 

 

Momentum Transport Equations 

 According to Darcys‟ law, the flux of a phase j is:  

      
 ,abs m rj

mj

j

K k p
q

m

 
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
                                                                               (1) 

The total fluid flux in the m -direction is then:     
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Denoting 
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               mj m
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 
                                                                                (3) 

where the effective permeability mK  is a function of phase saturation through the dependence of 

relative permeability on the latter; mq  also represents the superficial fluid velocity : 

m mq v                                                                                                            (3a) 

where mv  is the interstitial velocity, and    the porosity.  

Hence from Eqn. 3 
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From the continuity equation for incompressibility fluids: 

   0
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x y
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 
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                                                                                                  (5) 

 And substitution of eqn. (4) leads to: 
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Relative permeabilities are given by the following relationships [18]: 
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where wS  is the water saturation, iwS  is the connate water saturation, and roS  is the residual oil 

saturation. The fractional flow of phase j , jf  is given by: 

   
2
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                                                                                             (9) 

Substitution of Eqns. 1, 7, and 8 in Eqn.9, then yields the fractional flow of water [18]: 
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  Assuming that      0.1iwS  , 0.2roS   , 1.0w  cp   and  5.0o   cp ,then     
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   And 
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   Note that: 

            For 0 0.1wS  0wf  ' 0wf                             

             for   0.1 0.8wS                             11wf                    ' 11wf a                                 

             for    0.8 wS                                    1.0wf                      
' 0wf   

The effective permeability in Eqn. 2a may be calculated from Eqns. 7 and 8. 

 

Material Transport Equations 

In the following analysis, we assume  and   to be constant. However, a slight modification 

allows these quantities to be variable. For simplicity, the corresponding analysis is not presented 

here. The general material conservation equation, in the absence of diffusion, for a component  i   

is [18]: 

          i
i

C
r

t


   


i

J                                                                                       (12) 

where iC  is the concentration of  i  in moles per unit total volume. 

i
J  is the flux of i in moles per unit area and time, and ir  is the net reactive loss of i  in moles per 

unit volume and time.  

2.3  Adsorbates 

 If the surfactants partition solely between the solid and aqueous phases, then. 

       , 1 ii w i wC S C C  
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                                                                                  (13) 
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 where 
iC



is the adsorption density of i  on the reservoir minerals, moles per unit mass; ,i wC  is 

the concentration of surfactant i  in the aqueous phase, moles per unit volume;  V is the 

interstitial fluid velocity vector. 

Substituting Eqns. 13 and 14 in Eqn. 12 yields [18]: 
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Fluid Phases 
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For incompressible phases, we can work in terms of volumes rather than moles. Thus, in Eqn. 

12,   j jC S and 
j jfJ = V  so that:       
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S
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                                                               (16) 

Since there is no reactive fluid losses then eliminating of  , carrying out the product 

differentiation by the chain rule, multiplying the continuity equation (Eqn. 5) by jf , and 

subtracting from Eqn.16, we obtain:                                                                       
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Again, multiplying Eqn.17 (for j w  ) by ,i wC , Eqn.5 by ,w i wf C , and subtracting these from 

Eqn.15 with application of the triple chain-rule leads to [18]; 
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                    (18)                                                                     

The term ir  represents the rate of loss of surfactant due to precipitation: for a one-to-one reaction 

stoichiometry, 1 2r r . Since reaction occurs instantaneously at a sharp interface, this term may 

be ignored away from the singular region of the interface. 

 

Adsorption Model 

It is possible to approximate the adsorption isotherm of a pure surfactant on a mineral oxide by 

use of a simple model. At low concentration the adsorption obeys Henry‟s law, while above the 

critical micelle concentration (CMC), the total adsorption remains constant. The Trogus 

adsorption model [18, 20] is used in this work. The following assumptions are made: 

(a) The composition and concentration of surfactant in the monomer and in the micelles can be 

approximated by assuming that these are separate phases in thermodynamic equilibrium. 

(b) Adsorption is a function of monomer composition only. 

(c) Adsorption of an individual surfactant component is a linear function of its monomer 

concentration (Henry‟s law), and is independent of micelle concentration and the other 

component monomer concentrations. 

 

 

Application of Finite Difference to Solution of Model Equations 

First-order, finite-difference expressions for the spatial derivatives were substituted into the 

hyperbolic chromatographic transport equations (Eq. 18), yielding 2 x m coupled ordinary 

differential equations which may then be integrated simultaneously (also known as the 

„numerical method of lines‟). 
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                                                                                                                                 (19) 

where  i  = 1,2 and h   = 1,2,. .. m .  

Eqn. 19 is the finite-difference form of Eqn.18 written for one spatial dimension  , where ijm  

are the adsorption coefficients ,   is dimensionless time ( injected volume/ pore volume), and  

  is dimensionless distance (pore volumes travelled). In two dimensions, the finite-difference 

terms are multiplied by dimensionless velocities. The distortion of the solution in the  direction 

may be neglected by using a 4
th

 order Runge-Kutta method and a sufficiently small time step. 

The above equation is now transformed to the original form of Eqns. 18 using the following 

defined variables: 
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Again, recall that differentiation of a function of another function (chain rule) is of the form 
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Applying the chain rule above, Eqn. 19 becomes:                                        
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Eliminating the primes (') and bars (-) and introducing jim ,  terms yield 
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Applying the method of lines, a partial transformation to a difference equation, to the equations 

above yield: 
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This can also be written as follows 
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Since we have a set of simultaneous ODE‟s, we will attempt to solve the equations  
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where 

 

                                                                                                                                                                                                                                                                  

                                                                                                                                                                                                                                                       

            

                                                                                                          

          

 

Substitution of these terms in Eqs. 31 and 32 yield: 
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These on simplification yield 
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From the Trogus model, 
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A final substitution results in the equation below: 
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Application of Orthogonal Collocation to Solution of Model Equations    

Equation 24 can be written as:                                                                                                                                                                   
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         Now, from the Trogus model, 
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     The above equations now become: 
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where C is a function of both ԑ (dimensionless distance) and τ (dimensionless time). 

Using the method of orthogonal collocation, let C be approximated by the expression 
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Equation 47 can now be expressed as follows: 
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For I = 1, 2, 3, 4… N+1 

Therefore, 
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Again J = 1, 2, 3, 4… N+1 

Therefore the following system of ODE‟s can be generated 
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In matrix form, we have the following expression:  
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Similarly, the following expression defines aJI  [21,22].  
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Recall that the elements of the matrix can be generated from the following Lagrange polynomial 

For J = I 

For I ≠ J 
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For i = j, the elements here refer to the leading diagonal of the matrix to be generated 

For i ≠ j, the elements here refer to all other elements of the matrix 

Also, the following recurrence relations are defined below. 
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                                       (62)            

 

For j = 2, 3, 4, ..., N+1 

The following substitutions and manipulations will now be made to redefine Eqn.61. 

Substituting the recurrence relations into Eqn.61 yields: 
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                           (63)

 

 

Now, some terms will be cancelled out. 

Since j = i, 

(xi – xj) = 0 

and 

(xj – xj)=0 
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The above becomes: 
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This becomes: 
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Rewriting the above in terms of epsilon, (ε): 
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The matrix now looks like this: 
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The recurrence relations below will again be used to evaluate the terms of the matrix. 

1
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Let ԑ assume the range: 

ԑ = [0:0.01:0.09] 

where 

ԑ1 = 0                                                                                                            (70) 

ԑ2 = 0.01                                                                                                       (71) 

ԑ3 = 0.02                                                                                                        (72) 

 

RESULTS   

 

The reservoir response, as predicted by the simulation on the basis of the theory of coherence, is 

compared with the numerical predictions obtained using traditional finite difference method and 

orthogonal collocation. The case studies are chosen to be both hypothetical and using of existing 
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Nigerian well data with simple representative of the important elements of the simulator. The 

main objective of these case studies has been to demonstrate that the mathematical techniques of 

orthogonal collocation, finite difference and coherent theory in the context of application of the 

simulator can be used to obtain wave behaviour in a reservoir. A gradually increasing level of 

complexity is introduced, representing a range of systems from aqueous phase flow, to surfactant 

chromatography in two phase flow, to surfactant chromatography in two dimensional porous 

medium. The initial and injected surfactant compositions corresponding to cases 1, and 2  are 

shown in Table 5 in appendix. The rock and fluid properties are listed in Table 1, 2,3, 4 in 

appendix. These were taken as uniform for convenience. 

 

The two fluid phases consisted of a water phase and an oil phase, which, for convenience are 

considered incompressible. The density of oil, the viscosity of oil, the salinity of water, and the 

formation volume factor of oil and water are listed in Table 3.2 in appendix. All cases mentioned 

above were run by using anionic sodium dodecyl sulfate (SDS) and cationic dodecyl pyridinium 

chloride (DPC) as surfactants. 

 

 The system of equations is complete with the equations representing physical properties of the 

fluids and the rock. From a physical-chemical point of view, there are three components - water, 

petroleum and chemical. They are in fact, pseudo-components, since each one consists of several 

pure components. Petroleum is a complex mixture of many hydrocarbons. Water is actually 

brine, and contains dissolved salts. Finally, the chemical contains different kinds of surfactants.  

 

These three pseudo-components are distributed between two phases –the oleic phase and the 

aqueous phase. The chemical has an amphiphilic character. It makes the oleic phase at least 

partially miscible with water or the aqueous phase at partially miscible with petroleum. 

 

Interfacial tension depends on the surfactant partition between the two phases, and hence of 

phase behaviour. Residual phase saturation decrease as interfacial tension decreases. Relative 

permeability parameters depend on residual phase saturations. Phase viscosities are functions of 

the volume fraction of the components in each fluid phase. Therefore, the success or failure of 

surfactant flooding processes depends on phase behaviour. Phase behaviour influences all other 

physical properties, and each of them, in turn influences oil recovery.  

 

 

Results of Reservoir Prediction in an Aqueous Phase Chromatographic Flow in One 

Dimension 

Figure 1a is the result obtained for solving Equation 19 using the numerical technique for both 

orthogonal collocation and finite difference. The graph is for the bed composition profile for one 

dimensional aqueous-phase chromatography (case 1) at one half pore volume injected.  

 

If a one-dimensional, adsorbing porous medium is initially equilibrated with an aqueous 

composition C1 = 0.21, C2 = 0.181 ( concentrations normalized as moles in solution per m
3
  off 

bed) and is then injected with a composition C1 = 0.17, C2 = 0.013 (Riemann-type problem: case 
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1, refer to Table 5 ), the composition upstream of this injected fluid and composition downstream 

of the initial or  previously injected fluid follows the slow “path” from the injected composition 

to the junction with the “fast path” from the final composition, where it switches to this “fast” 

path. In figure 1a, the profile C1 of  finite difference (FD) shows a steady rise from C1 = 0.17 to 

C1 = 0.21 and then attainecd a constant state. Also the profile C1 of the orthogonal collocation 

(OC) increased steadily from C1 = 0.17 to C1 = 0.21 after which it  started depressing from C1= 

0.2 at distance 0.3 epsilon to C1 = 0.07 at distance 0.5 epsilon before rising back to attain a 

constant state with the finite difference method. Similarly, the C2 of finite difference (FD) 

increased steadily from C2 =0.017 to a constant state as for C1. The constant state is at C2 = 0.18. 

The orthogonal collocation (OC) for C2 first moves at constant state before rising steadily to C2 = 

0.18 and then declined from C2 = 0.18 to a minimum of C2 = 0.08 before rising to a constant 

state. The profiles for finite difference (FD) and that of orhogonal collocation (OC) agree except 

for the depressions of the orthogonal collocation profiles. 

 

Figure 1b shows the result obtained for solving Equation 19 by using orthogonal collocation 

(OC) and finite difference (FD) as the numerical technique. The graph is for the bed composition 

profile for one dimensional aqueous phase chromatography for case 1 at one pore volume 

injected. 

In this case also, the adsorbing porous medium is initially equibrated with an aqueous 

composition. C1 = 0.21, C2 = 0.181   ( concentrations normalized as moles in solution per m
3
 off 

bed) and is then injected with a composition C1 = 0.17, C2 = 0.013 (Riemann-type problem: case 

1,( refer to Table 5 ). The profile C1 of finite difference (FD) indicates rise in concentration from 

C1 = 0.17 to 0.21 after which the concentration maintained a constant state. The profile of C1 of 

the orthogonal collocation (OC) also rise from C1 = 0.17 to C1 = 0.21 but falls to 0.03 at distance 

0.4 epsilon and then increased steadily to constant state as for C1 finite difference (FD). The C2 

of finite difference increased steadily from C2 = 0.02 to attain constant state at 0.18. Also the 

profile of C2 of the orthogonal collocation (OC) increase gradually  from C2 = 0.02 to C1 = 0.18 

at distance 0.2 epsilon for short constant state and then decline to C2 = 0.02 at distance 0.4 

epsilon before rising back to reach constant state with the finite difference. 

 

The bed composition profile for one dimensional aqueous phase chromatography for case 1 at 

two pore volume injected is shown in  Figure 1c. This is  the result obtained for solving Equation 

19 by using numerical technique for both the orthogonal collocation (OC) and finite difference 

(FD). The adsorbing porous medium is initially equibrated with an aqueous composition. C1 = 

0.21, C2 = 0.181 (concentrations normalized as moles in solution per m
3
  off bed) and is then 

injected with a composition C1 = 0.17, C2 = 0.013 (Riemann-type problem: case 1,( refer to 

Table 5 in appendix) ), The profile C1 of finite difference (FD)  and the profile C1 of orthogonal 

collocation (OC) indicate that there is steady increase from C1 = 0.17 to C1 = 0.21 at distance 0.1 

epsilon and then attained a constant state for both profiles. Similarly, the profile C2 of finite 

difference (FD) shows a steady rise from C2 = 0.02 to C2 = 0.18 and then maintained a constant 

state. Also, the profile C2 for orthogonal collocation (OC), follows the same pattern, which 

indicate an increase from C2 = 0.02 to C2 = 0.18 and then attained a constant state. The 

orthogonal collocation (OC) profiles match the finite difference (FD) profiles. 
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FIGURE 1a. CASE 1 C1,C2,CC1,CC2 vs epsilon at  τ = 0.5. Bed composition profile for one-

dimensional aqueous-phase chromatography; case 1, at one-half pore volume injected. The plots 

are for two methods: Orthogonal collocation (OC), and finite difference (FD). 

 
 

FIGURE 1b CASE 1 C1,C2, CC1,CC2 vs epsilon at τ = 1.0. Bed composition profile for one-

dimensional aqueous-phase chromatography; case 1, at one pore volume injected. The plots are 

for two methods: Orthogonal collocation (OC), and finite difference (FD). 
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FIGURE 1c CASE 1 C1,C2 CC1,CC2 vs epsilon at τ = 2.0. Bed composition profile for one-

dimensional aqueous-phase chromatography; case 1, at two pore volumes injected. The plots are 

for two methods: Orthogonal collocation (OC),  and finite difference (FD). 

 

 

Figure 2a shows the bed concentration profiles for one dimensional aqueous phase 

chromatography for case 2 at one-half pore volume injected in the adsorbing porous medium  

initially devoid of surfactant and then injected  with a mixture   C1 = 0.042, C2 = 0.115  

(Riemann-type problem: case 2 ( refer to Table 5 ), with the numerical result obtained for solving 

Equation 19 by using orthogonal collocation (OC) and finite difference (FD) as the numerical 

technique.The profile C1 of finite difference (FD) indicates a steady fall from in concentration 

from C1 = 0.04 to a constant state of zero. The profile of C1 of the orthogonal collocation (OC) 

falls steadily from C1 = 0.04 but however oscillates between 0.01 and  0.04 jumping to its 

injection value before attaining constant state with the finite difference (FD). Similarly the C2 of 

finite difference (FD) decreased steadily from C2 = 0.119 to a constant state as for C1. Also the 

profile C2 of orthogonal collocation (OC) decreases steadily from C2 = 0.119 but however gives 

a more pronounced oscillation from C2 = 0.02 and C2 = 0.119 jumping to its injection value 

before attaining constant state  with the finite difference(FD).  
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Figures 2b and 2c compare the bed concentration profiles expected at one and two pore volume 

injected with a mixture   C1 = 0.042, C2 = 0.115 in the adsorbing porous medium  initially devoid 

of surfactant (Riemann-type problem: case 2,( refer to Table 5)). The graph shows the results 

obtained using the numerical technique; finite difference (FD) and orthogonal collocation (OC) 

 

In figure 2b, the profile C1 of finite difference (FD) shows steady decline from from C1 = 0.04 to 

a constant state. Also the C1 of orthogponal collocation falls steadily from C1= 0.04 to a constant 

state as for finite difference (FD). The profile C2 of finite difference decreased steadily from C2 = 

0.119 to a constant state as for C1. Similarly, the C2 of orthogonal collocation (OC) falls steadily 

from C2 = 0.119 to a constant state. 

In figure 2c, the profiles C1 of orthogonal collocation (OC) follow the same pattern as that in 

figure 2b. Similarly, the profiles C2 of finite difference (FD) and orthogonal collocation (OC) 

have the same pattern as in figure 2b 

 

 
 

FIGURE 2a CASE 2. C1,C2, CC1,CC2 vs epsilon at τ = 0.5. Bed composition profile for one-

dimensional aqueous-phase chromatography; case 2, at one-half pore volume injected. The plots 

are for two methods: Orthogonal collocation (OC), and finite difference (FD). 
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FIGURE 2b.CASE 2  C1,C2, CC1,CC2 vs epsilon at τ = 1.0. Bed composition profile for one-

dimensional aqueous-phase chromatography; case 2, at one pore volume injected. The plots are 

for two methods: Orthogonal collocation (OC), and finite difference (FD). 

 

 
 

FIGURE 2c  CASE 2. C1,C2, CC1,CC2 vs epsilon at τ = 2.0.  Bed composition profile for one-

dimensional aqueous-phase chromatography; case 2, at two pore volumes injected. The plots are 

for two methods: Orthogonal collocation (OC) and finite difference (FD). 
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DISCUSSION OF RESULTS              

 

The prediction of the appropriate surfactant concentration necessary for the required enhanced 

oil recovery from reservoirs and  the basic physical principle employed by the simulator is that of 

mass conservation. Usually those quantities are conserved at stock tank conditions and related to 

reservoir fluid quantities through the pressure dependent parameters. The profiles of two cases 

1and 2, one dimensional aqueous phase chromatography and two-phase chromatography for one, 

one-half, and two pore volume injected were developed using simulated solutions to model 

equations. These equations are solved by finite difference (FD) and orthogonal collocation (OC). 

The use of these methods permit the determination of the relative efficiency of the methods and 

how well they predicts the complex characteristics of the enhanced oil recovery process.  

 

Injecting a mixture of low concentration aqueous surfactant composition into adsorbing porous 

medium that is initially injected with high concentration aqueous surfactant composition. This 

variation may exist in the initial profile or be generated by injection. The initial fluid or 

previously injected fluid has the composition downstream of the change in amount while the 

newly injected fluid has the composition upstream of the original variation. The composition 

route along the bed follows the slow path from the injected composition and then switches to the 

fast path which leads to the previously injected composition. The route passes along paths and 

follows the paths in the sequence of increasing wave velocities. 

 

Injecting a mixture of an aqueous composition into a porous medium, initially devoid of 

surfactant, the expected composition is a self-sharpening shock wave. The steepness in all the 

profiles generated by finite difference (FD), and orthogonal collocation (OC), confirms the self 

sharpening behaviour. It may be noted in all cases of these natures the waves trajectories 

gradually fall, as a result of a gradual increase in the associated eigenvalues of the waves as 

salinity increases. The consequence of this steepening is that the flows are sharpening, so that 

they break through both earlier and over a smaller injected volume. For the dependent variables 

such as component concentration, common velocity exists at each point in the wave, and the 

associated composition route remains unchanged and the same during relative shifts of waves 

associated with other dependent variable waves as shown in the methods.  This is in agreement 

with other work [3]. 

 

The complexities could not have been detected by using only the coherent technique [18]. This is 

a major accomplishment of this work. Not only was the discontinuities discovered by this work, 

it also provides an insight into the complex behaviour of enhanced oil recovery process. 

 

CONCLUSIONS   

 

 The applicability of the simulator for the solution of the model equations of multiphase, 

multicomponent flow and transport in a reservoir has been demonstrated using orthogonal 

collocation solution and finite difference. The results of the orthogonal collocation solution were 

compared with those of finite difference. The results obtained using this methodology revealed 
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certain features unobserved by previous investigators (Hankins and Harwell, 2004). The results 

indicate that the concentration of surfactants (C1, C2) for orthogonal collocation appear to show 

more features than the predictions of finite difference. The reason for the difference is the subject 

of continuing study.   

 

It is obvious that the routes for the compositions of adsorbing surfactants correspond to the 

simpler case of aqueous phase chromatography, with modified eigenvalue. The route passes 

along the paths and follows the paths in the sequence of increasing wave velocities. The 

steepness in the profiles generated by finite difference and orthogonal collocation confirms the 

self sharpening bahaviour. The consequence of this steepening is that the flows are sharpening, 

so that they break through both earlier and over a smaller injected volume. This observation also 

holds for “shock” waves. Therein lies the possibility of the differences in the concentration 

profiles predicted by the two numerical techniques. Again, the use of the orthogonal collocation 

and finite difference solution provide easier solution to future possible problems that may arise 

as the simulator is being used.  

 

Table 1 

  Reservoir characteristics from the work of Hankins and Harwell (2004) 
Parameter Value 

Rock density 2.65 g/cm
3 

 

Porosity 0.2 

Oil viscosity 5.0 cp 

Water viscosity 1.0 cp 

Injection pressure gradient 

( maintained constant ) 

1.5 psi/ft 

Fluid densities 1.0 g/cm
3
 

Width of injection face 50 ft 

Width of central high permeability streak 10 ft 

Length of reservoir 100 or 5000 ft 

Residual oil saturation 0.2 

Connate water saturation 0.1 

First injected surfactant SDS 

Second injected surfactant DPC 

Henry‟s law constant 

   SDS 

   DPC 

 

2.71×10
-4

 l/g 

8.30×10
-5

 l/g 

CMC Values 

  SDS 

  DPC 

 

800 μmol/l 

4000 μmoll/l 

Injected concentration 

   SDS 

   DPC 

 

10 CMC 

10 CMC 

Brine spacer (typical)    ≈  0.05 pore volumes 

Slug volumes      ≈ 0.10 pore volumes 
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TABLE 2 

Reservoir Characteristics used for the Simulation work by Oyedeko (2012) 
Parameter Value 

Rock density 2.65 g/cm
3
 

Porosity 0.2 

Oil viscosity 0.40 cp 

Water viscosity 0.30 cp 

Injection pressure gradient 

( maintained constant ) 

1.5 psi/ft 

Fluid densities 1.0 g/cm
3
 

Width of injection face 50 ft 

Width of central high permeability streak 10 ft 

Length of reservoir 100 or 5000 ft 

Residual oil saturation 0.2 

Connate water saturation 0.2 

First injected surfactant SDS 

Second injected surfactant DPC 

Henry‟s law constant 

   SDS 

   DPC 

 

2.71×10
-4

 l/g 

8.30×10
-5

 l/g 

CMC Values 

  SDS 

  DPC 

 

800 μmol/l 

4000 μmoll/l 

Injected concentration 

   SDS 

   DPC 

 

10 CMC 

10 CMC 

Brine spacer (typical)    ≈  0.05 pore volumes 

Slug volumes      ≈ 0.10 pore volumes 

 

Table 3 

 Parameter values used in Trogus adsorption model for verification runs 
Parameter Value 

Pure component CMCs C1*=1.0 mol/m
3
 

C2*=0.35 mol/m
3
 

Phase separation model parameter θ=1.8 

Henry‟s law constants for adsorption 

,i i i wC k C



 

(
,i wC = aqueous monomer concentration) 

k1 =0.21×10
-3

 m
3
/kg 

k2= 0.80×10
-3

 m
3
/kg 

Henry‟s law constant for oleic partitioning    
, ,i o i i wC q C                                      

(
,i wC = aqueous monomer concentration) 

q1=7.1 

q2=1.3 

Adsorbent properties  ρs =2.1× 10
+3

 m
3
/kg 

∅ =0.2 

 



International Journal of Engineering and Advanced Technology Studies 

Vol.4, No.4, pp.36-64, September 2016 

       ___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

63 
ISSN 2053¬5783(Print), ISSN 2053¬5791(online) 

 
 

Table 4  

Additional Reservoir Parameters for the coherence work by Hankin and Harwell (2004) 

Model  designation A B 

Grid points in the horizontal direction ( m+1) 21 21 

Grid points in the vertical direction (n+1) 11 21 

Coherent waves of water saturation 28 28 

Initial number of points per coherent wave 

       Water 

       Surfactant 

 

41 

81 

 

41 

81 

Maximum number of points required per coherent 

wave 

≈ 300 ≈300 

Average time step size (days) 

   Short reservoir (100 ft) 

     200 mD streak 

     1000 mD streak  

   Long reservoir (5000ft) 

     200 mD streak 

      1000 mD sreak   

 

 

3.47 

0.69 

 

174.0 

34.7 

 

 

3.47 

0.69 

 

174.0 

34.7 

Typical number of time steps required to inject first 

pore volume 

  Short reservoir              

  Long reservoir                                                                                                                                                          

 

 

33 

75 

 

 

33 

75 

 

Table 5 

Conditions for case studies of surfactant chromatography[18]. 

Case Injected  

composition: 

CC1(mol/m
3
 bed) 

Injected 

composition: 

CC2(mol/m
3
bed) 

Initial 

composition: 

C1(mol/m
3
bed) 

Initial 

composition: 

C2(mol/m
3
bed) 

1 0.17 0.013 0.21 0.181 

2 0.042 0.115 0 0 

3 0.66 0.875 0.35 0.15 
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